[go: up one dir, main page]

JPH01166447A - Surface analysis mapping device - Google Patents

Surface analysis mapping device

Info

Publication number
JPH01166447A
JPH01166447A JP62324982A JP32498287A JPH01166447A JP H01166447 A JPH01166447 A JP H01166447A JP 62324982 A JP62324982 A JP 62324982A JP 32498287 A JP32498287 A JP 32498287A JP H01166447 A JPH01166447 A JP H01166447A
Authority
JP
Japan
Prior art keywords
sample
scanning
sample surface
mapping
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324982A
Other languages
Japanese (ja)
Other versions
JP2621265B2 (en
Inventor
Hideto Furumi
秀人 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62324982A priority Critical patent/JP2621265B2/en
Publication of JPH01166447A publication Critical patent/JPH01166447A/en
Application granted granted Critical
Publication of JP2621265B2 publication Critical patent/JP2621265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce a time required for by deciding a scanning range automatically in a process of mapping instead of setting a scanning area previously so as not to scan the area where there is no sample. CONSTITUTION:As electron pulse microanalyzer(EPMA) is composed of an electron gun 1, the objective lens 2 of an electron optics system, a sample stage 3, a moving device 4 in the X, Y and Z axis directions, a spectral crystal 5 and a X-ray detecting unit 6 and the like. An automatic focusing detecting means 11 is provided in an optical microscope attached to this EPMA, and whether an electron beam irradiation point is on a sample S surface or not is distinguished by whether a sample S surface is detected in a defined range in the optical axis direction or not at the time of scanning the sample S surface, and the scanning direction is inverted where a state that the sample S surface is detected changes to a state that it is not detected. With this arrangement, a scanning range is automatically decided in compliance with the form of the sample, and a useless range is not scanned, and thereby a required time for mapping is reduced.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は電子線マイクロアナライザ(EPMA)を用い
た試料面の二次元的分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for two-dimensionally analyzing a sample surface using an electron beam microanalyzer (EPMA).

口、従来の技術 EPMAを用いて試料面の二次元的分析(マツピング)
を行う場合従来は、試料面に長方形の走査領域を設定し
て分析を行っていた。このように走査領域を長方形に設
定する方式では、任意製品の断面全体の・マツピングの
ように試料の形が不定形の場合、走査領域を試料の形に
外接するような長方形に設定することになり、領域内の
試料が存在しない部分も走査のために時間を消費し、試
料面積の割に分析所要時間が長くかかることになる。
Two-dimensional analysis (matuping) of the sample surface using the conventional technique EPMA
Conventionally, when performing analysis, a rectangular scanning area was set on the sample surface. In this method of setting the scanning area to a rectangle, if the shape of the sample is irregular, such as when mapping the entire cross section of a given product, the scanning area can be set to a rectangle that circumscribes the shape of the sample. Therefore, time is consumed for scanning even parts of the region where no sample is present, and the time required for analysis is long relative to the sample area.

ハ9発明が解決しようとする問題点 不定形試料のマツピングにおいて、従来試料を包含する
走査領域を設定していたのは、試料の形に合うように予
め走査領域を設定するのは極めて繁雑な作業だからであ
る。従って本発明は予め走査領域を設定するのでな(、
マツピングを行っている過程で自動的に走査範囲を決定
して行くようにしようとするものである。
C.9 Problems to be solved by the invention When mapping irregularly shaped samples, conventionally a scanning area was set that encompasses the sample, but it is extremely complicated to set the scanning area in advance to match the shape of the sample. This is because it is work. Therefore, in the present invention, the scanning area is set in advance (,
The aim is to automatically determine the scanning range during the mapping process.

二1問題点解決のための手段 EPMAに付設された光学顕微鏡に自動焦点検出手段を
設け、試料面走査中、光軸方向の所定範囲内に試料面が
検出されるか否かによって電子ビ−ム照射点が試料面上
にあるか試料面から外れているかを識別し、試料面が検
出されている状態から検出されない状態に変った所で走
査方向を反転させるようにした。
21 Means for Solving Problems The optical microscope attached to the EPMA is equipped with automatic focus detection means, and during sample surface scanning, the electronic beam The system identifies whether the irradiation point is on the sample surface or off the sample surface, and the scanning direction is reversed when the sample surface changes from being detected to not being detected.

ホ8作用 EPMAに付設されている光学顕微鏡の光軸は電子光学
系の光軸と一致させである。上記光軸と直交する二方向
をX、Y方向、光軸方向を2方向とすると、光学顕微鏡
の焦点が試料面に合うように試料面をZ方向に動かすこ
とによって試料面のZ方向の位置、つまり高さを所定位
置に設定することができる。試料をX、Y両方向に移動
させて試料面を電子ビームで走査中に試料面が光学顕微
鏡の光軸から外れると焦点検出装置によって焦点外れの
信号が得られることによって電子光学系の光軸が試料面
から外れたことが判る。従って焦点が合っている状態か
ら焦点外れの状態に変った所で走査方向を反転させれば
走査は常に試料に外形かられずかにはみ出す範囲内で行
われることになり、走査範囲は自動的に試料の形に応じ
て決まり、無駄な範囲を走査しないですむからマツピン
グ所要時間が短縮される。
The optical axis of the optical microscope attached to the E-8 action EPMA is aligned with the optical axis of the electron optical system. Assuming that the two directions orthogonal to the optical axis are the X and Y directions, and the optical axis direction is the two directions, the position of the sample surface in the Z direction can be determined by moving the sample surface in the Z direction so that the focus of the optical microscope is on the sample surface. In other words, the height can be set at a predetermined position. When the sample surface is moved in both the X and Y directions and the sample surface is scanned by the electron beam, if the sample surface deviates from the optical axis of the optical microscope, the focus detection device will generate an out-of-focus signal and the optical axis of the electron optical system will be It can be seen that it has come off the sample surface. Therefore, if the scanning direction is reversed when the state changes from in-focus to out-of-focus, scanning will always be performed within the range that extends beyond the outer shape of the sample, and the scanning range will automatically change. It is determined according to the shape of the sample, and since there is no need to scan unnecessary areas, the time required for mapping is shortened.

へ、実施例 第1図は本発明の一実施例を示す。1は電子銃、2は電
子光学系の対物レンズ、3は試料ステージで、X、Y3
軸方向の移動装B4上に取付けられており、Sはその試
料ステージに載置された試料である。5は試料面の電子
ビーム照射点から放射されるX線を分光する分光結晶、
6はX線検出器で、以上の各部によってEPMAが構成
されている。
Embodiment FIG. 1 shows an embodiment of the present invention. 1 is the electron gun, 2 is the objective lens of the electron optical system, 3 is the sample stage, X, Y3
It is mounted on the axial moving device B4, and S is the sample placed on the sample stage. 5 is a spectroscopic crystal that separates X-rays emitted from the electron beam irradiation point on the sample surface;
Reference numeral 6 denotes an X-ray detector, and the above-mentioned parts constitute an EPMA.

7はEPMAに付設されている光学顕微鏡の対物凹面鏡
であり、その光軸は電子光学系の光軸と一致させである
。光学顕微鏡の光軸は鏡8によって側方に折曲され対物
凹面j;17による試料面の像が撮像素子9,9゛の受
光面上に形成されるようになっている。撮像素子9,9
゛は光学顕微鏡の光軸上で試料面が正規の高さ位置くZ
軸方内位wl)にあるときの試料面の像Iの前後におい
て光軸をはさんで反対側に配置されている。10は半透
明鏡で、この半透明鏡に関し、試料面の像位置Iと共役
な位置に点光源りが配置され、このLの像が対物凹面鏡
7によって試料面に結像される。
7 is an objective concave mirror of an optical microscope attached to the EPMA, and its optical axis is aligned with the optical axis of the electron optical system. The optical axis of the optical microscope is bent laterally by a mirror 8 so that an image of the sample surface by an objective concave surface j; 17 is formed on the light receiving surface of the image pickup elements 9, 9'. Image sensor 9, 9
゛ is when the sample surface is at the normal height on the optical axis of the optical microscope.
They are arranged on opposite sides of the optical axis in front and behind the image I of the sample surface when it is at the axially inner position wl). Reference numeral 10 denotes a semi-transparent mirror. Regarding this semi-transparent mirror, a point light source is arranged at a position conjugate to the image position I on the sample surface, and the image of this L is formed on the sample surface by the objective concave mirror 7.

試料面に投射された光源りの光は試料面で反射され、試
料面の像Iの所に試料面の光源りの光の投射スポットの
像を形成する。試料面が正規の高さ位置にあるときこの
スポットの像は!の位置に一致しており、Iの位置の前
後に位置している撮像素子の所ではスポットの像は稍ぼ
やけて広くなっている。試料面の高さが下ると上記スポ
ットの像は撮像素子9の方に近づき、撮像素子9の受光
範囲の方が9′のそれより広(なり、反対に試料面が正
規位置より高(なると撮像素子9′の受光範囲の方が9
のそれより広くなる。焦点検出装置11は撮像素子9,
9″の受光範囲をモニタして9の受光範囲の方が大にな
れば試料面を上げよと云う信号を出し、9゛の受光範囲
の方が大になれば試料面を下げよと云う信号を出力し、
制御装置は上記信号を受けて試料ステージのX、Y、Z
方向移動装置4のZ軸方向移動を制御して、撮像素子9
.9″の受光範囲の広さが常に等しくなるようにしてい
る。このようにして試料面が多少凹凸があっても、マツ
ピング動作中宮に試料面の電子線照射点が正規の高さに
あるようになっている。
The light from the light source projected onto the sample surface is reflected by the sample surface, forming an image of the projected spot of the light from the light source on the sample surface at an image I on the sample surface. When the sample surface is at the normal height, the image of this spot is! The spot image is slightly blurred and widened at the image pickup devices located before and after the position I. As the height of the sample surface decreases, the image of the spot approaches the image sensor 9, and the light receiving range of the image sensor 9 becomes wider than that of the image sensor 9'. The light receiving range of the image sensor 9' is 9
wider than that of The focus detection device 11 includes an image sensor 9,
The light receiving range of 9" is monitored, and if the light receiving range of 9" is larger, a signal is sent to raise the sample surface, and if the light receiving range of 9" is larger, a signal is sent to lower the sample surface. Outputs
The control device receives the above signal and controls the X, Y, and Z of the sample stage.
By controlling the movement of the direction movement device 4 in the Z-axis direction, the image sensor 9
.. 9" is always the same width. In this way, even if the sample surface is somewhat uneven, the electron beam irradiation point on the sample surface is at the correct height during mapping operation. It has become.

以上の構成においてマツピング動作を行う場合、@制御
装置12は焦点検出装置11からの信号によって試料の
高さ位置を制御するに当り、試料を上げる方向の移動量
が予め設定されている限界量を超過してもなお合焦状態
が得られないとき、試料面が電子光学系の光軸から外れ
たと判断するようにしである。制御袋fli12はマツ
ピング動作全体を制御するもので、移動装置4のX方向
、Y方向移動制御およびX線検出器6の出力の取込み、
取込んだX線検出データに対するデータ処理、表示等の
制御も行う。
When performing a mapping operation in the above configuration, the @control device 12 controls the height position of the sample using the signal from the focus detection device 11, and sets a preset limit amount for the amount of movement in the direction of raising the sample. If the in-focus state is still not obtained even after the amount exceeds the limit, it is determined that the sample surface has deviated from the optical axis of the electron optical system. The control bag fli12 controls the entire mapping operation, and controls the movement of the moving device 4 in the X and Y directions, takes in the output of the X-ray detector 6,
It also controls data processing, display, etc. for the captured X-ray detection data.

マツピング動作における試料面の走査は第2図に示すよ
うに行われる。走査は試料をX軸の正方向に一画素分ず
つステップ送りし、−本のX方向走査線に沿う走査が終
るとY方向に一画素分ステップ送りされ、その後X軸負
方向に走査され、次の走査線の起点違反ったら再びX軸
圧方向に一画素分ずつのステップ送りが行われるのであ
る。
Scanning of the sample surface in the mapping operation is performed as shown in FIG. During scanning, the sample is fed in steps of one pixel in the positive direction of the X-axis, and when scanning along the X-direction scanning line of the book is completed, it is fed in steps of one pixel in the Y-direction, and then scanned in the negative direction of the X-axis. If the starting point of the next scanning line is violated, the step feed is performed one pixel at a time in the X-axis pressure direction again.

従来は第2に示すような異形の試料に対して(Xa、Y
a)(Xb、Ya)(Xa、Yb)+  (Xb、Yb
)で示される方形の範囲を走査していたのに対し、A点
(Xa、Ya)からスタートして21点まで走査し、次
にR2に戻って22点まで走査すると云うように走査範
囲を試料の形に応じて決めながらB点に至ってマツピン
グ動作を終る。
Conventionally, for irregularly shaped samples as shown in the second example (Xa, Y
a) (Xb, Ya) (Xa, Yb) + (Xb, Yb
), whereas the scanning range is changed to start from point A (Xa, Ya), scan to point 21, then return to R2 and scan to point 22. The mapping operation ends when reaching point B, which is determined according to the shape of the sample.

第3図に上述したマツピング動作を行う制御装置12の
動作のフローチャートの一例を示す。
FIG. 3 shows an example of a flowchart of the operation of the control device 12 that performs the mapping operation described above.

マツピングを行うときは、EPMAに試料を挿入し、光
学顕微鏡の撮像素子9,9゛の部分を接眼レンズと差換
え、光源りの位置を後方にずらせて試料面を全面照射す
るようにし、試料を上下して目視により光学顕微鏡の焦
点を合せる。こうすると試料面は正規の高さに設定され
る。次に試料をX、Yに動かして目視によりマツピング
の視点。
When mapping, insert the sample into the EPMA, replace the image pickup elements 9 and 9' of the optical microscope with the eyepieces, shift the position of the light source backwards so that the entire surface of the sample is illuminated, and place the sample in the EPMA. Focus the optical microscope visually by moving it up and down. In this way, the sample surface is set at the normal height. Next, move the sample in X and Y directions and visually check the mapping viewpoint.

終点位置を決め、夫々の位置を光学顕微鏡の視野中心に
持って来たときの試料ステージ3のX、Y座標を制御装
e 12に読込ませる。このようにして設定されたマツ
ピングの視点終点は例えば第2図にA、Bで示される。
The end point position is determined, and the X and Y coordinates of the sample stage 3 when each position is brought to the center of the field of view of the optical microscope are read into the control device e12. The mapping viewpoint end points set in this way are indicated by A and B in FIG. 2, for example.

その後接眼レンズを撮像素子9,9゛・と差換える。点
A、Bの横の座標値は試料ステージ3の座標で、これは
ステッピングモータで駆動されている移動装置4のY軸
、Y軸夫々の駆動モータへ供給した駆動パルスを制御装
fi12が計数することによって検知されているもので
ある。試料ステージ3をマツピングの始点に位置させて
マツピングをスタートさせる。マツピング動作では試料
ステージ3はX、Y方向に一画素分ずつステップ駆動さ
れる。まずX正方向に一ステップ駆動(イ)し、光学顕
微鏡が合焦か否か判定(ロ)する。この判定は焦点検出
袋fillから試料面を上げよ或は下げよ何れの信号も
出ていなければ合焦、出ていれば、焦点検出装置11か
らの指定信号に応じて合焦まで移動装置4のZ軸を駆動
(ハ)する。合焦であればX線検出器出力を試料ステー
ジの座標データと共にメモリに取込むく二)。合焦でな
(てZ軸駆動を行うときは(ホ)のステップでZ軸方向
の駆動量が上方限界を超えてたか否か検知し、超えない
(No)ときは(ロ)のステップに戻り合焦に至るまで
2軸駆動を行う。超えたとき(YES)は(へ)のステ
ップで前回試料ステージ位置では合焦であったか否かチ
エツクしNOであれば動作は(イ)に戻る。当初箱2因
A点から出発すると、A点は試料外の点であるから、動
作は(イ)(ロ)(ハ)(ホ)(へ)(イ)のループを
回って試料がX軸圧方向に送られて、この間データの取
込みは行われていない。試料面が電子ビーム照射点の下
に入って来ると動作は(イ)(ロ)・(ニ)(イ)のル
ープを回って一本のX方向走査線に沿い一画素分ずつデ
ータの取込みが行われて行(。一つの走査線に沿って走
査が進み、電子ビーム照射点が試料の右縁の外へ出ると
、動作は再び(イ)(ロ)(ハ)(ホ)と進んで(へ)
のステップがYESとなる。つまりそれまでは合焦状態
にあったものが、試料面がな(なって合焦が得られな(
なったことが分る。そこで(へ)のステップがYESに
なると、ステージ4のY軸座標がYb(最終走査線)か
否かチエツク(ト)され、Noのときは移動袋e4のY
軸を1ステツプ駆動しくチ)、Y軸を負方向にステップ
駆動(イ)゛する。このX軸負方向のステップ駆動にお
いても上述(イ)〜(へ)と同じ動作ステップ(イ゛)
〜(へ″)を繰返し、(へ°)のステップがYESにな
ると動作は(ト’)、  (チ′)を経て(イ)のステ
ップに戻る。このようにして試料面のジグザグ走査が進
行し、(ト)或は(ド)のステップがYESになるとマ
ツピング動作は終了する。
Thereafter, the eyepiece lens is replaced with an image pickup device 9,9゛. The horizontal coordinate values of points A and B are the coordinates of the sample stage 3, which is calculated by the controller fi12 counting the drive pulses supplied to the Y-axis and Y-axis drive motors of the moving device 4, which are driven by stepping motors. It is detected by Mapping is started by positioning the sample stage 3 at the starting point of mapping. In the mapping operation, the sample stage 3 is driven step by pixel in the X and Y directions. First, the optical microscope is driven one step in the positive X direction (a), and it is determined whether the optical microscope is in focus (b). This judgment is made by raising or lowering the sample surface from the focus detection bag fill.If neither signal is output, the focus is on; if it is, the moving device 4 is moved until the focus is reached according to the specified signal from the focus detection device 11. Drive the Z axis (c). When in focus, the X-ray detector output is taken into memory along with the sample stage coordinate data (2). When performing Z-axis drive due to in-focus, detect whether the amount of drive in the Z-axis direction exceeds the upper limit in step (e), and if it does not exceed the upper limit (No), proceed to step (b). Two-axis driving is performed until return to focus is achieved.If it is exceeded (YES), check whether or not focus was achieved at the previous sample stage position in step (v).If NO, the operation returns to (a). Initially, when starting from point A, point A is a point outside the sample, so the operation goes through a loop of (a), (b), (c), (e), (f), and (b), so that the sample moves along the X axis. The data is not captured during this time.When the sample surface comes under the electron beam irradiation point, the operation goes through a loop of (a), (b), (d), and (a). Data is acquired one pixel at a time along one scanning line in the X direction (as the scanning progresses along one scanning line and the electron beam irradiation point moves outside the right edge of the sample, The movement continues as (A), (B), (C), and (E) again.
Step becomes YES. In other words, the object that had been in focus until then could no longer be in focus because the sample surface had changed.
I know what happened. If the step (to) becomes YES, it is checked whether the Y-axis coordinate of the stage 4 is Yb (final scanning line), and if the result is No, the Y-axis coordinate of the moving bag e4 is checked.
Drive the axis one step (p), and step drive the Y-axis in the negative direction (p). In this step drive in the negative direction of the X-axis, the same operation steps (i) as in (a) to (f) above
Repeat steps to (to), and when step (to °) becomes YES, the operation returns to step (a) via (g'), (ch'). In this way, the zigzag scan of the sample surface progresses. However, when step (G) or (C) becomes YES, the mapping operation ends.

上の実施例では試料面の走査はジグザグに行われるが、
分析データの取込みはX軸圧方向の移動においてのみ行
い、負方向へは速戻りするようにするときは第3図のフ
ローでデータ取込みのステップ(二゛)がな(なってこ
のステップが素通りになり、(チ゛)のステップがな(
なる。
In the above example, the sample surface is scanned in a zigzag manner.
If you want to import analysis data only when moving in the X-axis pressure direction, and return quickly in the negative direction, the data acquisition step (2) will be skipped in the flow shown in Figure 3. , and the step of (chi) is (
Become.

ト、効果 本発明によれば異形試料のEPMA等によるマツピング
に当って試料のない領域まで走査しないですむから分析
所要時間が短縮され、しかも走査領域は試料の形に従っ
て自動的に決まるので予め試料の形に合わせて走査領域
を設定すると云うような繁雑な操作も不要で、分析能率
が大いに向上する。
According to the present invention, when mapping an irregularly shaped sample using EPMA or the like, it is not necessary to scan the area where there is no sample, so the time required for analysis is shortened.Moreover, since the scanning area is automatically determined according to the shape of the sample, the sample can be mapped in advance. There is no need for complicated operations such as setting the scanning area according to the shape of the image, and analysis efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成を示すブロック図
、第2図は本発明における試料面走査軌跡の図、第3図
は本発明の一実施例における制御装置の動作のフローチ
ャートである。 1・・・電子銃、2・・・電子対物レンズ、3・・・試
料ステージ、4・・・X、Y、Z3軸方向移動装置、5
・・・X線分光結晶、6・・・X線検出器、7・・・凹
面対物鏡、8・・・鏡、9,9°・・・撮像素子、10
・・・半透明鏡、11・・・焦点検出装置、12・・・
制御装置、S・・・試料、L・・・点光源。 代理人  弁理士 縣  浩 介 IIw:A
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram of a sample surface scanning trajectory according to the present invention, and FIG. 3 is a flowchart of the operation of a control device according to an embodiment of the present invention. be. DESCRIPTION OF SYMBOLS 1... Electron gun, 2... Electron objective lens, 3... Sample stage, 4... X, Y, Z 3-axis direction movement device, 5
...X-ray spectrometer crystal, 6...X-ray detector, 7...concave objective mirror, 8...mirror, 9,9°...imaging device, 10
... Semi-transparent mirror, 11... Focus detection device, 12...
Control device, S...sample, L...point light source. Agent Patent Attorney Hiroshi Agata IIw:A

Claims (1)

【特許請求の範囲】[Claims] 試料面を二次元的に走査する型の表面分析装置と、試料
面に上記装置と同じ視点を持つ光学顕微鏡と、同顕微鏡
に設けられた焦点検出装置と、試料を三次元的に移動さ
せる制御装置とよりなり、この制御装置は試料面の予め
定められた上下移動範囲内で焦点検出装置から合焦の信
号が得られる範囲内で試料を二次元的に移動させるよう
になっていることを特徴とする表面分析マツピング装置
A surface analysis device that scans the sample surface two-dimensionally, an optical microscope that has the same viewpoint as the above device on the sample surface, a focus detection device installed in the microscope, and a control that moves the sample three-dimensionally. This control device is designed to move the sample two-dimensionally within a predetermined vertical movement range of the sample surface and within the range where a focusing signal can be obtained from the focus detection device. Features surface analysis mapping device.
JP62324982A 1987-12-21 1987-12-21 Surface analysis mapping device Expired - Lifetime JP2621265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324982A JP2621265B2 (en) 1987-12-21 1987-12-21 Surface analysis mapping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324982A JP2621265B2 (en) 1987-12-21 1987-12-21 Surface analysis mapping device

Publications (2)

Publication Number Publication Date
JPH01166447A true JPH01166447A (en) 1989-06-30
JP2621265B2 JP2621265B2 (en) 1997-06-18

Family

ID=18171805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324982A Expired - Lifetime JP2621265B2 (en) 1987-12-21 1987-12-21 Surface analysis mapping device

Country Status (1)

Country Link
JP (1) JP2621265B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114210A (en) * 1976-03-22 1977-09-24 Nippon Telegr & Teleph Corp <Ntt> Synchronizing multiplex system
JPS6177243A (en) * 1984-09-20 1986-04-19 Jeol Ltd Scanning electron microscope capable of surface analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114210A (en) * 1976-03-22 1977-09-24 Nippon Telegr & Teleph Corp <Ntt> Synchronizing multiplex system
JPS6177243A (en) * 1984-09-20 1986-04-19 Jeol Ltd Scanning electron microscope capable of surface analysis

Also Published As

Publication number Publication date
JP2621265B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US8180156B2 (en) Method and device for machine-cutting a plate-shaped workpiece
US20140313312A1 (en) Digital microscope and method for optimizing the work process in a digital microscope
US20080251689A1 (en) Scanning optical device and observation method
JP6997480B2 (en) Laser scanning microscope, laser scanning microscope system and laser ablation system
JP2009056507A (en) Laser machining apparatus
JP2000074644A (en) Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
JP3450406B2 (en) Position adjustment device for observation image and scanning optical microscope
JP3896196B2 (en) Scanning microscope
JPH01166447A (en) Surface analysis mapping device
JP3063677B2 (en) Laser processing apparatus and laser processing method
EP3460557B1 (en) Observation device and method, and observation device control program
JP2008014646A (en) Substrate inspection method
JP3955115B2 (en) Confocal microscope focusing device and focusing method
US9723983B2 (en) Corneal endothelial cell photographing apparatus
JP2887656B2 (en) Laser processing equipment
JP3203507B2 (en) Laser processing equipment
JP2003014611A (en) Scanning type probe microscope
JP2817092B2 (en) Laser processing equipment
JP3813692B2 (en) Method for detecting special pattern inside semiconductor wafer in dicing machine
CN102483517B (en) Microscope device and control method
JP2000294183A (en) Scanning electron microscope and sample imaging method
JP3299144B2 (en) Position detecting apparatus and position detecting method applied to proximity exposure
JP2822314B2 (en) Laser processing equipment
JP7074742B2 (en) Wire electrode vertical alignment device and method
JPH0462046B2 (en)