JPH01166470A - Fuel cell power generation system - Google Patents
Fuel cell power generation systemInfo
- Publication number
- JPH01166470A JPH01166470A JP62326006A JP32600687A JPH01166470A JP H01166470 A JPH01166470 A JP H01166470A JP 62326006 A JP62326006 A JP 62326006A JP 32600687 A JP32600687 A JP 32600687A JP H01166470 A JPH01166470 A JP H01166470A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- water
- heater
- fuel cell
- cell cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 42
- 238000010248 power generation Methods 0.000 title claims description 12
- 239000000498 cooling water Substances 0.000 claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 238000001816 cooling Methods 0.000 claims description 10
- 210000004027 cell Anatomy 0.000 abstract description 29
- 238000010438 heat treatment Methods 0.000 abstract description 15
- 210000005056 cell body Anatomy 0.000 abstract description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、燃料電池発電システムの電池冷却水の昇温
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for increasing the temperature of battery cooling water in a fuel cell power generation system.
燃料を池は、燃料極に水素を含む燃料ガスを。 The fuel pond supplies fuel gas containing hydrogen to the fuel electrode.
空気極に空気tそれぞれ連続的に供給して酸化還元反応
を行わせることによシ、電力全外部に取り出す。この反
応に伴う熱を除去する九めに、燃料電池に冷却器が設け
ら:n、、 a池冷却水ポンプ、水S気分離器と併せて
構成される電池冷却系からの冷却水通水により電池の冷
却が行われる。一方。By continuously supplying air to each air electrode to cause an oxidation-reduction reaction, all electric power is extracted to the outside. In order to remove the heat associated with this reaction, the fuel cell is equipped with a cooler: n,, cooling water is supplied from the cell cooling system, which is composed of a pond cooling water pump and a water S gas separator. The battery is cooled down. on the other hand.
燃料電池は1反応促進のtめ一定の動作温度(例えば2
00℃)が必要で、このために停止状態から始動すると
きに、燃料電池を昇温させる必要がある。この方法とし
て、電池冷却系の冷却水の昇温循環により電池の昇温を
行う方法が一般的である。Fuel cells operate at a constant operating temperature (e.g. 2
00°C), and for this reason, it is necessary to raise the temperature of the fuel cell when starting from a stopped state. A common method for this is to increase the temperature of the battery by circulating cooling water in the battery cooling system.
第3図は例えば1日本産業機械工業会(昭和59年5月
)発行「オンサイト型燃料1池の技術調査報告書」第1
1〜12ページに示された従来の燃料電池昇温方法を示
す図である。図において、(1)は燃料ta本体、
(la) 、 (lb) 、 (lc)は燃料電池本体
のそれぞれ燃料極、空気極、冷却器、(2)は冷却器(
lc)の中の冷却管、+3)fl水蒸気分離器、+4)
II′iil!池冷却水ポンプ、 (5a) 、 (
F+b) n冷却水配管、(6)dボイラ、(7)は加
熱コイル、(8)はバーナ、(9)は電池冷却水である
0
次にこの従来技術の動作について説明する。For example, Figure 3 is from ``Technical Survey Report on On-Site Type Fuel Ponds'' published by the Japan Industrial Machinery Manufacturers Association (May 1981).
FIG. 1 is a diagram showing a conventional fuel cell temperature raising method shown on pages 1 to 12. In the figure, (1) is the fuel ta main body,
(la), (lb), and (lc) are the fuel electrode, air electrode, and cooler of the fuel cell body, respectively; (2) is the cooler (
cooling pipe in lc), +3) fl steam separator, +4)
II'iil! Pond cooling water pump, (5a), (
F+b) n cooling water piping, (6) d boiler, (7) heating coil, (8) burner, (9) battery cooling water 0 Next, the operation of this prior art will be explained.
燃料電池本体(11Fi、停止保管中は比較的低い温(
(例えば40〜60℃)に保持されるが、負荷運転に際
しては、この状態から燃料電池本体(1) i動作温度
付近まで昇温させる必要がある。まず、電池冷却水ポン
プ+4) f:運転し、電池冷却水(9)全燃料電池本
体(1)の冷却管C2)、水蒸気分離器(3)、冷却水
配管(5a) 、 (5b)で構成される電池冷却系内
を循環させる。この状態で水蒸気分離器(3)の911
1面に設けられたボイラ(6)のバーナ(8)t−点火
する。Fuel cell body (11Fi, relatively low temperature during stopped storage (
(for example, 40 to 60°C), but during load operation, it is necessary to raise the temperature from this state to around the operating temperature of the fuel cell main body (1) i. First, the battery cooling water pump +4) f: is operated, and the battery cooling water (9), the cooling pipe C2) of the entire fuel cell main body (1), the steam separator (3), and the cooling water pipes (5a) and (5b) are Circulate within the battery cooling system constructed. In this state, 911 of the steam separator (3)
The burner (8) of the boiler (6) provided on one side is ignited.
ボイラ(6)内では、水蒸気分離器(3)内の電池冷却
水(9)を循環1せ6加熱コイル(?〕が配置され、ノ
(−す(8)の燃焼熱が加熱コイル(1)を経て水蒸気
分離器(3)内の1E池冷却水(9)に伝えられる。熱
を吸収し九電池冷却水(91Fi、冷却水配管(5a)
、電池冷却水ポンプ(4)を経て燃料電池本体(1)
の冷却管(2)に供給され、ここで、燃料電池本体11
)へ熱が伝えられる。Inside the boiler (6), 1 and 6 heating coils (?) are arranged to circulate the battery cooling water (9) in the steam separator (3), and the combustion heat of the (8) is transferred to the heating coil (1). ) to the 1E pond cooling water (9) in the steam separator (3).The heat is absorbed and transferred to the 9 cell cooling water (91Fi, cooling water pipe (5a)).
, the fuel cell main body (1) via the battery cooling water pump (4)
is supplied to the cooling pipe (2) of the fuel cell main body 11.
) heat is transferred to
冷却管(2) t−出を電池冷却水(9) d 、冷却
水配管(!’に3)を経て水蒸気分離器(3)に戻り&
再びボイラ(6)より熱を吸収する。The cooling pipe (2) t-out goes to the battery cooling water (9) d, returns to the steam separator (3) via the cooling water pipe (!' to 3) &
Heat is absorbed again from the boiler (6).
かくしてJ′!を池冷却水(9)の昇温、及びこれに伴
う燃料電池本体(1)の昇温か行われる。Thus J′! The temperature of the pond cooling water (9) and the fuel cell main body (1) are accordingly increased.
ところで、この様な従来技術においてri1電池冷却水
(9)を加熱コイル(7)に導入・循環させるのに。By the way, in such conventional technology, the RI1 battery cooling water (9) is introduced and circulated into the heating coil (7).
密度差による自然循環忙利用している几め、加熱量に制
限があp2且つ燃焼効率が悪く、燃料電池本体(1)の
昇温に多くのボイラ燃料と多くの時間を要するという欠
点を有していた。また、加熱コイル(7)で発生したス
チームを直接水蒸気分離器(3)内の゛<池冷却水(9
)に投入混合すゐので、電池冷却水(9)の温度がまだ
低い間は、スチームの急激な冷却気はうの消滅作用で、
大きな騒音、振動を発生するとムう欠点も有して4た。Due to the method of utilizing natural circulation due to the density difference, the amount of heating is limited, the combustion efficiency is poor, and the disadvantage is that it takes a lot of boiler fuel and a lot of time to raise the temperature of the fuel cell body (1). Was. In addition, the steam generated in the heating coil (7) is directly transferred to the pond cooling water (9) in the steam separator (3).
), so while the temperature of the battery cooling water (9) is still low, due to the rapid cooling effect of the steam,
It also has the disadvantage of generating large amounts of noise and vibration.
この発明は、上記のような問題点を解消するためになさ
れたもので、短時間に、効率良く、且つ騒音・振動の問
題音発生させずに、電池冷却水〒昇温させることかでき
る燃料電池発電システムを提供すること全目的としてい
る。This invention was made in order to solve the above-mentioned problems, and is a fuel that can raise the temperature of battery cooling water in a short time, efficiently, and without causing noise or vibration problems. The overall purpose is to provide a battery power generation system.
この発明に係わる燃料電池発電システムは、水蒸気分離
器内の電池冷却水を循環ポンプを用すて外部循環させる
循環回路と、この循環回路に設は九加熱器と、この加熱
器上発生し友スチーム、tたは温水を水蒸気分離器内の
電池冷却水と混合して温水を発生させる温水器とを備え
友ものである。The fuel cell power generation system according to the present invention includes a circulation circuit that externally circulates cell cooling water in a steam separator using a circulation pump, a nine heater installed in this circulation circuit, and a fuel cell generator that generates energy on the heater. The device is equipped with a water heater that generates hot water by mixing steam, water, or hot water with battery cooling water in a steam separator.
この発明におり′fる燃料電池発電システムでは。 In the fuel cell power generation system according to the present invention.
電池冷却水を強制外部循環させ、この循環回路上に加熱
器と温水器を配置し九ので2短時間に効率良く、且つ騒
音・振動を発生させずにt池冷却水の昇温できる。Battery cooling water is forced to circulate externally, and a heater and a water heater are arranged on this circulation circuit, so that the temperature of the pond cooling water can be raised efficiently in a short time and without generating noise or vibration.
以下、この発明の一実施例を第1図に基づいて説明する
。図に2いて、 (11、(la) 〜(lc) 、
121〜14)。An embodiment of the present invention will be described below with reference to FIG. In Figure 2, (11, (la) ~ (lc),
121-14).
(5a) 、(5b) 、 (9)d、第3図に示す従
来構成と同じものである。αG#:を加熱器、(6)は
加熱コイル、UはI(−ナ&す3は循環ポンプ、 (1
4a)、(14b)d循環回路、(至)は加熱器αqの
ド流側に配置した温水器、αGri水蒸気分離器+3)
から温水器(ト)に電池冷却水(9)を導く吸込配管で
為る。温水器(ト)は例えばエジェクタの様なもので、
加熱器四で発生したスチーム、まtは温水を枢動力とし
て、水蒸気分離器(3)内のt池冷却水(9)ヲ吸込配
・Uαi k経由して吸込み1両者を混合する機能を有
するものである。(5a), (5b), and (9)d are the same as the conventional configuration shown in FIG. αG#: is the heater, (6) is the heating coil, U is I(-na&su3 is the circulation pump, (1
4a), (14b) d circulation circuit, (to) water heater placed on the downstream side of heater αq, αGri steam separator +3)
This is done by the suction pipe that leads the battery cooling water (9) from the water heater (g) to the water heater (g). A water heater (g) is something like an ejector, for example.
The steam generated in the heater 4 has the function of mixing both the steam and the suction 1 by using the hot water as a pivoting force and passing through the suction distribution and Uαi k to the t pond cooling water (9) in the steam separator (3). It is something.
次iで第1図の実施例の動作について1説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.
燃料電池発電システムを始動させるときに、ilt池冷
却水ポンプ(4)を運転し、電池冷却水(9) k ’
!!池冷却系内に循環させるのは従来技術と同一である
。When starting the fuel cell power generation system, the ilt pond cooling water pump (4) is operated and the battery cooling water (9) k'
! ! Circulation within the pond cooling system is the same as in the prior art.
これと並行して循環ボン7°a3ヲ運転し、水蒸気分離
器13)内の電池冷却水t9) ’t”循41H回路(
+4a)%加熱器aO内の加熱コイルt11.温水器u
5.循環回路(+S)を通水循環させる。この状態で加
熱器四日のバーナ04を点火する。バーナーの燃焼熱が
加熱コイル(ロ)内の電池冷却水(9)に伝えL:)r
L、熱全吸収してスチーム、′&たに温水になった電池
冷却水(9)が温水器(至)に導かれる。温水器四にお
いてに、このスチームteは温水が駆動力となり、水蒸
気分離器(3)内の電池冷却水(9)が吸込配管α口1
由し゛〔吸込まれる。ここで1両者が混合して温水とな
り、この温水は循環回路(14b) ve通って水′S
気分離器(3)内に戻される。この様にし゛〔、電池冷
却水(9)の昇温。In parallel with this, the circulation bottle 7°a3 is operated, and the battery cooling water in the steam separator 13) is circulated through the 41H circuit (
+4a)% Heating coil t11 in heater aO. water heater u
5. Water is circulated through the circulation circuit (+S). In this state, burner 04 of the heater 4 is ignited. The combustion heat of the burner is transferred to the battery cooling water (9) in the heating coil (b) L:)r
L, the battery cooling water (9), which has completely absorbed heat and turned into steam, '& warm water, is led to the water heater (to). In the water heater 4, this steam te is driven by hot water, and the battery cooling water (9) in the steam separator (3) is supplied to the suction pipe α port 1.
Yushi゛ [I am sucked in. Here, both of them are mixed to become hot water, and this hot water passes through the circulation circuit (14b) and becomes water 'S.
Returned into the gas separator (3). In this way, the temperature of the battery cooling water (9) is increased.
これに伴う燃料電池本体11)の昇温を行わせることが
できる。この方法では、循環ポンプ(至)により。Accordingly, the temperature of the fuel cell main body 11) can be increased. In this method, by means of a circulation pump (to).
電池冷却水(9)を加熱コイル(ロ)内に強制循環させ
るので、従来方式に比べ大きい加熱量を与えることがで
き、燃料電池本体(1)の昇温時間を短縮することがで
きる。ま之、加熱コイル(ロ)で発生しtスチム、ま九
は温水を水4気分離器(31内の電池冷却水(9)と混
合1せtあと水蒸気分離器(3]内に戻すようにしたの
で、従来方式で懸念されt水蒸気分離器(3)内でのス
チームと水の直接混合による騒音・振動が防止され、安
定しt運@を行わせることができるoiた。加熱器αt
)ri、例えば市販のバクケージボイラの様な燃料効率
の高いものt利用で@。Since the battery cooling water (9) is forced to circulate within the heating coil (b), it is possible to provide a larger amount of heating compared to the conventional system, and the time required to raise the temperature of the fuel cell body (1) can be shortened. After steam is generated in the heating coil (b), the hot water is mixed with the battery cooling water (9) in the water vapor separator (31) and then returned to the steam separator (3). As a result, noise and vibration caused by direct mixing of steam and water in the steam separator (3), which were concerns in the conventional method, are prevented, and stable operation can be performed.
)ri, for example, by using a highly fuel efficient boiler such as a commercially available back cage boiler.
工り少なめ燃料量で効率良く昇温を行わせることができ
る。Temperature can be raised efficiently with less processing and amount of fuel.
第1図では、温水器(至)がエジェクタのLうなポンプ
作用を有し、加熱器αQ出口のスチーム、まtは温水を
駆動力として水蒸気分離器(3)内の電池冷却水(9)
を吸込ませて両者忙外部の循環回W!r (14a)
。In Fig. 1, the water heater (to) has a pumping action similar to that of an ejector, and the steam at the outlet of the heater αQ, or hot water, is used as the driving force to generate battery cooling water (9) in the steam separator (3).
Let them inhale and circulate around the outside W! r (14a)
.
(14b)上で混合させる例を示゛シ九が、必ずしもこ
の様に構成する必要はなく、温水器(ト)を水蒸気分離
器(3)の内部に配置しても良い。(14b) Although an example of mixing is shown in FIG. 9, the configuration does not necessarily have to be this way, and the water heater (g) may be placed inside the steam separator (3).
この場合IIcは、温水器(ト)は第1図例に示すポン
プ作用は不要であり、@水器(至)として例えば第2図
に示すように、温水器(ハ)は、水蒸気分離器(3)の
内部に設けられ、加熱コイル(ロ)を出tスチーム。In this case, IIc is that the water heater (G) does not require the pump action shown in the example in Figure 1, and the water heater (C) does not require the pump action shown in the example in Figure 1; (3) is installed inside the heating coil (b) and outputs steam.
ま友rt濾水Vよそのまま、水蒸気分離器(3)内の温
水器(至)に哄給され、ここで周囲の電池冷却水(9)
を吸込み混合して温水になる。この温水に水蒸気分離器
(3)内で電池冷却水(9)と混合し、電池冷却水(9
)を昇温させる。この様に第2図に示す方法においても
、第1図のものと全く同様に効果を奏する〇〔発明の効
果〕
以上のように、この発明によれば、電池冷却水を循環ポ
ンプに工り強制外部循環させ、この循環回路上に加熱器
と温水器を配置したので、短時間に効率良く、且つ騒音
・振動を伴うことなく燃料電池本体の昇温を行わせるこ
とができる0The Mayu rt filtered water is directly fed to the water heater (to) in the steam separator (3), where it is fed to the surrounding battery cooling water (9).
The water is sucked in and mixed to become hot water. This hot water is mixed with battery cooling water (9) in the steam separator (3), and the battery cooling water (9) is mixed with the battery cooling water (9).
) to raise the temperature. As described above, the method shown in FIG. 2 has the same effect as the method shown in FIG. By forcing external circulation and placing a heater and water heater on this circulation circuit, it is possible to raise the temperature of the fuel cell body efficiently in a short time and without noise or vibration.
第1図はこの発明の一実施例にする燃料電池発電システ
ムを示す系統図、第2図はこの発明の他の実施例による
燃料電池発電システムを示す系統図、第3図は従来の燃
料電池発電システムを示す系統図である0
囚において、(11は燃料電池本体、(la)IIi燃
料極、(1b)は空気極、(lc)tfi冷却器、13
1Fi水蒸気分離器、(4) d電池冷却水ポンプ、(
9)は電池冷却水、αGは加熱器、03は循環ポンプ、
(14a)、 (14b)11循環回路。
(至)は温水器である0
なお1図中同一符号は同一、又は相当部分を示す0Fig. 1 is a system diagram showing a fuel cell power generation system according to an embodiment of the present invention, Fig. 2 is a system diagram showing a fuel cell power generation system according to another embodiment of the invention, and Fig. 3 is a system diagram showing a fuel cell power generation system according to another embodiment of the invention. In the system diagram showing the power generation system, (11 is the fuel cell main body, (la) IIi fuel electrode, (1b) is the air electrode, (lc) TFI cooler,
1Fi steam separator, (4) d battery cooling water pump, (
9) is battery cooling water, αG is heater, 03 is circulation pump,
(14a), (14b) 11 circulation circuit. (To) is a water heater 0 The same reference numerals in each figure indicate the same or equivalent parts 0
Claims (1)
気分離器、電池冷却水ポンプとで構成される燃料電池の
冷却系とを有する燃料電池発電システムにおいて前記水
蒸気分離器内の電池冷却水を循環ポンプを用いて外部循
環させる循環回路と、この循環回路に設けられた加熱器
と、この加熱器で発生したスチームまたは温水を前記水
蒸気分離器内の電池冷却水と混合して温水を発生させる
温水器とを設置したことを特徴とする燃料電池発電シス
テム。In a fuel cell power generation system having a fuel cell main body consisting of a fuel electrode, an air electrode, and a cooler, and a fuel cell cooling system consisting of a water vapor separator and a cell cooling water pump, cell cooling water in the water vapor separator. A circulation circuit that externally circulates water using a circulation pump, a heater installed in this circulation circuit, and steam or hot water generated by this heater mixed with battery cooling water in the steam separator to generate hot water. A fuel cell power generation system characterized by being equipped with a water heater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62326006A JPH0687423B2 (en) | 1987-12-23 | 1987-12-23 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62326006A JPH0687423B2 (en) | 1987-12-23 | 1987-12-23 | Fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01166470A true JPH01166470A (en) | 1989-06-30 |
JPH0687423B2 JPH0687423B2 (en) | 1994-11-02 |
Family
ID=18183041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62326006A Expired - Lifetime JPH0687423B2 (en) | 1987-12-23 | 1987-12-23 | Fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687423B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332630A (en) * | 1991-11-04 | 1994-07-26 | Hsu Michael S | On-board recharging system for battery powered electric vehicles |
US5858568A (en) * | 1996-09-19 | 1999-01-12 | Ztek Corporation | Fuel cell power supply system |
JP2002042840A (en) * | 2000-07-24 | 2002-02-08 | Toyota Motor Corp | Fuel cell type cogeneration system |
US6380637B1 (en) | 1996-09-19 | 2002-04-30 | Ztek Corporation | Off-board station and an electricity exchanging system suitable for use with a mobile vehicle power system |
-
1987
- 1987-12-23 JP JP62326006A patent/JPH0687423B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332630A (en) * | 1991-11-04 | 1994-07-26 | Hsu Michael S | On-board recharging system for battery powered electric vehicles |
US5858568A (en) * | 1996-09-19 | 1999-01-12 | Ztek Corporation | Fuel cell power supply system |
US6380637B1 (en) | 1996-09-19 | 2002-04-30 | Ztek Corporation | Off-board station and an electricity exchanging system suitable for use with a mobile vehicle power system |
US6649289B2 (en) | 1996-09-19 | 2003-11-18 | Ztek Corporation | Fuel cell power supply system |
JP2002042840A (en) * | 2000-07-24 | 2002-02-08 | Toyota Motor Corp | Fuel cell type cogeneration system |
Also Published As
Publication number | Publication date |
---|---|
JPH0687423B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2137046C1 (en) | Method and device for raising power plant efficiency | |
JPS62502209A (en) | Combined steam-gas turbine system | |
US6862330B2 (en) | Systems and methods of producing hydrogen using a nuclear reactor | |
JP6812252B2 (en) | Hydrogen production equipment, power generation system and hydrogen production method | |
US4293384A (en) | Nuclear reactor plant for generating process heat | |
JPH01166470A (en) | Fuel cell power generation system | |
JPS5844397A (en) | Atomic power plant | |
CN202118876U (en) | Energy center of heat energy and electric energy | |
JP2634180B2 (en) | Fuel cell power generation system | |
JPH04342961A (en) | Fuel cell power generating facility | |
RU2022375C1 (en) | Nuclear heating plant | |
JPH01166469A (en) | Fuel cell power generation system | |
CN209523787U (en) | A kind of residual neat recovering system | |
JPS61126309A (en) | Steam power plant | |
JPH07169489A (en) | Cooling system for fuel cell | |
CN222864904U (en) | Device system for energy storage, power generation and peak shaving of low-calorific-value combustible gas | |
JPS5671733A (en) | Heating system combined with hot-water supply system | |
CN218033313U (en) | Integrated gas-electric coupling multipurpose heat supply unit | |
US3682772A (en) | Steam generator for power plants heated by nuclear energy | |
CN209926342U (en) | Hot air utilization system of blast furnace blower | |
WO2001088343A1 (en) | Mechanical and/or electric power production process using a combined cycle system comprised of an endothermal alternating engine and an exothermal turbine engine | |
JPH07169484A (en) | Waste heat supplying method for fuel cell power plant | |
JPH0613093A (en) | Cogeneration system and building with cogeneration system | |
TWM657918U (en) | Generator thermal energy heating device | |
CN118912487A (en) | Energy-saving multi-furnace combustion low-calorific-value gas heat storage power generation device system and method |