[go: up one dir, main page]

JPH01179896A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01179896A
JPH01179896A JP28088A JP28088A JPH01179896A JP H01179896 A JPH01179896 A JP H01179896A JP 28088 A JP28088 A JP 28088A JP 28088 A JP28088 A JP 28088A JP H01179896 A JPH01179896 A JP H01179896A
Authority
JP
Japan
Prior art keywords
less
heat exchanger
tube
toughness
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28088A
Other languages
Japanese (ja)
Inventor
Hiroyuki Doi
裕之 土井
Masayuki Sukegawa
祐川 正之
Yoshimitsu Hida
飛田 芳光
Norio Yamada
山田 範雄
Yoshinori Furukawa
古川 義徳
Hiroshi Fukui
寛 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28088A priority Critical patent/JPH01179896A/en
Publication of JPH01179896A publication Critical patent/JPH01179896A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To impart high-temperature strength to a tube plate of thick material and keep it from embrittlement or loss of its toughness by introducing specified ratios by weight in the use of such ingredients as C, Cr, Mo, Ni, N, P, S, Al, V, Nb, Mg, Ca, Si, Mn, and oxygen. CONSTITUTION:In the makeup of a tube state 4 of thick material, a part of a heat exchanger built of a barrel, tube plates 4, and heat exchanger tubes 3, the composition is made to comprise (in percentage ratios by weight) C (0.05-0.3, Cr (8-10), Mo (0.8-2.0), Ni (0.5 or less), N (0.02-0.10), P (0.01 or less), S(0.01 or less), Al(0.05 or less), V (0.01-0.5), Nb (0.01-0.15), (V+Nb should be in the range 0.1-0.6), Mg and/or Ca (0.001-0.01), Si (0.1 or less), Mn (0.5 or less), (Si+0.5Mn should be 0.25 or less), and oxygen (0.01 or less), the remaining components comprising Fe and unavoidable impurities. Such a composition enables a tube plate to have high-temperature strength and keeps it from embrittlement or loss of its toughness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は450〜600℃の温度範囲で使用可能な高C
rフェライト鋼の利用に係シ、高温強度と共に高温使用
中での耐ぜい化性及び応力緩和特性に優れた厚内材を用
いた熱交換器、特に高速炉蒸気発生器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a high C.
The present invention relates to the use of r-ferritic steel, and relates to heat exchangers using thick inner materials that have excellent high-temperature strength, embrittlement resistance and stress relaxation properties during high-temperature use, and particularly to fast reactor steam generators.

〔従来の技術〕[Conventional technology]

高速炉用伝熱管材料としては、耐酸化性及び高温強度の
点から、フェライト鋼、特に9Cr系鋼が主流となって
いる。その内、火力発電プラント用材料として米国0R
NLで開発されたMOa、 9 Cr−I M。
Ferritic steel, particularly 9Cr steel, is the mainstream material for heat exchanger tubes for fast reactors due to its oxidation resistance and high-temperature strength. Of these, US 0R is used as a material for thermal power plants.
MOa, 9Cr-IM developed at NL.

鋼[EPRIレポートRP1403(1968)]が優
れた特性を南していることから、国内でも木鐸をアレン
ジした9Cr系鋼の特許出願が公開になっている。例え
ば、特開昭62−103344号や特開昭62−898
42号のように90r−IMO−V−Nb鋼を基本とし
て高温強度やじん性の改善が検討されている。しかしな
がら、厚肉材にした時間題となる高温使用下でのぜい化
及び応力緩和については配慮されていなかった。
Since steel [EPRI Report RP1403 (1968)] has excellent properties, patent applications for 9Cr steel, which is an arrangement of wooden bells, have been published in Japan. For example, JP-A-62-103344 and JP-A-62-898.
Improvements in high temperature strength and toughness are being studied based on 90r-IMO-V-Nb steel, such as No. 42. However, no consideration was given to embrittlement and stress relaxation during high-temperature use, which are problems associated with thick-walled materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これ葦でに開発されている9Cr糸鋼は、薄肉の伝熱管
を対象にしているため、高温強度や溶接性を重視し、厚
肉材で問題になる使用中ぜい化によるしん性の低下につ
いてV:i考慮がされておらず、そのまま厚内材に適用
するとぜい性破壊を起こすという危惧があった。捷た、
じん性を向上するためには尚温強度を犠牲にしなければ
ならないことも必って両者の両立は困難であるとされて
いた。
The 9Cr thread steel being developed by Koreashi is intended for thin-walled heat exchanger tubes, so it focuses on high-temperature strength and weldability, and reduces the toughness due to embrittlement during use, which is a problem with thick-walled materials. V:i was not taken into consideration, and there was a fear that brittle failure would occur if applied as is to thick inner materials. I cut it,
In order to improve toughness, it was necessary to sacrifice still strength, and it was considered difficult to achieve both.

また、高速炉用蒸気発生器厚内材では、応力緩和が問題
となるが、これまで特に検討されていなかつた。
In addition, stress relaxation is a problem in the thick inner material of steam generators for fast reactors, but this has not been particularly studied so far.

本発明の目的は、これまでに開発されている?Cr系鋼
並0亮温強度を有し、使用中ぜい化によるしん性の低下
を抑制した厚肉材を用いた熱交換器、特に高速炉用蒸気
発生器を提供することにある。
The purpose of this invention has been developed so far? It is an object of the present invention to provide a heat exchanger, particularly a steam generator for a fast reactor, using a thick-walled material that has a temperature strength comparable to that of Cr-based steel and suppresses a decrease in toughness due to embrittlement during use.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明を概説すれば、本発明は熱交換器に関する発明で
あって、胴部、看板、伝熱管からなり、複数の伝熱管が
管内を流れる蒸気の入口、出口において管板によって集
約する構造を有する熱交換器において、厚肉材で構成さ
れる該管板が、重量比で、c:o、os 〜a3%、C
r:8〜10%、 M。
To summarize the present invention, the present invention relates to a heat exchanger, which comprises a body, a signboard, and a heat exchanger tube, and has a structure in which a plurality of heat exchanger tubes are aggregated by a tube sheet at the inlet and outlet of steam flowing inside the tube. In the heat exchanger, the tube sheet made of thick-walled material has a weight ratio of c:o, os to a3%, C
r: 8-10%, M.

二08〜2.0%、Ni:0.5チ以下、N:α02〜
0.10%、p : o、 o i%以下、S : 0
.01%以下、At: 0.05%以下、■:α01〜
0.5%、Nb:0.01〜0.15%、但し、V+N
b: α1〜0.6%を含有すると共に、Mg及び/又
1jCa:0.001〜0.,01%を含有し、Si:
11%以下、Mn:0.5%以下で、かつSi + 0
.5Mn  : CL 25%以下、酸素:α01%以
下で、残部がFθ及び不可避的不純物を包含するもので
あることを特徴とする。
208~2.0%, Ni: 0.5 or less, N: α02~
0.10%, p: o, o i% or less, S: 0
.. 01% or less, At: 0.05% or less, ■: α01~
0.5%, Nb: 0.01-0.15%, however, V+N
b: Contains α1-0.6%, and Mg and/or 1jCa: 0.001-0. ,01%, Si:
11% or less, Mn: 0.5% or less, and Si + 0
.. 5Mn: CL: 25% or less, oxygen: α: 01% or less, and the remainder includes Fθ and inevitable impurities.

本発明の熱交換器の1例として筒速炉蒸気発生器がある
An example of the heat exchanger of the present invention is a tube reactor steam generator.

第1図に+Il:り高速炉の蒸気発生器について説明す
る。すなわち、第1−1図は高速炉の蒸気発生器の局部
断面図、第1−2図は看板の拡大図、第1−3図はその
縦断面図である。各図において、1は蒸気入口、2は蒸
気出口、3は伝熱管、4は管板を意味する。
A steam generator for a fast reactor will be explained with reference to FIG. That is, FIG. 1-1 is a local sectional view of a steam generator of a fast reactor, FIG. 1-2 is an enlarged view of a signboard, and FIG. 1-3 is a longitudinal sectional view thereof. In each figure, 1 means a steam inlet, 2 means a steam outlet, 3 means a heat exchanger tube, and 4 means a tube sheet.

第1図を説明すると、蒸気は1の入口から入って看板か
ら伝熱管に分岐され、伝熱管をヘリカル状に上昇し、出
口側の管板で集められて2の出口から出る。
To explain Fig. 1, steam enters from the inlet 1, branches from the signboard into the heat exchanger tube, ascends the heat exchanger tube in a helical shape, is collected at the tube plate on the outlet side, and exits from the outlet 2.

尚温強度を確保しながら、耐使用中ぜい化性を向上する
ためには、厚内材の高温強度の担い手となるC、Mo、
■、Nb、 N等の添加元素による調整は難かしい。そ
こで、近年の製造技術の進歩やMg、Ca  を脱酸剤
として添加する方法などから、脱酸剤として添加してい
たSi 、 Mnが不要の傾向にあることより、この2
元素に層目した。Sl、Mnは高温強度に及はす影響が
ほとんどなく、ぜい化によるしん性の低下に対しては、
特にSlがぜい化を助長することからSi、Mnを低減
することによって、高温強度を確保しながら、耐使用中
ぜい化性を向上した厚内材を提供することができる。ま
た、同時に砥性も向上し、厚内部位において温度差によ
って発生する熱応力を緩和しやすいという効果もある。
In order to improve embrittlement resistance during use while ensuring high temperature strength, C, Mo,
(2) Adjustment using additive elements such as Nb and N is difficult. Therefore, due to recent advances in manufacturing technology and methods of adding Mg and Ca as deoxidizers, there is a trend that Si and Mn, which were added as deoxidizers, are no longer needed.
I looked at the elements in layers. Sl and Mn have almost no effect on high-temperature strength, and are effective in reducing brittleness due to embrittlement.
In particular, since Sl promotes embrittlement, by reducing Si and Mn, it is possible to provide a thick inner material with improved embrittlement resistance during use while ensuring high temperature strength. Moreover, at the same time, the abrasiveness is improved, and there is also the effect that thermal stress generated due to temperature difference in the inner part of the thickness can be easily alleviated.

また、Sl、Mnを低減した鋼種に微量のWを添加する
ことによシ、じん性を更に改善することができる。
Furthermore, by adding a small amount of W to a steel type with reduced Sl and Mn, the toughness can be further improved.

Cは基地に固溶して強度を篩めると共に、微細な炭化物
を析出し強度を高める。また、高温強度やじん性低下の
硬固となるフェライト相の析出を抑制する効果がある。
C solidly dissolves in the matrix to increase the strength, and also precipitates fine carbides to increase the strength. It also has the effect of suppressing the precipitation of ferrite phase, which becomes hard and reduces high-temperature strength and toughness.

しかしながら、添加被が多くなると、粒界に炭化物が凝
集粗大化し、強度及びじん性低下の原因となる。したが
って、成分範囲としてはa05〜0.3%、特に0.0
8〜α15チが好適である。
However, when the amount of addition increases, carbides aggregate and coarsen at grain boundaries, causing a decrease in strength and toughness. Therefore, the component range is a05 to 0.3%, especially 0.0
8 to α15chi is suitable.

Cr  は制酸化1生を向上させる元素であるが、多量
に添加するとフェライト相を析出し強度及びしん性の低
下を招くため8〜10%の範囲、特に9儂前懐が好適で
ある。
Cr is an element that improves antioxidation performance, but if added in a large amount, it precipitates a ferrite phase and causes a decrease in strength and toughness, so a range of 8 to 10%, particularly 9%, is preferred.

MOは基地に固溶して強度を置める。しかし、多量に添
加するとフェライト相の析出を助長すると共にラーベス
相あるいは炭化物の粗大化につながシ、強度及び以脛を
著しく低下する。したがって、成分範囲は08〜2.0
矛、特にα9〜1.2チが好適である。
MO can be solid-dissolved in the base to provide strength. However, when added in a large amount, it promotes precipitation of ferrite phase, leads to coarsening of Laves phase or carbide, and significantly reduces strength and strength. Therefore, the component range is 08-2.0
A spear, especially α9 to 1.2 chi, is suitable.

■及びNbは炭窒化物を形成し、高温強度を高める。し
かしながら、多量に際加すると基地に固溶して強化して
いるC、 NL7)址を減らし強度の低下を招くため、
V:0.01〜05%、Nb:0.01〜0.15%で
、V+Nb:11〜0.6%、特にV:0.15〜0.
25%、Nb:0.05〜G、’10が好適でろる。
(2) and Nb form carbonitrides and increase high temperature strength. However, if a large amount is added, it will reduce the strength of C, NL7), which is solid-dissolved in the base and strengthen it, resulting in a decrease in strength.
V: 0.01-05%, Nb: 0.01-0.15%, V+Nb: 11-0.6%, especially V: 0.15-0.
25%, Nb: 0.05 to G, '10 are suitable.

Nは基地に固溶して強度を篩める。しかしながら、多量
に冷加すると粗大な窒化物を形成しじん件の低下を招く
ため、(102〜0.10%、特に0.06〜0.07
%が好適である。
N is dissolved in the base to improve its strength. However, if a large amount is cooled, coarse nitrides are formed and the dust quality decreases (102 to 0.10%, especially 0.06 to 0.07%).
% is preferred.

P及びSは粒界に偏析してじん性の低下を招くため、(
101%以下に抑える必要かめる。
Since P and S segregate at grain boundaries and cause a decrease in toughness, (
It is necessary to keep it below 101%.

Sl  は脱酸剤としての効果があるが、粒界偏析ある
いは析出物の粗大化全助長ししん性の低下を招くと共に
応力緩和を起こしにくくする。近年の製造技術の進歩や
、Mg、 Ca添加によシ、脱酸剤が不要となるため、
0.1%以下、特に0.05%以下が好適である。
Although Sl 2 is effective as a deoxidizing agent, it promotes grain boundary segregation and coarsening of precipitates, leading to a decrease in toughness and making stress relaxation difficult to occur. Due to recent advances in manufacturing technology and the addition of Mg and Ca, deoxidizing agents are no longer required.
It is preferably 0.1% or less, particularly 0.05% or less.

Mn は脱酸及び溶接性の向上に有効であるが、多量に
添加すると焼入硬化性が大きくなシ、筐たじん性を低下
させるのでα5%以下、待にα4%以下が好適で、溶接
部の影響が小さい部位ではじん性を重視して11%以下
にするのが好ましい。
Mn is effective in deoxidizing and improving weldability, but if added in large amounts, it increases quench hardenability and reduces casing toughness. In areas where the influence of heat is small, it is preferable to place emphasis on toughness and reduce it to 11% or less.

また、SlとMnの関係で34+0.5MnがcL25
鼾≠七幸→チ以下であることが好適である。
Also, due to the relationship between Sl and Mn, 34+0.5Mn is cL25
It is preferable that snoring ≠ seven happiness → chi or less.

N1  はδフェライトの生成全抑制する効果があるが
多値添加すると溶接割れの原因となるため0.5−以下
、特にo、 2%以下にするのが好ましい。
N1 has the effect of completely suppressing the formation of δ ferrite, but adding multiple values causes weld cracking, so it is preferably kept at 0.5% or less, particularly 0.2% or less.

Mg及び/又はCaは脱岐剤として効果があるが、多量
に添加しても効率は上がらないので、aooi〜0.0
1%が好筐しい。
Mg and/or Ca are effective as debranching agents, but the efficiency does not increase even if they are added in large amounts, so aooi ~ 0.0
1% is good.

Wは添加しなくてもよいが、添加すれば基地に固溶して
じん性を高める。また、Wはぜい化の原因となる金属間
化合物の析出を防止する効果かめる。しかしながら、多
量に添加すると加工性、溶接性が低下するため、W:0
.O5〜0.3%、特にcL1〜0.25%が好ましい
Although it is not necessary to add W, if it is added, it dissolves in the base and increases the toughness. Furthermore, W has the effect of preventing the precipitation of intermetallic compounds that cause embrittlement. However, if added in large amounts, workability and weldability will decrease, so W:0
.. O5 to 0.3%, particularly cL1 to 0.25% is preferred.

AtU脱1吸効果がろるが、多量に添加すると、溶接性
、加工性を害するので0.05%以下の添加が好ましい
Although the AtU desorption effect is improved, adding a large amount impairs weldability and workability, so it is preferable to add 0.05% or less.

Oは高は強度、延性、じん性すべてに悪影響を及ばずた
め0.01%以下にする必要がある。
A high content of O does not adversely affect strength, ductility, and toughness, so it must be kept at 0.01% or less.

なお、本発明鋼の熱処理は1000〜1100℃で0.
5〜2hの焼ならしを行い、720〜780℃で1〜4
hの焼戻しを行う。この熱処理の結果、組織は全マルテ
ンサイトとなる。
The steel of the present invention was heat treated at 1000 to 1100°C with a temperature of 0.
Normalize for 5 to 2 hours and heat at 720 to 780℃ for 1 to 4 hours.
Temper h. As a result of this heat treatment, the structure becomes entirely martensite.

本発明は、ぜい化を防止し、応力緩和を改善した材料で
構成されることから、ボイラ用管板への適応が可能であ
る。
Since the present invention is made of a material that prevents embrittlement and improves stress relaxation, it can be applied to boiler tube sheets.

〔笑施辺」〕〔Smile Shibe〕

以下、本発明を実施例によシ更に具体的に睨明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 第1表に比較鋼(賦香1〜7)と本発明鋼(賦香8〜1
6)の化学組成を示す0 こGらの鋼はA仝浴解恢、板厚20tに圧延し、105
0℃xihの焼ならし、760’Cx1hの焼戻しの熱
処理を施して、ぜい化試験及びクリープ仮貼試験に供し
た。なお、熱処理後の組織は全マルテンサイトでめった
Example 1 Table 1 shows comparison steels (scented 1 to 7) and steels of the present invention (scented 8 to 1).
6) Showing the chemical composition of 0. These steels were decomposed in A bath, rolled to a plate thickness of 20t, and 105
It was subjected to heat treatment of normalizing at 0° C. x 1 h and tempering at 760° C. x 1 h, and was subjected to an embrittlement test and a creep temporary pasting test. Note that the structure after heat treatment was completely martensite.

実施例2 第2図は、S1皺(%、横軸)と熱処理まま及び550
℃、3DOOh加熱後の20℃におけるVノツチシャル
ピー吸収エネルギー(kgf−m、縦軸)の関係を示す
グラフである。熱処理ま1ではほとんど影響がないが、
550℃、3000hの加熱を行うとSi菫が0.1%
以下になると吸収エネルギーが増加する。すなわち、加
熱ぜい化が起こ、!1llVCくくなる。
Example 2 Figure 2 shows S1 wrinkles (%, horizontal axis) and as-heat-treated and 550
3 is a graph showing the relationship between V notch Charpy absorbed energy (kgf-m, vertical axis) at 20° C. after heating for 3 DOOh. Heat treatment has almost no effect, but
When heated at 550℃ for 3000 hours, Si violet becomes 0.1%
Absorbed energy increases when below. In other words, heating embrittlement occurs! 1ll VC decreases.

実施例6 第3図は、Mn量(%、横軸)と熱処理まま及び550
℃、3000h加熱後の20℃におけるVノツチシャル
ピー吸収エネルギー(kgf −m 、縦軸)の関係を
示すグラフである。熱処理1まではほとんど影響がない
が、550℃、3000hの加熱−が増加する。すなわ
ち、加熱ぜい化が起こ9にくくなる。
Example 6 Figure 3 shows the Mn content (%, horizontal axis) and the as-heat-treated and 550
20 is a graph showing the relationship between V notch Charpy absorbed energy (kgf −m , vertical axis) at 20° C. after heating for 3000 hours. There is almost no effect up to heat treatment 1, but heating at 550° C. for 3000 hours increases. That is, heating embrittlement is less likely to occur.

実施例4 第4図1dsi+0.5Mnの童(%、横軸)ト熱処理
まま及び550℃、5000h加熱後の吸収エネルギー
Ckgf−m、  縦軸)との関係を示すグラフである
。Si+15Mn量が125%以下になると加熱による
吸収エネルギーの低下がほとんど見られない。
Example 4 FIG. 4 is a graph showing the relationship between the absorbed energy (%, horizontal axis) of 1dsi+0.5Mn as-heat-treated and the absorbed energy Ckgf-m (vertical axis) after heating at 550° C. for 5000 hours. When the amount of Si+15Mn is 125% or less, almost no decrease in absorbed energy due to heating is observed.

実施例5 第5図は、W蓋(%、横軸)と熱処理まま及び550℃
、3000h加熱後の20℃における吸収エネルギー(
kgf・m1縦軸)の関係を示すグラフである。Wが0
.05%を越えると、吸収エネルギーは増加するが、0
.3%を越えると550℃、3000hの吸収エネルギ
ーが低下してしまう。
Example 5 Figure 5 shows the W lid (%, horizontal axis) and the as-heat-treated and 550°C
, absorbed energy at 20℃ after heating for 3000h (
It is a graph showing the relationship between kgf·m1 (vertical axis). W is 0
.. If it exceeds 0.5%, the absorbed energy will increase, but 0.
.. If it exceeds 3%, the absorbed energy at 550° C. for 3000 hours will decrease.

実施例6 第3図は、比較鋼及び本発明鋼の550℃、5000h
のクリープ破断強度を示すグラフでめる。クリープ破断
gi度は比較鋼、本発明鋼共に同等であるが、第3図に
◇で示した■、N低減にょシじん性が改善された比較鋼
7はクリープ破断強度が低くなっている。
Example 6 Figure 3 shows the comparison steel and the invention steel at 550°C for 5000h.
A graph showing the creep rupture strength of The creep rupture gi is the same for both the comparative steel and the steel of the present invention, but the creep rupture strength of Comparative Steel 7, which is indicated by ◇ in FIG. 3 and whose toughness has been improved by reducing N, is lower.

実施例7 第7図は、550℃でひずみ0.,1%保持したときの
時間(h、横軸)と応力(〜f/、、、2)の緩和(縦
軸)の関係を示したグラフである。高温加熱後のしん性
が改善された本発明鋼は応力が緩和しやすく、厚肉材に
発生する熱応力の緩和に有効である。
Example 7 Figure 7 shows a strain of 0.5 at 550°C. , 1% is a graph showing the relationship between time (h, horizontal axis) and relaxation of stress (~f/, , 2) (vertical axis). The steel of the present invention, which has improved toughness after high-temperature heating, easily relaxes stress and is effective in alleviating thermal stress generated in thick-walled materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温強度を確保しながら使用中ぜい化
によるしん性低下全抑制でき、かつ応力緩和の優れた厚
内材を提供できるので、長寿命かつ安全性の高い熱父換
器、符に高速炉蒸気発生器を提供することができる。
According to the present invention, it is possible to provide a thick inner material that completely suppresses the decline in toughness due to embrittlement during use while ensuring high-temperature strength, and has excellent stress relaxation, so it is possible to provide a heat exchanger with a long life and high safety. , can provide fast reactor steam generators to the mark.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図は高速炉の蒸気発生器の局部断面図、第1−
2図は管板の拡大図、第1−3図はその縦断面図、第2
図は5BB1と吸収エネルギーの関係を示すグラフ、第
3図はMn皺と吸収エネルギーの関係を示すグラフ、第
4図はSi+0.5Mn皺と吸収エネルギーの関係を示
すグラフ、第5図はW敏と吸収エネルギーの関係を示す
グラフ、第3図は比較鋼及び本発明鋼のクリープ破断強
度を示すグラフ、第7図は応力緩和を示したグラフであ
る。 1:蒸気入口、2:蒸気出口、6:伝熱管、4:管板 特許出願人 株式会社日立製作所
Figure 1-1 is a local cross-sectional view of the steam generator of a fast reactor;
Figure 2 is an enlarged view of the tube plate, Figures 1-3 are its longitudinal sectional views, and Figure 2
Figure 3 is a graph showing the relationship between 5BB1 and absorbed energy, Figure 3 is a graph showing the relationship between Mn wrinkles and absorbed energy, Figure 4 is a graph showing the relationship between Si+0.5Mn wrinkles and absorbed energy, and Figure 5 is a graph showing the relationship between Si+0.5Mn wrinkles and absorbed energy. FIG. 3 is a graph showing the creep rupture strength of comparative steel and steel of the present invention, and FIG. 7 is a graph showing stress relaxation. 1: Steam inlet, 2: Steam outlet, 6: Heat transfer tube, 4: Tube sheet Patent applicant Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、胴部、管板、伝熱管からなり、複数の伝熱管が管内
を流れる蒸気の入口、出口において管板によつて集約す
る構造を有する熱交換器において、厚肉材で構成される
該管板が、重量比で、C:0.05〜0.3%、Cr:
8〜10%、Mo:0.8〜2.0%、Ni:0.5%
以下、N:0.02〜0.10%、P:0.01%以下
、S:0.01%以下、Al:0.05%以下、V:0
.01〜0.5%、Nb:0.01〜0.15%、但し
、V+Nb:0.1〜0.6%を含有すると共に、Mg
及び/又はCa:0.001〜0.01%を含有し、S
i:0.1%以下、Mn:0.5%以下で、かつSi+
0.5Mn:0.25%以下、酸素:0.01%以下で
、残部がFe及び不可避的不純物を包含するものである
ことを特徴とする熱交換器。 2、該管板が、W:0.05〜0.3重量%を含有する
厚肉材からなる特許請求の範囲第1項記載の熱交換器。 3、該管板が、Mn:0.1重量%以下である厚肉材か
らなる特許請求の範囲第1項又は第2項記載の熱交換器
。 4 該熱交換器が、高速炉蒸気発生器である特許請求の
範囲第1項〜第3項のいずれか1項に記載の熱交換器。
[Scope of Claims] 1. A heat exchanger consisting of a body, a tube plate, and a heat exchanger tube, and having a structure in which a plurality of heat exchanger tubes are gathered together by the tube plate at the inlet and outlet of steam flowing inside the tube. The tube sheet made of materials has a weight ratio of C: 0.05 to 0.3%, Cr:
8-10%, Mo: 0.8-2.0%, Ni: 0.5%
Below, N: 0.02-0.10%, P: 0.01% or less, S: 0.01% or less, Al: 0.05% or less, V: 0
.. 01 to 0.5%, Nb: 0.01 to 0.15%, however, contains V+Nb: 0.1 to 0.6%, and Mg
and/or Ca: 0.001 to 0.01%, S
i: 0.1% or less, Mn: 0.5% or less, and Si+
A heat exchanger characterized in that 0.5Mn: 0.25% or less, oxygen: 0.01% or less, and the balance contains Fe and inevitable impurities. 2. The heat exchanger according to claim 1, wherein the tube plate is made of a thick-walled material containing W: 0.05 to 0.3% by weight. 3. The heat exchanger according to claim 1 or 2, wherein the tube sheet is made of a thick-walled material with Mn: 0.1% by weight or less. 4. The heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is a fast reactor steam generator.
JP28088A 1988-01-06 1988-01-06 Heat exchanger Pending JPH01179896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28088A JPH01179896A (en) 1988-01-06 1988-01-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28088A JPH01179896A (en) 1988-01-06 1988-01-06 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH01179896A true JPH01179896A (en) 1989-07-17

Family

ID=11469493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28088A Pending JPH01179896A (en) 1988-01-06 1988-01-06 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH01179896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662246B2 (en) * 2003-11-07 2010-02-16 Boehler Hochdrucktechnik Gmbh Steel for components of chemical installations
JP2015114100A (en) * 2013-12-09 2015-06-22 バルケ−デュール ゲゼルシャフト ミット ベシュレンクテル ハフツング Tube bundle heat exchanger having straight- tube configuration, process gas cooler, cooler for gas turbine cooling air, gas turbine or gas and steam turbine power plant, and method for cooling of cooling air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662246B2 (en) * 2003-11-07 2010-02-16 Boehler Hochdrucktechnik Gmbh Steel for components of chemical installations
JP2015114100A (en) * 2013-12-09 2015-06-22 バルケ−デュール ゲゼルシャフト ミット ベシュレンクテル ハフツング Tube bundle heat exchanger having straight- tube configuration, process gas cooler, cooler for gas turbine cooling air, gas turbine or gas and steam turbine power plant, and method for cooling of cooling air

Similar Documents

Publication Publication Date Title
US4957701A (en) High-strength high-Cr ferritic heat-resistant steel
JP3514182B2 (en) Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
JPS59176501A (en) boiler tube
JPH02232345A (en) High strength high chromium steel excellent in corrosion resistance and oxidation resistance
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH02217439A (en) High-strength, low-alloy steel with excellent corrosion and oxidation resistance
JP3534413B2 (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
EP0199046B1 (en) High-strength heat-resisting ferritic steel pipe and tube
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JPH01179896A (en) Heat exchanger
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3531228B2 (en) High Cr ferritic heat resistant steel
JPS62297436A (en) High-strength ferritic heat-resisting steel for steel tube
JPS63434A (en) High strength ferrite steel for atomic reactor
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH02217438A (en) Heat-resistant steel having high creep strength at high temperature
JPH055891B2 (en)
JPS59136464A (en) Boiler tube
JPS6013056A (en) Heat resistant martensitic steel
JP2003301242A (en) HIGH-Cr-Ni HEAT-RESISTANT STEEL AND PROCESS FOR MANUFACTURING MEMBER FOR ELEVATED TEMPERATURE SHOWING EXCELLENT CREEP RESISTANCE
JPH0570694B2 (en)
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature