[go: up one dir, main page]

JPH01183858A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01183858A
JPH01183858A JP871388A JP871388A JPH01183858A JP H01183858 A JPH01183858 A JP H01183858A JP 871388 A JP871388 A JP 871388A JP 871388 A JP871388 A JP 871388A JP H01183858 A JPH01183858 A JP H01183858A
Authority
JP
Japan
Prior art keywords
layer
gate
source
drain
forming layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP871388A
Other languages
Japanese (ja)
Inventor
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP871388A priority Critical patent/JPH01183858A/en
Publication of JPH01183858A publication Critical patent/JPH01183858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase breakdown strength between a gate and a drain and breakdown strength between the gate and a source and reduce leakage currents, and to lower source resistance, by making the thickness of a contact forming layer have a specific value or above while forming a source metallic electrode and a drain metallic electrode in regions where parts of the contact formation layer are removed through etching. CONSTITUTION:The thickness 10 of a contact forming layer 5 is brought to 0.3mum or more while a source metallic electrode 8 and a drain metallic electrode 9 are formed into regions shaped by getting rid of part of the thickness 10 of the contact forming layer 5 through etching. Consequently, since the contact forming layer 5 is thickened as 0.3mum, the quantity of side etching is increased when a gate recess region 6 is shaped, and the contact forming layer 5 in high concentration is not brought near to a gate electrode 7 even when the gate electrode 7 is formed subsequently. Accordingly, breakdown strength is improved largely, and leakage currents are reduced. Distances among a two-dimensional electron layer and an active layer and these metallic electrodes are not changed, and source resistance is not increased, and, on the contrary, lowered only by the thickening section of the contact forming layer 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半絶縁性GaAs基板上にエピタキシャル層
を堆積した基板を用いた高電子移動度トランジスタ及び
電界効果トランジスターの高耐圧化に間する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to increasing the breakdown voltage of high electron mobility transistors and field effect transistors using a semi-insulating GaAs substrate on which an epitaxial layer is deposited.

従来の技術 半絶縁性GaAs基板上にエピタキシャル層を堆積した
基板を用いた高電子移動度トランジスタ及び電界効果ト
ランジスターは、10GH2前後の高周波でも高い利得
と低いノイズ値を示し、衛星通信等の主力素子として用
いられている。一般に、高電子移動度トランジスタ及び
電界効果トランジスタの一ノイズ値はゲート抵抗及び相
互コンダクタンス等のパラメーターに関係して変化する
が、もう一つ重要なパラメーターとしてゲートとソース
間のリーク電流及びゲートとドレイン間のリーク電流の
値によっても大きく変化する。これらのリーク電流を減
少させる為には高電子移動度トランジスタ及び電界効果
トランジスタのゲートとソース間の耐圧及びゲートとド
レイン間の耐圧を向上させることが必要である。
Conventional technology High electron mobility transistors and field effect transistors using a semi-insulating GaAs substrate with an epitaxial layer deposited show high gain and low noise even at high frequencies of around 10 GH2, and are used as main elements in satellite communications, etc. It is used as. In general, one noise value of high electron mobility transistors and field effect transistors varies depending on parameters such as gate resistance and transconductance, but another important parameter is the leakage current between the gate and source and the gate and drain current. It also varies greatly depending on the value of the leakage current between the two. In order to reduce these leakage currents, it is necessary to improve the breakdown voltage between the gate and source and the breakdown voltage between the gate and drain of high electron mobility transistors and field effect transistors.

特に半絶縁性GaAs基板上にエピタキシャル層を堆積
した基板を用いた高電子移動度トランジスタ及び電界効
果トランジスターにおいては、ソース金属電極及びドレ
イン金属電極と2次元電子層又は活性層との良好なオー
ミックコンタクトを得るためにN十型GaAs等からな
るコンタクト形成層を基板の最上部に形成し、ゲート金
属電極の近傍のみこのコンタクト形成層をリセスエッチ
ングしてゲート金属電極を形成しているためソース領域
とドレイン領域のN十型GaAs層であるコンタクト形
成層とゲート金属電極との距離が近く耐圧低下の原因と
なっていた。
In particular, in high electron mobility transistors and field effect transistors using semi-insulating GaAs substrates with epitaxial layers deposited on them, good ohmic contact between the source metal electrode and drain metal electrode and the two-dimensional electronic layer or active layer is required. In order to obtain this, a contact formation layer made of N0 type GaAs or the like is formed on the top of the substrate, and this contact formation layer is recessed and etched only in the vicinity of the gate metal electrode to form the gate metal electrode. The distance between the contact formation layer, which is an N0-type GaAs layer in the drain region, and the gate metal electrode is short, which causes a decrease in breakdown voltage.

第2図は、従来の半絶縁性GaAs基板上に形成されて
おり、選択ドープされたヘテロ接合を用いた高電子移動
度トランジスタの断面構造図である。第2図において半
絶縁性G a A s基板lの上にはMBE等の方法に
よりGaAsバッファー層2、S1ドープN型A I 
C; a A s N 3、N型AIG a A s 
N 4、コンタクト形成層としてN中型GaAs層5が
連続的に堆積される。高電子移動度トランジスタのゲー
ト電極7はゲートリセス領域6をエツチングした後この
ゲートリセス領域6の底に形成する。ゲートリセス領域
6により2つに分割された N中型G a A s層5
のそれぞれにはソース電極8及びドレイン電極9がその
表面に付加されており外部への引き出し電極として用い
られる。
FIG. 2 is a cross-sectional structural diagram of a high electron mobility transistor formed on a conventional semi-insulating GaAs substrate and using a selectively doped heterojunction. In FIG. 2, a GaAs buffer layer 2, an S1-doped N-type A I
C; a As N 3, N-type AIG a As
N 4 and an N medium-sized GaAs layer 5 are successively deposited as a contact forming layer. The gate electrode 7 of the high electron mobility transistor is formed at the bottom of the gate recess region 6 after etching it. N medium-sized GaAs layer 5 divided into two by gate recess region 6
A source electrode 8 and a drain electrode 9 are added to the surface of each of the electrodes, and are used as electrodes for leading to the outside.

第2図に示すようにN十型CaAs層5はゲートTiF
j!’zの近傍まで広がっているのでソース抵抗及びド
レイン抵抗が小さくなりトランジスターのノイズ値を下
げる働きをするものの、ゲートとドレイン間の距離及び
ゲートとソース間の距離が近過ぎるためゲートとドレイ
ン間耐圧及びゲートとソース間耐圧が−1ボルト前後と
非常に低くリーク電流が増加しこのリーク電流により逆
にノイズ値は大きくなってしまっていた。このゲートと
ドレイン間耐圧及びゲートとソース間耐圧低下は単にゲ
ートとドレイン間の距離及びゲートとソース間の距離だ
けで決フており、耐圧を上げてリーク電流を大幅に減少
させる為にはこれらの距離を離す必要がある。
As shown in FIG. 2, the N0 type CaAs layer 5 is made of gate TiF.
j! Since it extends to the vicinity of 'z, the source resistance and drain resistance become small, which works to lower the transistor noise value. Also, the breakdown voltage between the gate and the source is very low, around -1 volt, and the leakage current increases, and this leakage current conversely increases the noise value. This breakdown voltage between the gate and drain and the breakdown voltage between the gate and source are determined simply by the distance between the gate and drain and the distance between the gate and source, and in order to increase the breakdown voltage and significantly reduce leakage current, these It is necessary to keep the distance between

例えばゲートとドレイン間耐圧及びゲートとソース間耐
圧を一10V以上確保するためには最低限ゲート電極と
N中型GaAs層5との距離を0゜3μm以上離す必要
が有るが従来構造では実現できなかった。
For example, in order to ensure the breakdown voltage between the gate and the drain and the breakdown voltage between the gate and the source at -10V or more, it is necessary to keep the distance between the gate electrode and the N medium-sized GaAs layer 5 at least 0.3 μm, which cannot be achieved with the conventional structure. Ta.

発明が解決しようとする課題 第2図に示した従来の高電子移動度トランジスタのコン
タクト形成層としてのN中型GaAs層5のN中型G 
a A s層厚ざ10は0.1 pmから0.15μm
と薄いためにこの領域を切り込む形で形成したゲートリ
セス領域6の横方開広がりつまりゲートドレイン間距離
11は非常に短く例えばN十型GaAs層厚さ10の厚
さ分0.I Byaから0.15μm程度しかない。従
ってゲートとドレイン間の距離及びゲートとソース間の
距離が近くゲートとドレイン間耐圧及びゲートとソース
間耐圧が−lボルト前後と非常に低くリーク電流が増加
し逆にノイズ値は大きくなってしまっていた。
Problems to be Solved by the Invention The N medium size G of the N medium size GaAs layer 5 as a contact formation layer of the conventional high electron mobility transistor shown in FIG.
a A s layer thickness 10 is 0.1 pm to 0.15 μm
Since the gate recess region 6 is thin, the lateral spread of the gate recess region 6 formed by cutting into this region, that is, the gate-drain distance 11, is very short, for example, 0.0 mm by the thickness of the N0 type GaAs layer 10. It is only about 0.15 μm from I Bya. Therefore, the distance between the gate and drain and the distance between the gate and source are close, and the breakdown voltage between the gate and drain and the breakdown voltage between the gate and source are very low, around -1 volt, which increases the leakage current and conversely increases the noise value. was.

本発明は、かかる点に鑑みてなされたもので、ゲートと
ドレイン間耐圧及びゲートとソース間耐圧が高くてリー
ク電流が少なく、しかもソース抵抗等が小さくノイズ値
の低い半導体装置を提供することを目的としている。
The present invention has been made in view of the above, and an object thereof is to provide a semiconductor device with high gate-to-drain breakdown voltage and gate-to-source breakdown voltage, low leakage current, small source resistance, etc., and low noise value. The purpose is

課題を解決するための手段 本発明は上記問題点を解決する為、MBE等の方法によ
り選択ドープされたヘテロ接合を用いた高電子移動度ト
ランジスタにおいては、ソース金属電極とドレイン金属
電極の直下に位置し2次元電子層より高濃度なコンタク
ト形成層の厚さを0゜3μm以上とすると共に、ソース
金属電極とドレイン金属電極がコンタクト形成層の厚さ
の一部分をエツチング除去した領域に形成する。又、エ
ピタキシャル法によって連続成長された活性層と活性層
より不純物濃度の高いコンタクト形成層を有する電解効
果トランジスタにおいては、ソース金属電極とドレイン
金属電極の直下に位置するコンタクト形成層の厚さを0
.3μm以上とすると共に、ソース金属電極とドレイン
金属電極がコンタクト形成層の厚さの一部分をエツチン
グ除去した領域に形成する。
Means for Solving the Problems In order to solve the above problems, the present invention provides a high electron mobility transistor using a heterojunction selectively doped by a method such as MBE. The thickness of the contact formation layer, which is located at a higher concentration than the two-dimensional electron layer, is set to 0.3 μm or more, and the source metal electrode and drain metal electrode are formed in a region where a part of the thickness of the contact formation layer is removed by etching. In addition, in a field effect transistor having an active layer continuously grown by epitaxial method and a contact formation layer having a higher impurity concentration than the active layer, the thickness of the contact formation layer located directly under the source metal electrode and drain metal electrode is set to 0.
.. The thickness is set to 3 μm or more, and the source metal electrode and drain metal electrode are formed in a region where a part of the thickness of the contact formation layer is removed by etching.

作用 本発明は上記した構成により、コンタクト形成層が0.
3μmと厚いために、ゲートリセス領域を形成した場合
に横方向の広がりつまりサイドエチングの量が大きくな
りゲート電極をその後に形成しても高濃度なコンタクト
形成層がゲート電極に接近することがなく従って耐圧が
大幅に向上しリーク電流が減少する。サイドエツチング
によりゲート電極とコンタクト形成層であるN中型Ga
AsFiとの距離が0.31III+以上になるので、
ゲートとドレイン間耐圧及びゲートとソース間耐圧を−
lOV以上とすることができる。またソース電極及びド
レイン電極は、コンタクト形成層の厚さの一部分をエツ
チング除去した後に形成するので2次元電子層や活性層
とこれらの金属電極との距離は変わらず、ソース抵抗の
増加はなくむしろコンタクト形成層が厚くなった分だけ
低下する。従って高耐圧化と低抵抗化を同時に実現でき
る。
Effect The present invention has the above-described structure, so that the contact forming layer has a 0.
Because it is as thick as 3 μm, when a gate recess region is formed, the amount of lateral expansion, that is, the amount of side etching becomes large, and even if the gate electrode is formed afterwards, the highly concentrated contact formation layer does not approach the gate electrode, which reduces the breakdown voltage. is significantly improved and leakage current is reduced. By side etching, the gate electrode and contact formation layer, which is N medium-sized Ga, are removed.
Since the distance to AsFi is 0.31III+ or more,
The breakdown voltage between gate and drain and the breakdown voltage between gate and source are −
It can be 1OV or more. Furthermore, since the source and drain electrodes are formed after etching away a portion of the thickness of the contact formation layer, the distance between the two-dimensional electronic layer and active layer and these metal electrodes remains unchanged, and the source resistance does not increase. It decreases by the amount that the contact forming layer becomes thicker. Therefore, high breakdown voltage and low resistance can be achieved at the same time.

実施例 第1図は、本発明の半導体装置の実施例の断面構造図で
ある。第1図に示した本発明の半導体装置は、半絶縁性
G a A s基板上に形成されており、MBE等の方
法により選択ドープされたヘテロ接合を用いた高電子移
動度トランジスタであり、第2図と等価な構成要素につ
いては同一の番号又は記号を付して示すものとする。
Embodiment FIG. 1 is a cross-sectional structural diagram of an embodiment of a semiconductor device of the present invention. The semiconductor device of the present invention shown in FIG. 1 is a high electron mobility transistor formed on a semi-insulating GaAs substrate and using a heterojunction selectively doped by a method such as MBE, Components equivalent to those in FIG. 2 shall be indicated with the same numbers or symbols.

第1図において、コンタクト形成層としてのN+型Ga
AsFj’厚さ10は0.37Lmと従来の約2倍もし
くは3倍の厚さを有している。従って従来と同じリセス
のエツチング窓の幅を用いてゲートリセス領域6を形成
しても横方向の広がりつまりサイドエチングの量が大き
く、ゲート電極をゲートリセス領域6に形成しても高濃
度なN中型GaAS層5がゲート電極に接近することが
なく、ゲートドレイン問距離11が広がり耐圧が大幅に
向上しリーク電流が減少するのである。サイドエツチン
グによりゲート電極とコンタクト形成層であるN+型G
aAs層5との距離が0.3μm以上になるので、ゲー
トとドレイン間耐圧及びゲートとソース間耐圧を一10
V以上とすることができる。またソース電極8及びドレ
イン電極9は、N十型GaAs層5の厚さの一部分をエ
ツチング除去し、ソースリセス領域12とドレインリセ
ス領域13を形成した後に基板中に浬め込む形にするの
で2次元電子層や活性層とこれら金属電極との距離は変
わらず、ソース抵抗の増加はなくむしろN中型GaA 
s Jij 5が厚くなった分だけ低下する。従って高
耐圧化と低抵抗化を同時に実現できるのである。
In FIG. 1, N+ type Ga as a contact formation layer is shown.
AsFj' thickness 10 is 0.37 Lm, which is about twice or three times the thickness of the conventional one. Therefore, even if the gate recess region 6 is formed using the same width of the recess etching window as in the conventional method, the lateral spread, that is, the amount of side etching is large, and even if the gate electrode is formed in the gate recess region 6, a high concentration N medium-sized GaAS layer is formed. 5 does not come close to the gate electrode, the gate-drain distance 11 is widened, the withstand voltage is greatly improved, and the leakage current is reduced. N+ type G, which is the gate electrode and contact formation layer, is formed by side etching.
Since the distance to the aAs layer 5 is 0.3 μm or more, the breakdown voltage between the gate and the drain and the breakdown voltage between the gate and the source are -10
It can be set to V or more. Furthermore, the source electrode 8 and the drain electrode 9 are formed by etching a part of the thickness of the N0 type GaAs layer 5 to form a source recess region 12 and a drain recess region 13, and then inserting them into the substrate, so that they are two-dimensional. The distance between the electronic layer and active layer and these metal electrodes remains the same, and the source resistance does not increase, but rather the N medium-sized GaA
It decreases by the amount that s Jij 5 becomes thicker. Therefore, it is possible to achieve high breakdown voltage and low resistance at the same time.

第1図に示した本発明の半導体装置の実施例は、選択ド
ープされたヘテロ接合を用いた高電子移動度トランジス
タであるが、半絶縁性G a A s基板上にMBE法
でなく通常のエピタキシャル法によって連続成長された
活性層と活性層より不純物濃度の高いコンタクト形成層
を有する電解効果トランジスタにおいても、コンタクト
形成層としてのN十型GaAs層より下に位置する基板
構成が異なるのみてあり、N十型GaAs層の機能は同
じである。従って、半絶縁性GaAs基板上にMBE法
でなく通常のエピタキシャル法によって連続成長された
活性層と活性層より不純物濃度の高いコンタクト形成層
を有する電解効果トランジスタに本発明を用いても、同
様の効果が得られることは言うまでない。
The embodiment of the semiconductor device of the present invention shown in FIG. 1 is a high electron mobility transistor using a selectively doped heterojunction. Even in field-effect transistors that have an active layer that is continuously grown by an epitaxial method and a contact formation layer that has a higher impurity concentration than the active layer, the only difference is in the structure of the substrate located below the N0 type GaAs layer that serves as the contact formation layer. , the functions of the N0-type GaAs layers are the same. Therefore, even if the present invention is applied to a field-effect transistor that has an active layer that is continuously grown on a semi-insulating GaAs substrate by a normal epitaxial method rather than an MBE method, and a contact formation layer that has a higher impurity concentration than the active layer, the same result will be obtained. Needless to say, it is effective.

発明の効果 以上述べてきた様に、本発明により次の効果がもたらさ
れる。
Effects of the Invention As described above, the present invention brings about the following effects.

l)コンタクト形成層としてのN+型G a A s層
厚さを0.37tm以上に設定することにより、ゲート
リセス領域を形成した場合にゲート電極とN+型GaA
sFiiとの横方向の間隔を大幅に広げられゲートとド
レイン間耐圧及びゲートとソース間耐圧が向上しリーク
電流が減少する。
l) By setting the thickness of the N+ type GaAs layer as a contact formation layer to 0.37 tm or more, when a gate recess region is formed, the gate electrode and the N+ type GaA
The lateral distance from the sFii is greatly expanded, which improves the breakdown voltage between the gate and the drain and the breakdown voltage between the gate and the source, and reduces leakage current.

2)ソース電極及びドレイン電極は、N中型GaA S
 、p3の厚さの一部分をエツチング除去し、ソースリ
セス領域とドレインリセス領域を形成した後に基板中に
埋め込む形にするので2次元電子層や活性層とこれら金
属電極との距離は変わらず、ソース抵抗の増加はなくむ
しろN十型GaAs層5が厚くなった分だけソース抵抗
は低下する。
2) The source and drain electrodes are N medium-sized GaAs
, a part of the thickness of p3 is removed by etching to form a source recess region and a drain recess region, which are then buried in the substrate, so the distance between the two-dimensional electronic layer or active layer and these metal electrodes remains unchanged, and the source resistance There is no increase in the source resistance, but rather the source resistance is reduced by the increase in thickness of the N0 type GaAs layer 5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半導体装置の断面構造
図、第2図は従来の半導体装置の断面構造図である。 l・・・ 半絶縁性GaAs基板、2・・・GaAsバ
ッファー層、3・・・S1ドープN型AIGaAsF’
、4−−−N型A I G aA s層、5・・・N十
型GaAs層、6・・・ゲートリセス領域、7・・・ゲ
ート電極、8・・・ソース電極、9・争・ドレイン電極
、lO拳・・N中型G a A s層厚さ、11・・・
ゲートドレイン間距離、12・・・ソースリセス領域、
13・・・ドレインリセス領域。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図
FIG. 1 is a cross-sectional structural diagram of a semiconductor device showing an embodiment of the present invention, and FIG. 2 is a cross-sectional structural diagram of a conventional semiconductor device. l... Semi-insulating GaAs substrate, 2... GaAs buffer layer, 3... S1-doped N-type AIGaAsF'
, 4--N type AI GaAs layer, 5... N0 type GaAs layer, 6... gate recess region, 7... gate electrode, 8... source electrode, 9... layer/drain Electrode, lO fist...N medium Ga As layer thickness, 11...
Gate-drain distance, 12...source recess region,
13...Drain recess area. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性GaAs基板上に形成され、選択ドープ
されたヘテロ接合を用いた高電子移動度トランジスタに
おいて、ソース金属電極とドレイン金属電極の直下に位
置し2次元電子層より高濃度なコンタクト形成層の厚さ
を0.3μm以上とすると共に、前記ソース金属電極と
ドレイン金属電極が前記コンタクト形成層の一部分をエ
ッチング除去した領域に形成されていることを特徴とす
る半導体装置。
(1) In a high electron mobility transistor formed on a semi-insulating GaAs substrate and using a selectively doped heterojunction, the contact is located directly under the source metal electrode and drain metal electrode and has a higher concentration than the two-dimensional electron layer. A semiconductor device characterized in that the thickness of the forming layer is 0.3 μm or more, and the source metal electrode and the drain metal electrode are formed in a region where a portion of the contact forming layer is removed by etching.
(2)半絶縁性GaAs基板上にエピタキシャル法によ
って連続成長された活性層とこの活性層より不純物濃度
の高いコンタクト形成層を有する電解効果トランジスタ
において、ソース金属電極とドレイン金属電極の直下に
位置するコンタクト形成層の厚さを0.3μm以上とす
ると共に、前記ソース金属電極とドレイン金属電極が前
記コンタクト形成層の一部分をエッチング除去した領域
に形成されていることを特徴とする半導体装置。
(2) In a field-effect transistor that has an active layer that is continuously grown on a semi-insulating GaAs substrate by an epitaxial method and a contact formation layer that has a higher impurity concentration than this active layer, the contact layer is located directly below the source metal electrode and the drain metal electrode. A semiconductor device characterized in that the thickness of the contact forming layer is 0.3 μm or more, and the source metal electrode and the drain metal electrode are formed in a region where a portion of the contact forming layer is removed by etching.
JP871388A 1988-01-19 1988-01-19 Semiconductor device Pending JPH01183858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP871388A JPH01183858A (en) 1988-01-19 1988-01-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP871388A JPH01183858A (en) 1988-01-19 1988-01-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01183858A true JPH01183858A (en) 1989-07-21

Family

ID=11700581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP871388A Pending JPH01183858A (en) 1988-01-19 1988-01-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01183858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262444B1 (en) 1997-04-23 2001-07-17 Nec Corporation Field-effect semiconductor device with a recess profile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262444B1 (en) 1997-04-23 2001-07-17 Nec Corporation Field-effect semiconductor device with a recess profile

Similar Documents

Publication Publication Date Title
US5362677A (en) Method for producing a field effect transistor with a gate recess structure
US5900641A (en) Field effect semiconductor device having a reduced leakage current
US6255673B1 (en) Hetero-junction field effect transistor
JPH01183858A (en) Semiconductor device
JPH0964341A (en) High electron mobility transistor
KR940010557B1 (en) Semiconductor device
JPS63161677A (en) Field effect transistor
JPH05129344A (en) Field-effect transistor and its manufacture
JPH0715018A (en) Field-effect transistor
EP0452910A2 (en) Semiconductor device having a structure for accelerating carriers
JPS5891681A (en) field effect transistor
JP3203366B2 (en) Field effect transistor
JPS6273675A (en) semiconductor equipment
JPH04206839A (en) Semiconductor device and its manufacture
JPH05275703A (en) Semiconductor device and its manufacture
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JP3112075B2 (en) Field effect transistor and method of manufacturing the same
JPS60100473A (en) Field effect transistor
JPH07183492A (en) Two-dimensional electron gas field effect transistor
JPH04276630A (en) Semiconductor device
JPS5850434B2 (en) Method for manufacturing field effect transistors
JPS5910591B2 (en) Method of manufacturing field effect transistor
JPS61102069A (en) field effect transistor
JPH01101671A (en) semiconductor equipment
JPH09102509A (en) Field effect type transistor and its manufacturing method