JPH01176936A - Instrument for measuring activity of microorganism sludge - Google Patents
Instrument for measuring activity of microorganism sludgeInfo
- Publication number
- JPH01176936A JPH01176936A JP62336610A JP33661087A JPH01176936A JP H01176936 A JPH01176936 A JP H01176936A JP 62336610 A JP62336610 A JP 62336610A JP 33661087 A JP33661087 A JP 33661087A JP H01176936 A JPH01176936 A JP H01176936A
- Authority
- JP
- Japan
- Prior art keywords
- microorganisms
- dissolved oxygen
- pipe
- substrate
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 34
- 230000000694 effects Effects 0.000 title claims abstract description 15
- 239000010802 sludge Substances 0.000 title claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 40
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- 230000000813 microbial effect Effects 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 abstract description 17
- 239000007788 liquid Substances 0.000 abstract description 8
- 238000002347 injection Methods 0.000 abstract description 7
- 239000007924 injection Substances 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 4
- 102000004190 Enzymes Human genes 0.000 abstract 1
- 108090000790 Enzymes Proteins 0.000 abstract 1
- 239000007853 buffer solution Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、生活排水、産業排水等有機性排水の微生物処
理を的確に行なうための装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for accurately performing microbial treatment of organic wastewater such as domestic wastewater and industrial wastewater.
有機性排水の活性汚泥法(微生物処理法)における浄化
作用の中枢は、陽気槽内で生じる生化学作用であるから
、曝気槽混合液中にふくまれる微生物の増殖能力と量と
、酸素の溶解量は処理効率を左右する重要な要素である
。これを何らかの形で指標としてあられし、処理状態が
良好に行なわれる範囲では、その指標がどのように変化
するかをつかんで、曝気槽の運転のさいに利用出来るよ
うにするための指標が求められている。しかし微生物の
活性度を検定する方法は確立されていない。The center of the purification effect in the activated sludge method (microbial treatment method) for organic wastewater is the biochemical action that occurs in the aeration tank, so the growth capacity and amount of microorganisms contained in the aeration tank mixture and the dissolution of oxygen are important. Amount is an important factor that affects processing efficiency. This will be used as an indicator in some way, and as long as the treatment conditions are good, an indicator is needed to understand how the indicator changes and use it when operating the aeration tank. It is being However, no method has been established to test the activity of microorganisms.
前述の如く活性汚泥法においては、常に微生物の生育状
態をチエツクし、排水処理を円滑にすることが要件の一
つとなっている。As mentioned above, in the activated sludge method, one of the requirements is to constantly check the growth status of microorganisms and to ensure smooth wastewater treatment.
本発明は、上記の問題点を解決するため、微生物活性度
試験装置と酸素電極とを組合せたことを特徴とする簡易
な微生物活性度測定装置を提案するものである。In order to solve the above problems, the present invention proposes a simple microbial activity measuring device characterized by combining a microbial activity testing device and an oxygen electrode.
本発明の実施例を第1図、第2図、第3図に基づいてさ
らに具体的に説明するが、当該説明により本発明が限定
されるものでないことは勿論である。Embodiments of the present invention will be described in more detail based on FIGS. 1, 2, and 3, but it goes without saying that the present invention is not limited to this description.
本発明装置の原理は、好気性微生物が、有機物(以下、
基質という)を消化吸収して生育増殖する際、水中溶存
酸素が必要であり、しかも基質の消化量と溶存酸素の消
費とは比例関係にあることが知られていることから、こ
れに基づくものである。The principle of the device of the present invention is that aerobic microorganisms are
This method is based on the fact that dissolved oxygen in water is required to grow and multiply by digesting and absorbing substrates, and it is known that there is a proportional relationship between the amount of digested substrate and the consumption of dissolved oxygen. It is.
本発明者らは、この比例関係を利用し、少量の微生物を
採取して洗浄し、基質を全く含まない状態にした後、溶
存酸素を充分含んだ緩衝液中に微生物を入れ、一定量の
基質を添加し、微生物が基質を消化吸収する量と同時に
消費される溶存酸素の量を測定し、検体微生物の活性度
を測定する方法を発明したものである。Utilizing this proportional relationship, the present inventors collected a small amount of microorganisms, washed them to make them completely free of substrate, and then placed them in a buffer solution containing sufficient dissolved oxygen. We have invented a method for measuring the activity of sample microorganisms by adding a substrate and measuring the amount of dissolved oxygen consumed at the same time as the amount of substrate digested and absorbed by microorganisms.
第1図は本発明の微生物活性度測定装置の全体図を示す
。微生物活性反応装置■と溶存酸素測定装置■とを組合
せ、微生物の生育部分と酸素電極による検知部分は温度
を一定にする必要があるため恒温槽5の中に収納して3
7℃附近の温度に保つようにしたものである。以下順を
追って作用機序について説明する。FIG. 1 shows an overall view of the microbial activity measuring device of the present invention. The microorganism activity reaction device ■ and the dissolved oxygen measuring device ■ are combined, and the microorganism growing part and the detection part using the oxygen electrode need to be kept at a constant temperature, so they are housed in a constant temperature bath 5.
The temperature was kept at around 7°C. The mechanism of action will be explained step by step below.
微生物活性度全測定するためにまず緩衝液全貯溜槽2に
入れ、エアーポンプ1より常時空気を送り込み溶存酸素
が充分存在する状態を保ちながら、定量ポンプ3を用い
て微生物活性度測定管7内に送液する。管7内に充満し
た液はパイプを通して酸素電極8に接し、ドレン10Q
通じて外部に排出される。この時酸素電極8と接する部
分のパイプ9は、液の流速を早めるため細くし、酸素電
極8の電極に直接噴出するような構造にするのが好まし
い。To measure the total microbial activity, first put all the buffer solution into the storage tank 2, and while keeping a sufficient amount of dissolved oxygen by constantly pumping air from the air pump 1, use the metering pump 3 to pump the inside of the microbial activity measuring tube 7. Send liquid to. The liquid filling the pipe 7 passes through the pipe and comes into contact with the oxygen electrode 8, and then drains into the drain 10Q.
is discharged to the outside through the At this time, it is preferable that the portion of the pipe 9 in contact with the oxygen electrode 8 be made thin in order to increase the flow rate of the liquid, and have a structure such that the liquid is jetted directly to the oxygen electrode 8 .
かくして全経路に緩衝液が充満し気泡のない状態にした
のち、更に緩衝液を流しながら、シリコンゴムでバッキ
ングされた注入口4より試料微生物を注射針でパツキン
を貫通して一定量注入して、微生物活性度測定管7の中
にある微生物支持体6に付着支持させる。After the entire channel was filled with the buffer solution and there were no air bubbles, a fixed amount of the sample microorganism was injected through the injection port 4 backed with silicone rubber with a syringe needle, while the buffer solution was flowing. The microorganisms are attached and supported on the microorganism support 6 in the microorganism activity measuring tube 7.
一方酸素電極8では緩衝液中の溶存酸素量を連続測定し
微生物を付着させた後、緩衝液のみを通じた時の濃度ま
で回復したのを確認してから、活性度測定用の基質を注
入口4より一定量注入し微生物支持体6に吸着している
微生物が基質を消化分解する能力を、溶存酸素量の減少
を測ることくより測定する。On the other hand, at the oxygen electrode 8, the amount of dissolved oxygen in the buffer solution is continuously measured, and after attaching microorganisms, it is confirmed that the concentration has recovered to the level when only the buffer solution was passed, and then the substrate for activity measurement is inserted into the injection port. The ability of the microorganisms adsorbed on the microorganism support 6 to digest and decompose the substrate is measured by measuring the decrease in the amount of dissolved oxygen.
即ち、基質を注入した後の溶存酸素量について、微生物
活性反応管を通過した緩衝液は、パイプ9により酸素電
極8に噴出するが、この時の液中酸素量は、微生物によ
り消費され、当初の酸素濃度は減少]〜でいる。よって
基質を注入する前の溶存酸素量を測定しておき、その後
で基質を注入した後における溶存酸素量を測定し、微生
物によって消費された酸素量を算出して微生物の活性度
を数値化することに成功した。That is, regarding the amount of dissolved oxygen after injecting the substrate, the buffer solution that has passed through the microbial activity reaction tube is ejected to the oxygen electrode 8 through the pipe 9, but the amount of oxygen in the solution at this time is consumed by the microorganisms and is initially The oxygen concentration decreases]. Therefore, measure the amount of dissolved oxygen before injecting the substrate, then measure the amount of dissolved oxygen after injecting the substrate, calculate the amount of oxygen consumed by the microorganisms, and quantify the activity of the microorganisms. It was very successful.
第2図は酸素電極と微生物反応終了後の液との接触部の
拡大図である。FIG. 2 is an enlarged view of the contact area between the oxygen electrode and the liquid after the microbial reaction.
酸素電極は一種の隔膜電極であり、このセンサーを試料
水と接触させると溶存酸素が隔膜を透過して内部に入り
、溶存酸素濃度に比例した電流が正極と負極の間に流れ
るので、これを測定して溶存酸素濃度を測定する。しか
し、電極の反応が30〜90秒程度か程度こと、また水
溶液が静止した状態では測定出来ないことなどを考慮し
、電極と接する部分に一定の流速を与へるため酸素電極
と検水の接触する部分のパイプの先端を細くシ、流速を
増加させるよう考案した。The oxygen electrode is a type of diaphragm electrode, and when this sensor is brought into contact with sample water, dissolved oxygen passes through the diaphragm and enters the interior, and a current proportional to the dissolved oxygen concentration flows between the positive and negative electrodes. Measure the dissolved oxygen concentration. However, considering that the electrode reaction takes about 30 to 90 seconds and that measurement cannot be performed when the aqueous solution is stationary, the oxygen electrode and the sample water are The tip of the pipe where it makes contact is made thinner to increase the flow velocity.
第3図は微生物活性度測定管7である。直径15W11
の管の前方部分に微生物支持体6としてスポンジ状の物
体を固定し、ロート状に加工、穴をあけたシリコンゴム
栓a及びbで管の両端を閉じ、パイプで前部及び後部と
連結する様にした。FIG. 3 shows the microbial activity measuring tube 7. Diameter 15W11
A sponge-like object is fixed to the front part of the tube as a microorganism support 6, and both ends of the tube are closed with silicone rubber plugs a and b, which are processed into a funnel shape and have holes, and connected to the front and rear parts with a pipe. I did it like that.
本発明による微生物活性度測定装置を用いてまず、微生
物汚泥を最高の条件で培養し、有機物を高い効率で消化
分解するものと、増殖期を経過し低い効率でしか消化分
解しない微生物汚泥と、その中間に位するものの3種に
ついて本発明による装置を用い活性度を測定した結果を
第4図に示す。First, using the microbial activity measuring device according to the present invention, microbial sludge is cultured under the best conditions to digest and decompose organic matter with high efficiency, and microbial sludge that has passed the growth phase and is digested and decomposed only with low efficiency. FIG. 4 shows the results of measuring the activity of three intermediate species using the apparatus according to the present invention.
曲線Aは高い効率で有機物を分解する時の微生物汚泥、
曲線Bは中程度の有機物分解能力をもったもの、曲線C
は低い有機物分解能力をもった微生物汚泥である。Curve A is microbial sludge when decomposing organic matter with high efficiency;
Curve B has medium ability to decompose organic matter, curve C
is a microbial sludge with low organic matter decomposition ability.
次いで実用性の有無を調べるため、水産加工工場排水処
理施設の活性汚泥を汲取り実験した。Next, to examine the practicality of this method, we conducted an experiment by pumping up activated sludge from a wastewater treatment facility at a fish processing factory.
第5図は排水処理が順調に運転されている時の微生物汚
泥の活性度を示す。第6図は排水処理不調時の微生物汚
泥の活性度を示している。Figure 5 shows the activity of microbial sludge when wastewater treatment is operating smoothly. Figure 6 shows the activity level of microbial sludge when wastewater treatment is malfunctioning.
ここに図の表示する意味は、当初20ppm近くあった
溶存酸素が基質を注入することにより微生物に消費され
、時間と共に5 ppm近くまで減少し、微生物による
基質の吸収が終ると同時に増加していることを表してお
り、活性度の高い微生物はどこの谷が深くなっているこ
とを示している。よってこの谷の深さを知ることで、検
体の微生物がどの程度の活性を有しているのか判定が出
来る。The meaning of the diagram here is that dissolved oxygen, which was initially around 20 ppm, is consumed by microorganisms by injecting the substrate, decreases over time to around 5 ppm, and increases as soon as the absorption of the substrate by the microorganisms ends. This indicates that highly active microorganisms have deeper valleys. Therefore, by knowing the depth of this valley, it is possible to determine how active the microorganism in the sample is.
第1図、第2図及び第3図は本発明の装置を示す模式図
、
第4図、第5図及び第6図は各試験における微生物汚泥
の活性度を示すグラフである。
図中、
■、微生物活性反応装置
■、溶存酸素測定装置
1、エアーポンプ
2、緩衝液貯溜槽
5、定量、定圧ポンプ
4、検体微生物及び基質注入口
5、恒温槽
6、微゛生物支持体
7、微生物活性反応管
8、酸素電極
9、酸素電極と検水の接触部
10、ドレン
11、溶存酸素計
12、データ処理装置FIGS. 1, 2, and 3 are schematic diagrams showing the apparatus of the present invention, and FIGS. 4, 5, and 6 are graphs showing the activity of microbial sludge in each test. In the figure, ■, Microbial activity reaction device ■, Dissolved oxygen measuring device 1, Air pump 2, Buffer solution storage tank 5, Quantitative, Constant pressure pump 4, Sample microorganism and substrate injection port 5, Constant temperature tank 6, Microbial support 7, Microbial activity reaction tube 8, Oxygen electrode 9, Contact part between oxygen electrode and sample water 10, Drain 11, Dissolved oxygen meter 12, Data processing device
Claims (1)
電極とを組合せたことを特徴とする微生物汚泥活性度測
定装置。A microbial sludge activity measuring device characterized by combining a microbial activity reaction device in which microorganisms are attached to a support and an oxygen electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336610A JPH01176936A (en) | 1987-12-31 | 1987-12-31 | Instrument for measuring activity of microorganism sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336610A JPH01176936A (en) | 1987-12-31 | 1987-12-31 | Instrument for measuring activity of microorganism sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01176936A true JPH01176936A (en) | 1989-07-13 |
Family
ID=18300940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62336610A Pending JPH01176936A (en) | 1987-12-31 | 1987-12-31 | Instrument for measuring activity of microorganism sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01176936A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03170055A (en) * | 1989-11-29 | 1991-07-23 | Miyagi Pref Gov | Instrument and method for detecting poison in water |
JP2011503626A (en) * | 2007-11-20 | 2011-01-27 | ナルコ カンパニー | Method for monitoring bulk (total) microbiological activity in a process stream |
-
1987
- 1987-12-31 JP JP62336610A patent/JPH01176936A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03170055A (en) * | 1989-11-29 | 1991-07-23 | Miyagi Pref Gov | Instrument and method for detecting poison in water |
JP2011503626A (en) * | 2007-11-20 | 2011-01-27 | ナルコ カンパニー | Method for monitoring bulk (total) microbiological activity in a process stream |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101907596B (en) | Method for monitoring and estimating inlet water toxicity of urban wastewater treatment plant on line | |
CN102798650A (en) | Method and device for detecting biochemical oxygen demand | |
US5882932A (en) | Continuous quick measurement of biochemical oxygen demand and apparatus | |
CN102288653A (en) | Online biochemical oxygen demand (BOD) detector and detection method of same | |
WO2013152474A1 (en) | Method for detecting biochemical oxygen demand | |
CN104330455B (en) | Utilize the method and apparatus of microorganism electrolysis cell technology on-line monitoring nitrate | |
CN105645576A (en) | Judgment method and regulation and control method for growth states of activated sludge | |
CN102109512A (en) | Device and method for detecting water toxicity | |
CN104062345A (en) | Device based on microorganism electrolytic tank technique for on-line biochemical oxygen demand measurement | |
CN103336045B (en) | Device for on-line detection and automatic alarm of toxic substances and detection method of toxic substances | |
CN106526114A (en) | Sewage biological toxicity analysis method based on immobilized aerobic microbial system | |
CN107315076A (en) | A kind of online oxicity analysis system and its assay method | |
JPH07103965A (en) | Method and device for rapid biochemical oxygen demand (BOD) measurement | |
CN105116031A (en) | Online biochemical oxygen demand detection method and online biochemical oxygen demand detection device | |
JPH01176936A (en) | Instrument for measuring activity of microorganism sludge | |
CN101520394A (en) | Method for determining anaerobic sludge activity | |
CN202083662U (en) | Biochemical Oxygen Demand BOD Online Tester | |
CN210953907U (en) | Sewage treatment plant toxicity of intaking on-line measuring device | |
Mueller et al. | Biologically enhanced oxygen transfer in the activated sludge process | |
CN104391028B (en) | Utilize the method and apparatus of microorganism electrolysis cell technology on-line monitoring ammonia nitrogen concentration | |
JP6191404B2 (en) | Sludge activity measuring apparatus and sludge activity measuring method | |
JP3585905B2 (en) | Test method for activated sludge activity and wastewater degradability | |
CN204028038U (en) | Utilize the device of microorganism electrolysis cell technology on-line monitoring ammonia nitrogen concentration | |
CN108375610B (en) | Correction method for analyzing sludge enzyme activity based on oxygen consumption rate inhibition rate | |
JPS62155996A (en) | Organic carbon source injection control device in biological denitrification process |