JPH01174413A - Composite yarn prepreg - Google Patents
Composite yarn prepregInfo
- Publication number
- JPH01174413A JPH01174413A JP62336199A JP33619987A JPH01174413A JP H01174413 A JPH01174413 A JP H01174413A JP 62336199 A JP62336199 A JP 62336199A JP 33619987 A JP33619987 A JP 33619987A JP H01174413 A JPH01174413 A JP H01174413A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- prepreg
- fiber
- filament
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 17
- 239000000835 fiber Substances 0.000 claims description 35
- 239000012784 inorganic fiber Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 229920001187 thermosetting polymer Polymers 0.000 claims description 10
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 6
- 230000000052 comparative effect Effects 0.000 description 14
- 229920000049 Carbon (fiber) Polymers 0.000 description 13
- 239000004917 carbon fiber Substances 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000005336 cracking Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000010409 ironing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000009730 filament winding Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002990 reinforced plastic Substances 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241001505400 Strix Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940013840 strix Drugs 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、繊維糸条に熱硬化性樹脂を含浸させ半硬化
状態に処理した複合糸プリプレグに関し、強化プラスチ
ック製品の製造の際にフィラメントワインディング法に
よってパイプ、ベッセル、タンク等を成形するために利
用される。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a composite yarn prepreg in which fiber threads are impregnated with a thermosetting resin and treated to a semi-cured state, and is used in filament winding during the production of reinforced plastic products. It is used to form pipes, vessels, tanks, etc. by the method.
(従来の技術)
パイプ、ベッセル、タンク等の形状の強化プラスチック
成形品を製造する場合、フィラメントワインディング成
形法が一般的に用いられ、従来は、強化用繊維糸条を連
続的に供給しながら樹脂含浸を行ない、引続きマンドレ
ルに巻付けていた。しかしながら、最近では多品種小量
生産が必要となり、かつフィラメントワインディングの
職場環境の改善が要望されるようになったため、あらか
じめ熱硬化性樹脂を含浸し半硬化させたプリプレグ糸条
をボビンに巻取ってパッケージとし、このパッケージを
成形工場へ送っている。(Prior art) When manufacturing reinforced plastic molded products in the shape of pipes, vessels, tanks, etc., the filament winding molding method is generally used. It was impregnated and then wound around a mandrel. However, in recent years, there has been a need for high-mix, low-volume production, as well as a desire to improve the work environment for filament winding, so prepreg yarn that has been pre-impregnated with a thermosetting resin and semi-cured is wound around a bobbin. This package is then sent to a molding factory.
しかして、上記の繊維糸条に炭素繊維、ガラス繊維、ボ
ロン繊維など無機繊維のフィラメントを含む糸条束を用
い、これをプリプレグ化する場合は、上記無機繊維フィ
ラメントを含む構成繊維の強力を最大限に利用するため
、上記構成繊維を実質的に無撚の状態で引揃えていた。However, when using a yarn bundle containing filaments of inorganic fibers such as carbon fibers, glass fibers, and boron fibers as the above-mentioned fiber yarns and making this into prepreg, it is necessary to maximize the strength of the constituent fibers containing the above-mentioned inorganic fiber filaments. For limited use, the constituent fibers were arranged in a substantially untwisted state.
(発明が解決しようとする問題点)
無機繊維フィラメントを含む糸条束をプレプレグ化する
場合、上記の無機繊維フィラメントがヤーンガイド、ガ
イドバーおよびローラ等に接してしごきを受けるが、無
機繊維フィラメントが実質的に無撚の状態で集束されて
いるため、上記のフィラメントが損傷を受は易い、また
、プリプレグ化糸条の取扱いを容易にするため、このプ
リプレグ化糸条に可とう性を与えると、これと同時にタ
ック性が付与され、ボビンに巻取った際の巻き圧によっ
てプリプレグ化糸条相互間に若干の膠着が生じ、そのた
め成形に際して上記のプリプレグ化糸条をボビンから解
じょするとき、繊維割れや糸割れが生じ易いという問題
があった。しかも、無機繊維はもろいので、上記の繊維
割れにより折損を起し易いという問題があった。(Problems to be Solved by the Invention) When a yarn bundle containing inorganic fiber filaments is made into a prepreg, the above-mentioned inorganic fiber filaments come into contact with yarn guides, guide bars, rollers, etc. and undergo ironing, but the inorganic fiber filaments Since the filaments are bundled in a substantially untwisted state, they are easily damaged.In addition, in order to make the prepreg yarn easier to handle, it is necessary to give flexibility to the prepreg yarn. At the same time, tackiness is imparted, and the winding pressure when wound onto a bobbin causes some adhesion between the prepreg yarns, so when the prepreg yarns are unraveled from the bobbin during molding, There was a problem in that fiber cracking and yarn cracking were likely to occur. Moreover, since inorganic fibers are brittle, there is a problem in that they are easily broken due to the above-mentioned fiber cracking.
この発明は、構成繊維中に少なくとも無機繊維を含む糸
条束の上記欠点を解消し、上記の糸条束をプリプレグ化
する際のしごき作用によって無機繊維フィラメントが損
傷を受けることがなく、かつそのパッケージからの解じ
ょが円滑に行なわれ、繊維割れや糸割れの発生がなく、
したがって無機繊維フィラメントの損傷が生じないプリ
プレグを提供するものである。This invention solves the above-mentioned drawbacks of a yarn bundle containing at least inorganic fibers in its constituent fibers, and prevents the inorganic fiber filaments from being damaged by the ironing action when forming the yarn bundle into prepreg. Unraveling from the package is done smoothly and there is no occurrence of fiber or thread breakage.
Therefore, the present invention provides a prepreg in which the inorganic fiber filaments are not damaged.
(問題点を解決するための手段)
この発明のプリプレグは、熱硬化性樹脂を含浸させるた
めの繊維糸条が少なくとも無機繊維フィラメントを実質
的に無撚の引揃え状態で含む糸条束を芯糸とし、その回
りを鞘糸の巻回により被覆 ・した複合糸であることを
特徴とし、上記の熱硬化性樹脂は、従来と同様に半硬化
状態に処理され、常温では固形状態を保ってべたつきが
なく、かつ可どう性を有しているが、成形温度に加熱す
ると溶融する未硬化樹脂状態にある。(Means for Solving the Problems) The prepreg of the present invention comprises a yarn bundle in which the fiber yarns for impregnation with a thermosetting resin include at least inorganic fiber filaments in a substantially untwisted aligned state. It is characterized by being a composite yarn in which the yarn is covered by winding a sheath yarn, and the above thermosetting resin is treated to a semi-hardened state as in the past, and remains solid at room temperature. Although it is non-sticky and has flexibility, it is in an uncured resin state that melts when heated to the molding temperature.
上記の無機繊維フィラメントは、炭素繊維、ガラス繊維
およびボロン繊維等のフィラメントであす、これらの中
の1種類を単独で使用してもよく。The above-mentioned inorganic fiber filaments include filaments of carbon fiber, glass fiber, boron fiber, etc., and one type thereof may be used alone.
また2種類以上を併用してもよく、これら無機繊維フィ
ラメントが実質的に無撚の状態に引揃えられ、上記無機
繊維フィラメントが絡み合いのない平行な状態を保持し
ている。また、この無機繊維フィラメントを主体として
7ラミド繊維、全芳香族ポリエステル繊維、超高分子量
ポリエチレン繊維および超高分子量ポリビニルアルール
繊維などの引張り強度15g/d以上、引張り弾性率5
00 g / d以上の高強力・高弾性率有機繊維フィ
ラメントを引揃え状に付加してもよい。Further, two or more types may be used in combination, and these inorganic fiber filaments are arranged in a substantially untwisted state, and the inorganic fiber filaments maintain a parallel state without entanglement. In addition, based on this inorganic fiber filament, 7 lamid fibers, fully aromatic polyester fibers, ultra-high molecular weight polyethylene fibers, and ultra-high molecular weight polyvinyl alcohol fibers have a tensile strength of 15 g/d or more and a tensile modulus of 5.
High strength and high elastic modulus organic fiber filaments of 00 g/d or more may be added in an aligned manner.
上記の無機繊維フィラメントの糸条束、または無機繊維
フィラメントと高強力・高弾性率有機繊維フィラメント
との引揃え糸条束からなる芯糸を被覆する鞘糸は、無撚
の芯糸を集束状態に保つことができるものであれば任意
の繊維を用いることができ、ナイロン6、ナイロン66
、ポリエステルなど合成繊維のフィラメント糸、紡績糸
、または毛羽やループを有する通常の有機繊維糸条のほ
か、上記の高強力・高弾性率有機繊維糸条を使用するこ
とができる。The sheath yarn that covers the core yarn, which is composed of the above-mentioned yarn bundle of inorganic fiber filaments or aligned yarn bundle of inorganic fiber filaments and high-strength/high-modulus organic fiber filaments, is a bundle of non-twisted core yarns. Any fiber can be used as long as it can be maintained at
In addition to filament yarns of synthetic fibers such as polyester, spun yarns, or ordinary organic fiber yarns having fluff or loops, the above-mentioned high-strength and high-modulus organic fiber yarns can be used.
なお、熱硬化性樹脂(ストリックス樹脂)は、140℃
以下で硬化可能なプリプレグ用熱硬化性樹脂であればよ
く、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエ
ステル樹脂等が例示される。In addition, thermosetting resin (Strix resin) is heated at 140°C.
Any thermosetting resin for prepreg that can be cured in the following manner may be used, and examples thereof include epoxy resin, unsaturated polyester resin, and vinyl ester resin.
(作用)
無機繊維フィラメントを含む糸条束が平行に引揃えられ
ているため、上記フィラメントの強力が最大限に発揮さ
れ、しかも上記のフィラメントを主体とする芯糸が鞘糸
で被覆されているため、上記フィラメントのばらけが防
止され、上記の芯糸と鞘糸とからなる複合糸に熱硬化性
樹脂を含浸させるブリブレグ工程でガイド等に上記の無
機繊維フィラメントが直接に接触してしごかれることが
防止され、得られた複合糸プリプレグをボビンに巻取っ
た後の成形に際して上記複合糸プリプレグを解じょする
ときに繊維割れや糸割れの生じることがなく、無機繊維
フィラメントの損傷が防止される。そして、この複合糸
プリプレグを常法に従ってマンドレルに巻付けて所望の
形状に成形し、しかるのち加熱することにより上記の熱
硬化性樹脂が溶融し、次いで硬化し、無機繊維フィラメ
ントで強化されたプラスチック成形品が得られる。(Function) Since the yarn bundles containing inorganic fiber filaments are aligned in parallel, the strength of the filaments is maximized, and the core yarn, which is mainly composed of the filaments, is covered with the sheath yarn. Therefore, the above-mentioned filament is prevented from coming apart, and the above-mentioned inorganic fiber filament comes into direct contact with the guide etc. and is squeezed in the blibreg process in which the composite yarn consisting of the above-mentioned core thread and sheath thread is impregnated with thermosetting resin. This prevents fiber cracking and yarn breakage from occurring when the composite yarn prepreg is unraveled during molding after winding the obtained composite yarn prepreg onto a bobbin, and damage to the inorganic fiber filaments is prevented. Ru. This composite yarn prepreg is then wound around a mandrel in a conventional manner to form it into a desired shape, and then heated to melt the thermosetting resin and then harden, creating a plastic reinforced with inorganic fiber filaments. A molded product is obtained.
上記の無機繊維フィラメントに前記の高強力・高弾性率
有機繊維フィラメントを付加した複合糸条束を芯糸とし
て鞘糸で被覆したときは、耐衝撃性の優れたプラスチッ
ク成形品が得られる。ただし、高強力・高弾性率有機繊
維フィラメントの引張り強度が15 g / d 未満
であったり、引張り弾性率が500 g / d未満で
あったりすると、引張り強度特性が主体の無機繊維フィ
ラメントに比べて低水準になるため、得られるプラスチ
ック成形品の強度特性が目的を達しなくなる。また、高
強力・高弾性率有機繊維フィラメントの付加量は、芯糸
全量の50%未満が好ましく、これよりも多くなると、
無機繊維フィラメントのみからなる糸条束を芯糸に用い
た場合に比べてプラスチック成形品の圧縮特性や曲げ特
性が著しく低下する。When a composite yarn bundle in which the above-mentioned inorganic fiber filament is added with the above-mentioned high-strength/high-modulus organic fiber filament is used as a core thread and covered with a sheath thread, a plastic molded article with excellent impact resistance can be obtained. However, if the tensile strength of high-strength, high-modulus organic fiber filaments is less than 15 g/d or the tensile modulus is less than 500 g/d, it will be weaker than inorganic fiber filaments, which mainly have tensile strength characteristics. As a result, the strength properties of the resulting plastic molded product no longer meet the objectives. In addition, the amount of high strength/high elastic modulus organic fiber filament added is preferably less than 50% of the total amount of core yarn, and if it is more than this,
Compared to the case where a yarn bundle consisting only of inorganic fiber filaments is used as the core yarn, the compression characteristics and bending characteristics of the plastic molded product are significantly lowered.
上記の芯糸を鞘糸で被覆した複合糸における被覆率(鞘
糸が芯糸を被覆している部分の長さと芯糸長との比率で
あり、芯糸に巻付けた鞘糸1本の幅(ロ)と芯糸1m当
り巻回数との積)は、0.1〜lO%、特に0.5〜5
%が好ましく、0.1%未満では芯糸の集束性保持が困
難となって鞘糸による被覆効果が得られず、反対に10
%を超えるとカバリング糸の太さに比して引張り強度特
性が低下し、かつマトリックス樹脂(熱硬化性樹脂)の
浸透が阻害される。上記の被覆率を考慮すると、鞘糸の
繊度は5〜30デニールが好ましい。The coverage rate of the above composite yarn in which the core yarn is covered with a sheath yarn (the ratio of the length of the part where the sheath yarn covers the core yarn to the core yarn length, The product of the width (b) and the number of turns per meter of core yarn is 0.1 to 10%, especially 0.5 to 5
% is preferable; if it is less than 0.1%, it will be difficult to maintain the cohesiveness of the core yarn, and the covering effect with the sheath yarn will not be obtained;
If it exceeds %, the tensile strength characteristics will decrease compared to the thickness of the covering yarn, and the penetration of the matrix resin (thermosetting resin) will be inhibited. Considering the above coverage, the fineness of the sheath yarn is preferably 5 to 30 deniers.
(実施例)
炭素繊維のフィラメント糸(東邦レーヨン社製、ベスフ
ァイトHTA−7W−1000,600デニール、10
00フイラメント)と高強力・高弾性率繊維のフィラメ
ント糸(ダイニーマ社製超高分子量ポリエチレン繊維、
ダイニーマ5K−60゜300デニール)とをそれぞれ
無撚で引揃えて芯糸とシリナイロン°6(12デニール
、5フイラメレト)を鞘糸として上記芯糸の回りに50
0回/−の巻回数でカバリングした。この複合糸の被覆
率は、4.3%であった。(Example) Carbon fiber filament yarn (manufactured by Toho Rayon Co., Ltd., Besphite HTA-7W-1000, 600 denier, 10
00 filament) and high-strength, high-modulus fiber filament yarn (Dyneema ultra-high molecular weight polyethylene fiber,
Dyneema 5K-60゜300 denier) were pulled together without twisting, and the core yarn and silicon nylon °6 (12 denier, 5 filament) were used as sheath yarns around the core yarn.
Covering was performed with a number of turns of 0/-. The coverage rate of this composite yarn was 4.3%.
上記のカバリング糸に、ビスフェノールA系エポキシ樹
脂(液状)20部、ビスフェノールA系エポキシ樹脂(
固型)80部、ジンアンジアミド(硬化剤)5部、芳香
族系尿素(硬化促進剤)5部およびメチルエチルケトン
とメタノールの50150混合液100部からなるエポ
キシ樹脂を浸漬により含浸させ、100℃の熱風中で1
0分間乾燥し、ボビンに巻取り、実施例の複合糸プリプ
レグを得た。このブリプレグ工程中、ヤーンガイド、ガ
イドバー、ローラ等のしごき作用による炭素繊維フィラ
メントの損傷は全く認められなかった。また、プリプレ
グ化され、半硬化状態にあるため、若干のタック性は認
められるものの、可どう性を備えており、巻取りには何
の支障も無かった。また、得られた複合糸プリプレグを
ボビンに巻取り、これを10m/分の速度で巻返して解
じょ性を調べたところ、円滑に解じょが行なわれ、炭素
繊維フィラメントの切断は皆無であり、糸切瓦間に僅か
な膠着が認められたに過ぎなかった。20 parts of bisphenol A-based epoxy resin (liquid) and bisphenol A-based epoxy resin (
An epoxy resin consisting of 80 parts of dianediamide (hardening agent), 5 parts of aromatic urea (hardening accelerator), and 100 parts of a 50150 mixture of methyl ethyl ketone and methanol was impregnated by immersion, and then heated to 100°C. 1 in hot air
It was dried for 0 minutes and wound onto a bobbin to obtain a composite yarn prepreg of an example. During this bripreg process, no damage to the carbon fiber filaments due to the straining action of the yarn guide, guide bar, rollers, etc. was observed. Moreover, since it was made into a prepreg and was in a semi-cured state, it had some tackiness, but it had flexibility and there was no problem in winding it up. In addition, when the obtained composite yarn prepreg was wound onto a bobbin and unwound at a speed of 10 m/min to examine its unraveling properties, unraveling was performed smoothly and there was no breakage of the carbon fiber filaments. However, only a slight amount of sticking was observed between the thread-cut tiles.
これに対し、上記実施例のカバリングを省略した以外は
、実施例と同様にして製造された比較例1のプリプレグ
は、ブリプレグ工程中、特に樹脂浴中でのローラのしご
きによって炭素繊維フィラメントの切断が多数発生し、
上記樹脂浴後の工・程では、バーやガイドのしごきによ
り上記フィラメントの損傷が促進され、連続巻取りが不
能になった。On the other hand, in the prepreg of Comparative Example 1, which was manufactured in the same manner as in the example except that the covering of the above example was omitted, the carbon fiber filaments were cut during the pre-preg process, especially by ironing with a roller in a resin bath. occurs in large numbers,
In the process after the resin bath, damage to the filament was accelerated by the straining of the bar and guide, making continuous winding impossible.
上記比較例1の樹脂浴に代えてローラコーティング法に
よって樹脂液を塗布する以外は、上記比較例1と同様に
して比較例2のプリプレグを製造した。この場合は、し
ごきによる炭素繊維フィラメントの損傷が比較例1に比
べて若干減少したにとどまった。また、比較例のプリプ
レグパッケージを10m/分の速度で巻返したところ、
炭素繊維フィラメントが超高分子量ポリエチレン繊維フ
ィラメントに比べて膠着性が高いため、糸割れを生じ、
炭素繊維フィラメントがパッケージ表面から離れる点が
変動し、遂には炭素繊維フィラメントの破断が生じ、解
じょが不可能になった。A prepreg of Comparative Example 2 was produced in the same manner as Comparative Example 1 above, except that a resin liquid was applied by a roller coating method instead of the resin bath of Comparative Example 1 above. In this case, damage to the carbon fiber filaments due to ironing was only slightly reduced compared to Comparative Example 1. In addition, when the prepreg package of the comparative example was rewound at a speed of 10 m/min,
Carbon fiber filaments have higher adhesive properties than ultra-high molecular weight polyethylene fiber filaments, resulting in yarn cracking.
The point at which the carbon fiber filament leaves the package surface fluctuates, eventually causing the carbon fiber filament to break and unraveling to become impossible.
比較例2の超高分子量ポリエチレン繊維フィラメントに
代えてアラミド繊維フィラメント(デュポン社製、ケブ
ラー49,380デニール)を用いる以外は、比較例2
と同様にして比較例3のプリプレグを製造した。この場
合は、比較例2とほぼ同様に炭素繊維フィラメントの損
傷が生じ、パッケージの巻返しが不可能になっ°た。Comparative Example 2 except that an aramid fiber filament (manufactured by DuPont, Kevlar 49,380 denier) was used in place of the ultra-high molecular weight polyethylene fiber filament of Comparative Example 2.
A prepreg of Comparative Example 3 was produced in the same manner as above. In this case, damage to the carbon fiber filament occurred almost similarly to Comparative Example 2, making it impossible to rewind the package.
比較例2の超高分子量ポリエチレン繊維フィラメントを
省略し、他は比較例2と同様にして比較例4のプリプレ
グを製造し、そのプリプレグパッケージを10m/分の
速度で巻返したところ、比較例2.3と同様に糸割れが
頻繁に発生し、マンドレルに巻取られた炭素繊維プリプ
レグは、繊維切れの多い低品質のものであった。A prepreg of Comparative Example 4 was produced in the same manner as Comparative Example 2 except that the ultra-high molecular weight polyethylene fiber filament of Comparative Example 2 was omitted, and when the prepreg package was rewound at a speed of 10 m/min, Comparative Example 2 Similar to .3, yarn breakage occurred frequently, and the carbon fiber prepreg wound around the mandrel was of low quality with many fiber breaks.
(発明の効果)
この発明の複合糸プリプレグは、少なくとも炭素繊維フ
ィラメントを含む芯糸が鞘糸で被覆されているため、樹
脂含浸工程における無機繊維フィラメントの損傷が防止
され、ブリプレグ工程の通過性にすぐれ、製造が容易で
ある。また、ボビンに巻取りパッケージとした後、成形
のために巻返す際に糸割れや繊維割れの生じることがな
く、そのため無機繊維フィラメントが損傷されずに円滑
な解じょが可能になる。(Effects of the Invention) In the composite yarn prepreg of the present invention, since the core yarn containing at least carbon fiber filaments is covered with the sheath yarn, damage to the inorganic fiber filaments during the resin impregnation process is prevented, and the passability of the prepreg process is improved. Excellent and easy to manufacture. In addition, after being wound into a package on a bobbin, yarn cracking or fiber cracking does not occur when the inorganic fiber filament is wound back for molding, and therefore smooth unraveling is possible without damaging the inorganic fiber filament.
特許出願人 東洋紡績株式会社 代理人 弁理士 吉 1)了 司Patent applicant: Toyobo Co., Ltd. Agent: Patent Attorney Yoshi 1) Tsukasa Ryo
Claims (1)
処理したプリプレグにおいて、上記繊維糸条が少なくと
も無機繊維フィラメントを実質的に無撚の引揃え状態で
含む糸条束を芯糸とし、その回りを鞘糸の巻回により被
覆した複合糸であることを特徴とする複合糸プリプレグ
。 〔2〕芯糸が実質的に無撚の引揃え状態の無機繊維フィ
ラメントと、高強力・高弾性率有機繊維フィラメントと
からなる糸条束である特許請求の範囲第1項記載の複合
糸プリプレグ。 〔3〕高強力・高弾性率有機繊維フィラメントが20g
/d以上の引張強度および500g/d以上の引張弾性
率を有する高強力・高弾性率ポリエチレンフィラメント
である特許請求の範囲第2項記載の複合糸プリプレグ。[Scope of Claims] [1] A prepreg in which fiber threads are impregnated with a thermosetting resin and treated to a semi-cured state, wherein the fiber threads contain at least inorganic fiber filaments in a substantially untwisted aligned state. A composite yarn prepreg characterized in that it is a composite yarn in which a yarn bundle is used as a core yarn and the core yarn is wrapped around it by winding a sheath yarn. [2] The composite yarn prepreg according to claim 1, wherein the core yarn is a yarn bundle consisting of substantially untwisted aligned inorganic fiber filaments and high-strength, high-modulus organic fiber filaments. . [3] 20g of high-strength, high-modulus organic fiber filament
The composite yarn prepreg according to claim 2, which is a high-strength, high-modulus polyethylene filament having a tensile strength of at least /d and a tensile modulus of at least 500 g/d.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336199A JPH01174413A (en) | 1987-12-28 | 1987-12-28 | Composite yarn prepreg |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336199A JPH01174413A (en) | 1987-12-28 | 1987-12-28 | Composite yarn prepreg |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01174413A true JPH01174413A (en) | 1989-07-11 |
Family
ID=18296664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62336199A Pending JPH01174413A (en) | 1987-12-28 | 1987-12-28 | Composite yarn prepreg |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01174413A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654979A1 (en) * | 1989-11-28 | 1991-05-31 | Sumitomo Rubber Ind | Composite prepreg and tennis rackets using the latter |
JPH04679U (en) * | 1990-04-13 | 1992-01-07 | ||
JPH04680U (en) * | 1990-04-13 | 1992-01-07 | ||
JPH07216113A (en) * | 1994-02-03 | 1995-08-15 | Mitsubishi Rayon Co Ltd | Prepreg |
WO2007126040A1 (en) * | 2006-04-28 | 2007-11-08 | Toray Industries, Inc. | Process for producing woven carbon fiber fabric |
JP2013028029A (en) * | 2011-07-27 | 2013-02-07 | Komatsu Seiren Co Ltd | High-strength fiber wire material for reinforcing wooden member, and joint structure of wooden member using the same |
JP2013213305A (en) * | 2011-12-28 | 2013-10-17 | Komatsu Seiren Co Ltd | High strength fiber wire rod and composite material having the same |
JPWO2014196432A1 (en) * | 2013-06-05 | 2017-02-23 | 小松精練株式会社 | High-strength fiber composite and strand structure and multi-strand structure |
KR20200102366A (en) | 2019-02-21 | 2020-08-31 | 재팬 마텍스 컴퍼니 리미티드 | Prepreg and its production method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6011133A (en) * | 1983-06-30 | 1985-01-21 | Mitsubishi Electric Corp | Testing equipment for automatic speed change gear |
-
1987
- 1987-12-28 JP JP62336199A patent/JPH01174413A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6011133A (en) * | 1983-06-30 | 1985-01-21 | Mitsubishi Electric Corp | Testing equipment for automatic speed change gear |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654979A1 (en) * | 1989-11-28 | 1991-05-31 | Sumitomo Rubber Ind | Composite prepreg and tennis rackets using the latter |
US5478647A (en) * | 1989-11-28 | 1995-12-26 | Sumitomo Rubber Industries, Ltd. | Composite prepreg and tennis rackets using the same |
US5482774A (en) * | 1989-11-28 | 1996-01-09 | Sumitomo Rubber Industries, Ltd. | Composite prepeg and tennis rackets using the same |
JPH04679U (en) * | 1990-04-13 | 1992-01-07 | ||
JPH04680U (en) * | 1990-04-13 | 1992-01-07 | ||
JPH07216113A (en) * | 1994-02-03 | 1995-08-15 | Mitsubishi Rayon Co Ltd | Prepreg |
WO2007126040A1 (en) * | 2006-04-28 | 2007-11-08 | Toray Industries, Inc. | Process for producing woven carbon fiber fabric |
US7857013B2 (en) | 2006-04-28 | 2010-12-28 | Toray Industries, Inc. | Method for producing carbon fiber woven fabric |
JP2013028029A (en) * | 2011-07-27 | 2013-02-07 | Komatsu Seiren Co Ltd | High-strength fiber wire material for reinforcing wooden member, and joint structure of wooden member using the same |
JP2013213305A (en) * | 2011-12-28 | 2013-10-17 | Komatsu Seiren Co Ltd | High strength fiber wire rod and composite material having the same |
WO2014097666A1 (en) * | 2012-12-20 | 2014-06-26 | 小松精練株式会社 | High-strength fiber wire material, and composite material containing said high-strength fiber wire material |
JPWO2014196432A1 (en) * | 2013-06-05 | 2017-02-23 | 小松精練株式会社 | High-strength fiber composite and strand structure and multi-strand structure |
KR20200102366A (en) | 2019-02-21 | 2020-08-31 | 재팬 마텍스 컴퍼니 리미티드 | Prepreg and its production method |
US11603439B2 (en) | 2019-02-21 | 2023-03-14 | Japan Matex Co., Ltd. | Prepreg and producing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3346872B2 (en) | Method of removing fiber bundle and method of manufacturing long fiber reinforced resin structure | |
JP3777145B2 (en) | Glass fiber reinforced thermoplastic resin pellet and method for producing the same | |
JPH0686718B2 (en) | Method for manufacturing composite twisted filament | |
JPH01174413A (en) | Composite yarn prepreg | |
JP7031821B2 (en) | Fiber reinforced resin tubular body and its manufacturing method | |
JPH08336879A (en) | Resin-coated reinforcing fiber yarn, molding material, and method for producing the same | |
JP6798199B2 (en) | Fiber reinforced plastic molding | |
JP2004163501A (en) | Drop optical fiber cable | |
US6849331B1 (en) | Polyester resin string binder | |
JPS5841921A (en) | Composite fiber product | |
JP3345661B2 (en) | Yarn for thermoplastic composites | |
JPH0718099B2 (en) | Rope | |
JPS61153609A (en) | Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable | |
JP3317358B2 (en) | Composite reinforcing fiber material impregnated with thermoplastic resin | |
WO2002042235A2 (en) | Epoxy urethane string binder | |
JP5431827B2 (en) | Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament | |
CN216427528U (en) | Vortex spinning polyester yarn with high flame retardance and coating | |
JP3671601B2 (en) | How to unwind glass roving | |
JP2007321060A (en) | Fiber reinforced synthetic resin wire with coating | |
JP2516710B2 (en) | Composite twist type tensile strength body | |
JP3650430B2 (en) | Glass fiber knitting | |
JPH04163334A (en) | Composite glass fiber roving coated with thermoplastic resin | |
JP3314826B2 (en) | Thermoplastic composite sheet | |
JP3421956B2 (en) | Method for producing flexible structural material | |
JPH02112454A (en) | Production of braid made of carbon fiber |