[go: up one dir, main page]

JPH01165911A - Photoelectric type position detector - Google Patents

Photoelectric type position detector

Info

Publication number
JPH01165911A
JPH01165911A JP62324889A JP32488987A JPH01165911A JP H01165911 A JPH01165911 A JP H01165911A JP 62324889 A JP62324889 A JP 62324889A JP 32488987 A JP32488987 A JP 32488987A JP H01165911 A JPH01165911 A JP H01165911A
Authority
JP
Japan
Prior art keywords
light
lens groups
prism
distance
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324889A
Other languages
Japanese (ja)
Other versions
JPH07111345B2 (en
Inventor
Hideo Hirose
秀男 広瀬
Akira Takahashi
顕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP32488987A priority Critical patent/JPH07111345B2/en
Publication of JPH01165911A publication Critical patent/JPH01165911A/en
Publication of JPH07111345B2 publication Critical patent/JPH07111345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To increase an operation distance and a focusing detection range, to make the title apparatus compact and to measure the position of the surface of an object to be inspected without moving the whole of the apparatus, by forming a light source image between two fixed lens groups of a receiving/transmitting optical system and changing the distance between the lens groups to measure change quantity. CONSTITUTION:The beam from a semiconductor laser 1 is projected on the surface 9 of an object to be inspected by a receiving/transmitting optical system and a part of the reflected beam from said surface 9 is allowed to be incident on a two-split beam detection element 10 for detecting a beam position and the position of the surface 9 of the object is detected from the output of said element 10. This optical system is constituted of two fixed lens groups 3, 6 and the image of the laser 1 is formed between said lens groups and a right-angled prism 5 is driven in a direction separating the prism 5 from a beam reflecting means 4 in parallel as an optical distance altering means by a prism driver 7. Then, the displacement quantity X of an optical distance is detected from the displacement quantity Y of the prism 5, when the variation quantity of the position of the reflected image coincides with the distance altering quantity between the lens groups 3, 6 by a position detection means 8. The moving direction thereof is discriminated on the basis of the difference between output signals of the beam detection elements A, B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対物レンズを用いて光を絞り込み、焦点位置
からのずれを検出することによって被検物体面の位置や
変位を測定する光電式位置検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a photoelectric method that measures the position and displacement of an object surface by focusing light using an objective lens and detecting deviation from the focal point. The present invention relates to a position detection device.

[従来の技術] 焦点位置を検出することによって、対物レンズと被検物
体面の間の微小間隔の変化を見出す方法には、一般に非
点収差法、臨界角法、ナイフエッヂ法が知られている。
[Prior Art] Generally, the astigmatism method, critical angle method, and knife edge method are known as methods for detecting minute changes in the distance between the objective lens and the object surface to be measured by detecting the focal position. There is.

以下、−例としてナイフエッヂ法による光電式位置検出
装置を取り上げて説明する。ナイフエッヂ法の原理は、
ナイフエッヂで一部を遮った光を対物レンズから被検物
体面に投射すると、合焦誤差が生じた場合、対物レンズ
を介して生じた投射光の像の形状が非対称になることを
利用する方法である。第2図はナイフエッヂ法の原理を
具体的に示すもので、光束の一部を遮るナイフエッヂを
ミラー14として、対物レンズ6の像点に配置された半
導体レーザー1よりの光束を対物レンズ6に導く働きも
している。半導体レーザー1の光束は対物レンズ6の物
点に結像し、この位置の被検物体面9より反射した光束
は、対物レンズ6の像点に配置された2分割受光素子1
0(各々をAlBで示す)の中央の不感帯部に結像する
。この場合は、第3図(b)の状態で、2つの受光素子
A、Bの出力信号は等しくなる。被検物体面9が測定光
軸方向へ移動し、合焦誤差(+ΔF、−ΔF)が生じる
と、像点は前後に移動して、2分割受光素子上の像の形
状は、夫々第3図(a)、(c)の状態となる。従って
2つの受光素子の出力信号の差(A−B)を計算するこ
とによって合焦状態を判別できる。
Hereinafter, a photoelectric position detection device using a knife edge method will be explained as an example. The principle of the knife edge method is
This method takes advantage of the fact that when a focusing error occurs when light that is partially blocked by a knife edge is projected from the objective lens onto the surface of the object being tested, the shape of the image of the projected light generated through the objective lens becomes asymmetrical. It's a method. FIG. 2 specifically shows the principle of the knife edge method. The knife edge that blocks part of the light beam is used as a mirror 14, and the light beam from the semiconductor laser 1 placed at the image point of the objective lens 6 is directed to the objective lens 6. It also serves as a guide. The light beam of the semiconductor laser 1 forms an image on the object point of the objective lens 6, and the light beam reflected from the object surface 9 to be measured at this position is focused on the two-split light receiving element 1 arranged at the image point of the objective lens 6.
0 (each indicated by AlB) is imaged in the central dead zone. In this case, the output signals of the two light receiving elements A and B become equal in the state shown in FIG. 3(b). When the object surface 9 to be measured moves in the direction of the measurement optical axis and a focusing error (+ΔF, -ΔF) occurs, the image point moves back and forth, and the shape of the image on the two-split light receiving element changes to the third one. The state will be as shown in Figures (a) and (c). Therefore, the in-focus state can be determined by calculating the difference (A-B) between the output signals of the two light receiving elements.

ナイフエッヂ法、あるいは前記した他の方式も比較的高
感度であるという特徴があるが、合焦誤差と出力の線形
範囲がたかだか数μと非常に狭い。
The knife-edge method or the other methods mentioned above are also characterized by relatively high sensitivity, but the linear range of focusing error and output is very narrow, at most a few microns.

従って、精密加工部品のアラサ測定等に使用するには非
接触でギズを付ける等の心配もなく適している。しかし
、一般の測定では、これでは不十分で、出力信号を基に
対物レンズないしは装置全体の位置を変化させて合焦位
置を検出していた。対物レンズが非常に小さい場合は、
対物レンズの移動によって合焦位置を検出するのが適し
ているが、装置によっては作動距離(W、 D、 )を
大きくする必要もあり、この時は必然的にレンズも大き
くなって、迅速にかつ精度良く動かすことが困難となる
。この場合はむしろ、装置全体を動かす方が適している
。単に合焦だりでな(、その移動量も測定したい場合は
機構上後者がより適している。
Therefore, it is suitable for use in measuring the roughness of precision machined parts without contact and without worrying about scratches. However, in general measurements, this is insufficient, and the in-focus position is detected by changing the position of the objective lens or the entire device based on the output signal. If the objective lens is very small,
It is suitable to detect the focus position by moving the objective lens, but depending on the device, it may be necessary to increase the working distance (W, D, In addition, it becomes difficult to move accurately. In this case, it is more appropriate to move the entire device. Mechanically, the latter is more suitable if you want to measure the amount of movement rather than just focusing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、従来の装置の構成そのままでは、微小な合焦誤
差と出力信号の線形範囲を利用したアラサ測定のような
装置か、対物レンズの非常に小さい装置に利用範囲が限
定されていた。
Therefore, with the configuration of the conventional device as it is, its range of use is limited to devices such as those that perform roughness measurement using minute focusing errors and the linear range of the output signal, or devices with very small objective lenses.

本発明はこの様な従来の問題点に鑑みてなされたもので
、作動距離、合焦検出範囲を大きくし、かつコンパクト
で装置全体を移動することなしに被検物体面の位置を測
定可能な光電式位置検出装置を得ることを目的とする。
The present invention was made in view of these conventional problems, and it has a large working distance and focus detection range, is compact, and can measure the position of the object surface without moving the entire device. The purpose is to obtain a photoelectric position detection device.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点の解決の為に本発明では、投受光光学系を2
つの固定レンズ群3.6により構成して、その間に光源
像(So)を形成するようになすと共に、2つの固定レ
ンズ群間に、2つの固定レンズ群間の光学的距離を変化
させる光路長可変手段5.8と光学的距離の変化量を測
定する測定手段11.12.13とを設けたことを特徴
とする。
In order to solve the above problems, the present invention has two light emitting and receiving optical systems.
It is composed of two fixed lens groups 3.6 to form a light source image (So) therebetween, and has an optical path length that changes the optical distance between the two fixed lens groups. It is characterized in that it is provided with variable means 5.8 and measuring means 11.12.13 for measuring the amount of change in optical distance.

〔作 用〕[For production]

本発明では、投受光光学系を構成する2つの固定レンズ
群間の光学的距離を変更すると、光源側のレンズ群3と
光源1の距離は不変のため、光源像(So)と被検物体
面側のレンズ群6との距離が変化する。レンズ群6によ
って光源像(So)の像を、被検物体面9に形成するよ
うにしているが、この時前記距離が変化すると、レンズ
群6と被検物体面上の光源像(S”)との距離も変化す
る。
In the present invention, when the optical distance between the two fixed lens groups constituting the light emitting/receiving optical system is changed, the distance between the light source side lens group 3 and the light source 1 remains unchanged. The distance to the lens group 6 on the front side changes. The lens group 6 forms the light source image (So) on the test object surface 9, but if the distance changes at this time, the lens group 6 and the light source image (S'' on the test object surface) ) also changes.

従って、光源1と共役に設けられた受光素子10に導く
光束分割手段を投受光光学系を構成する2つのレンズ群
間の距離を変更する手段よりも光源側に設ければ、レン
ズ群6と被検物体との距離が変化しても、光6JX1、
被検物体面上の光源像(So)及び受光素子10の共役
関係を満たすことが出来る。
Therefore, if the beam splitting means for guiding the light beam to the light receiving element 10, which is provided conjugately with the light source 1, is provided closer to the light source than the means for changing the distance between the two lens groups constituting the light emitting/receiving optical system, the lens group 6 and Even if the distance to the test object changes, the light 6JX1,
A conjugate relationship between the light source image (So) on the object surface and the light receiving element 10 can be satisfied.

前記共役関係が成立したかどうかは受光素子として2分
割受光素子を用いた場合はその信号の差(A−B)を計
算することにより判別出来、レンズ群6と光源像(S”
)との距離の変化は前記2つのレンズ群間の距離変化と
一定の関係が有るから、この距離変化を測定手段によっ
て測定すれば、その変化量より求まる。また被検物体面
の変位測定範囲は、レンズ群間の光学的距離変化量によ
って決まる。従って、従来の信号の線形範囲を利用する
装置よりははるかに測定範囲を大きくとることが出来る
If a two-split light-receiving element is used as the light-receiving element, whether or not the conjugate relationship has been established can be determined by calculating the signal difference (A-B) between the lens group 6 and the light source image (S''
) has a certain relationship with the distance change between the two lens groups, so if this distance change is measured by a measuring means, it can be determined from the amount of change. Further, the displacement measurement range of the object surface to be tested is determined by the amount of change in the optical distance between the lens groups. Therefore, the measurement range can be much larger than that of conventional devices that utilize the linear range of signals.

〔実施例〕〔Example〕

第1図(a)、(b)は本発明の第1の実施例を示す図
である。第1図において、半導体レーザー1より射出し
た光束は、光束分割手段2により図中斜線で示す半分の
光束が投受光光学系3.4.5.6に入射する。投受光
光学系3.4.5.6の光源1側の固定レンズ群3より
の光束は、直角プリズムの直角をなす両面を全反射ミラ
ーとした光束反射手段4の一つの面によって90°転向
して直角プリズム5に入射する。直角プリズム5に入射
した光束は、直角プリズム5によって180°転向され
、再び光束反射手段4の他の面に入射する。直角プリズ
ム5は不図示の直線ガイドによって矢印P方向へ案内さ
れており、プリズム駆動手段7によって直線移動される
。この時、第1図(a)の基準状態ではレンズ群3によ
る光源像(S″)が直角プリズム5の中点M上に形成す
る様に構成している。直角プリズム5を射出した光束は
前記光束反射手段4の他の全反射面によって90°転向
し、投受光光学系の被検物体面9側の固定レンズ群6に
よって、合焦位置にある被検物体面9上に光源像(S”
)を形成する。被検物体面9で反射した光束は投射光束
とは反対の光路を通り、直角プリズム5の中点M上、つ
まり光源像(S゛)と一致する位置にその像を形成する
。その像は、レンズ群3と斜線部以外で示された光軸に
関して非対称な光束を反射する光束分割手段2とによっ
て2分割受光素子10上に結像する。ずなわち、2分割
受光素子10は半導体レーザー1と共役に配置される。
FIGS. 1(a) and 1(b) are diagrams showing a first embodiment of the present invention. In FIG. 1, half of the light beam emitted from the semiconductor laser 1 is incident on the light emitting/receiving optical system 3.4.5.6 by the light beam splitting means 2, as shown by diagonal lines in the figure. The light beam from the fixed lens group 3 on the light source 1 side of the light emitting/receiving optical system 3.4.5.6 is turned by 90 degrees by one surface of the light beam reflecting means 4, which has total reflection mirrors on both sides forming a right angle to a right angle prism. and enters the right angle prism 5. The light beam that has entered the right-angle prism 5 is turned by 180 degrees by the right-angle prism 5 and enters the other surface of the light beam reflecting means 4 again. The right angle prism 5 is guided in the direction of arrow P by a linear guide (not shown), and is linearly moved by a prism driving means 7. At this time, in the reference state shown in FIG. 1(a), the configuration is such that the light source image (S'') by the lens group 3 is formed on the midpoint M of the right-angle prism 5.The light beam exiting the right-angle prism 5 is The light source image ( S”
) to form. The light beam reflected by the object surface 9 to be inspected passes through an optical path opposite to that of the projected light beam, and forms an image on the midpoint M of the rectangular prism 5, that is, at a position coinciding with the light source image (S'). The image is formed on the two-split light-receiving element 10 by the lens group 3 and the light beam splitting means 2 which reflects the light beam asymmetric with respect to the optical axis shown outside the shaded area. That is, the two-split light receiving element 10 is arranged conjugately with the semiconductor laser 1.

前記したレンズ群6による被検物体9上の像が光源像(
S゛)と一致する場合は被検物体面9からの反射光によ
る像は2分割受光素子の中央不惑帯の部分に出来るよう
に、2分割受光素子の位置と大きさが定められている。
The image on the test object 9 formed by the lens group 6 described above is a light source image (
The position and size of the two-split light-receiving element are determined so that when the two-split light-receiving element coincides with S'), the image of the reflected light from the object surface 9 to be inspected is formed in the central zone of the two-split light-receiving element.

次に、被検物体面9が変位量(X)だけレンズ群6に近
すいた場合を考えると、直角プリズム5が第1図(a)
と同じ位置では、光源像と被検物体面9の反射光による
像が一致せず、被検物体面9の反射光による像がレンズ
群3に近づく。従って、反射光の投受光光学系による像
は2分割受光素子10の位置よりも遠くに形成され、2
分割受光素子10上の像は第3図(C)のごとくなる。
Next, considering the case where the object surface 9 to be tested approaches the lens group 6 by the amount of displacement (X), the right angle prism 5 is
At the same position, the light source image and the image of the reflected light from the test object surface 9 do not match, and the image of the test object surface 9 due to the reflected light approaches the lens group 3 . Therefore, the image of the reflected light by the light emitting/receiving optical system is formed farther than the position of the two-split light-receiving element 10, and the two
The image on the divided light-receiving element 10 is as shown in FIG. 3(C).

反対に、被検物体面9がレンズ群6より離れる方向であ
れば第3図(a)の状態となる。従って、反射光のレン
ズ群6による像と光源像(S′)とを一致させるために
は、投受光光学系のレンズ群3.6間の光学的距離を大
きくする必要がある。このための距離変更手段として本
実施例では、直角ブー7= リズム5を光束反射手段4より平行に離す方向にプリズ
ム駆動手段7によって移動させる。反射像の位置の変動
量とレンズ群間の距離の変更量が一致した時第1図(b
)の状態で2つの受光素子A、Bの出力信号の差A−B
がゼロとなり、この時のプリズム5の変位量をYとする
とこの量より光学的距離の変位量Xを知ることが出来る
。そのため、プリズム5の変位量Yを読み取るための位
置検出手段8を有している。従ってプリズムの移動方向
は2つの受光素子A、、Bの出力信号の差A−Bの値に
より判別可能で、被検物体面9の変位1xは差A−Bが
ゼロの時の直角プリズム5の変位量より求まる。直角プ
リズム5は差A−Bに基づき、その信号をゼロにすべく
サーボをかけてプリズム駆動手段7を構成するモータ等
を動かしても良いが、直角プリズム5をある一定周期で
振動させ、差A−Bがゼロとなった時に同期させて、測
長手段の変位量を読みとるようにすることも可能である
On the other hand, if the object surface 9 to be inspected is in a direction away from the lens group 6, the state shown in FIG. 3(a) will occur. Therefore, in order to match the image of the reflected light formed by the lens group 6 with the light source image (S'), it is necessary to increase the optical distance between the lens groups 3 and 6 of the light transmitting and receiving optical system. In this embodiment, as a distance changing means for this purpose, the prism driving means 7 moves the right angle boob 7=rhythm 5 in a direction parallel to and away from the light beam reflecting means 4. When the amount of change in the position of the reflected image matches the amount of change in the distance between the lens groups, Figure 1 (b
), the difference between the output signals of the two light-receiving elements A and B is A-B.
becomes zero, and if the amount of displacement of the prism 5 at this time is Y, then the amount of displacement X of the optical distance can be determined from this amount. Therefore, a position detecting means 8 for reading the displacement amount Y of the prism 5 is provided. Therefore, the moving direction of the prism can be determined by the value of the difference A-B between the output signals of the two light-receiving elements A, , B, and the displacement 1x of the object surface 9 to be examined is the displacement 1x of the right-angle prism 5 when the difference A-B is zero. It can be found from the amount of displacement. The right-angle prism 5 may be operated by applying a servo to reduce the signal to zero based on the difference A-B to drive a motor or the like constituting the prism drive means 7, but the right-angle prism 5 may be vibrated at a certain period to reduce the difference. It is also possible to synchronize and read the displacement amount of the length measuring means when A-B becomes zero.

後者の例を第5図に示して説明する。An example of the latter will be explained with reference to FIG.

第5図は直角プリズム5をボイスコイル等である一定周
期で振動させ、その振動量を渦電流を用いた公知の非接
触計測手段で計測する場合の信号処理ブロック図であり
、第6図はそのタイムチャー1・である。直角プリズム
5の変位はうず電流センサなどの変位測定手段8(前述
のプリズム位置検出手段8と実質的に同じもの)によっ
て測定される。2分割受光素子10の各受光素子A、 
Bの出力信号は差動増幅器101で差動出力A−IBが
とられる。コンパレータ102は、差動出力A−Bがゼ
ロ点をクロスする瞬間に出力が変化し、この変化によっ
てワンショット回路103がサンプルパルスを出力する
。サンプルホールド回路105aは、このサンプルパル
スによって直角プリズムの変位信号をサンプルホールド
する。この電圧が被検物距離に対応する値である。しか
しこの値は被検物変位とは線形関係にはないため、非線
形補正回路106の出力をもって測定値とする。
FIG. 5 is a signal processing block diagram when the rectangular prism 5 is vibrated at a certain period using a voice coil or the like, and the amount of vibration is measured by a known non-contact measurement means using eddy current. This is the time chart 1. The displacement of the right angle prism 5 is measured by a displacement measuring means 8 (substantially the same as the prism position detecting means 8 described above) such as an eddy current sensor. Each light receiving element A of the two-split light receiving element 10,
The output signal B is outputted by a differential amplifier 101 into a differential output A-IB. The output of the comparator 102 changes at the moment the differential output A-B crosses the zero point, and this change causes the one-shot circuit 103 to output a sample pulse. The sample and hold circuit 105a samples and holds the displacement signal of the right angle prism using this sample pulse. This voltage is a value corresponding to the object distance. However, since this value does not have a linear relationship with the displacement of the object to be inspected, the output of the nonlinear correction circuit 106 is used as the measured value.

なお、ワンショット回路103のサンプルパルスを入力
するサンプルホールド回路105bによって、2分割受
光素子10の各受光素子A、Bの加算信号(加算増幅器
104による)をサンプルホールドし、このホールド値
をA/D変換し、デジタル演算することによって、測定
値を得てもよい。
Note that the sample and hold circuit 105b, which inputs the sample pulse of the one-shot circuit 103, samples and holds the addition signal (by the addition amplifier 104) of each of the light receiving elements A and B of the two-split light receiving element 10, and converts this hold value into A/ The measured value may be obtained by D conversion and digital calculation.

また、差動増幅器101の出力信号のゼロクロス部の傾
きは被検物表面の反射率によって異ってくる。反射率が
低い場合には傾きがゆるやかになるため測定値のバラツ
キが大きくなり、測定に悪影響をおよぼす。これを避け
るために2分割受光素子A、Bの和信号(加算増幅器1
04の出力)をワンショット回路103のザンプルパル
スによってサンプルホールド(サンプルホールド回路1
05bによる)して、この値が一定になるように光源強
度制御回路107によって光源1の出力光強度を調整す
るようにしても良い。
Furthermore, the slope of the zero-crossing portion of the output signal of the differential amplifier 101 varies depending on the reflectance of the surface of the object to be inspected. When the reflectance is low, the slope becomes gentle, resulting in large variations in measured values, which adversely affects measurements. To avoid this, the sum signal of the two-split light receiving elements A and B (summing amplifier 1
04 output) is sampled and held by the sample pulse of the one-shot circuit 103 (sample hold circuit 1
05b), and the light source intensity control circuit 107 may adjust the output light intensity of the light source 1 so that this value becomes constant.

第6図(a)は変位測定手段8の出力であり、プリズム
5が第1図(a)の基準位置にあるときにはゼロ、レン
ズ群3.6の光学的距離を増大させる場合はプラス、光
学的距離を減少させる場合はマイナスである。
FIG. 6(a) shows the output of the displacement measuring means 8, which is zero when the prism 5 is at the reference position shown in FIG. 1(a), positive when the optical distance of the lens group 3.6 is increased, and optical It is negative if it decreases the target distance.

第6図(b)は差動増幅器101の出力であり、受光素
子Aの出力が受光素子Bの出力よりも大きい場合にプラ
ス、逆の場合にマイナスとなり、両者が一致する合焦位
置ではゼロとなる。第6図(d)はワンショット回路1
03の出力パルスであって、差動増幅器101の出力が
ゼロとなった時点で、パルスが生じている。従って、第
6図(d)のパルスが生じたときの第6図(a)の信号
をサンプルホールド回路105aで読み取れば、プリズ
ム5の位置が知れるわけでる。
FIG. 6(b) shows the output of the differential amplifier 101, which is positive when the output of light-receiving element A is larger than the output of light-receiving element B, negative in the opposite case, and zero at the in-focus position where both coincide. becomes. Figure 6(d) shows one-shot circuit 1
03, a pulse is generated when the output of the differential amplifier 101 becomes zero. Therefore, if the sample and hold circuit 105a reads the signal shown in FIG. 6(a) when the pulse shown in FIG. 6(d) occurs, the position of the prism 5 can be known.

なお、第6図(C)は、加算増幅器104の出力信号の
一例である。
Note that FIG. 6(C) is an example of the output signal of the summing amplifier 104.

第5図の例は変位量を大きくとれるので好ましいが、直
角プリズム5の駆動手段及び位置検出手段としてピエゾ
素子を用いれば、駆動及び測定(駆動電圧が変位に対応
している)を一つの素子で行なえる。
The example shown in FIG. 5 is preferable because a large amount of displacement can be obtained, but if a piezo element is used as the driving means and position detecting means of the rectangular prism 5, driving and measurement (the driving voltage corresponds to the displacement) can be performed using one element. You can do it with

なお、上述の渦電流を用いた非接触計測法は、測定領域
をある程度大きくすることができ、感度、応答速度が良
く、渦電流の測定部分として直角プリズム5を保持して
いる金物の一部を用いれば小型のものを得ることができ
る。
In addition, the non-contact measurement method using eddy current described above can enlarge the measurement area to a certain extent, has good sensitivity and response speed, and uses a part of the metal fitting that holds the rectangular prism 5 as the eddy current measurement part. If you use , you can get a small one.

また、直角プリズム5の移動による誤差を最小とする為
には、直角プリズム5を第1図の矢印P方向に移動する
ようにした場合は、2分割受光素子10の中央部の不感
帯が紙面に垂直になるように配置すれば良い。つまり、
直角プリズム5は2枚鏡であり、傾れでも第1図の紙面
内の傾きの成分は生せず、軸ズレに関しても、直線案内
の加工精度を注意すれば非常に小さくすることが可能で
ある。紙面に垂直方向のタオレは測定方向ではない為、
発生する誤差を殆んど打消すことが出来る。
In addition, in order to minimize the error caused by the movement of the right-angle prism 5, if the right-angle prism 5 is moved in the direction of arrow P in FIG. It should be placed vertically. In other words,
The right-angle prism 5 is a two-piece mirror, so even if it is tilted, the component of inclination in the plane of the paper shown in Figure 1 will not occur, and axis misalignment can be made extremely small by paying careful attention to the machining accuracy of the linear guide. be. Since the direction perpendicular to the paper is not the measurement direction,
Most of the errors that occur can be canceled out.

次に、第4図によって本発明の第2実施例を説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

第1図と同符号のものは同一機能部材である。第4図に
おいて、光束反射手段4とレンズ群6との間にハーフミ
ラ−15を設け、図中斜線で示す投光光束の1部を分割
し、レンズ群11によって2次元の光位置検出素子13
上に結像させる。光位置検出素子13は直角プリズム5
が基準位置にあるときに、レンズ群3.11によって半
導体レーザー1と共役となるように、配置する。
Components with the same symbols as in FIG. 1 are members with the same functions. In FIG. 4, a half mirror 15 is provided between the light beam reflecting means 4 and the lens group 6, and a part of the projected light beam indicated by diagonal lines in the figure is divided, and the lens group 11 is used to detect the two-dimensional optical position detection element 13.
image on top. The optical position detection element 13 is a right angle prism 5
It is arranged so that it becomes conjugate with the semiconductor laser 1 by the lens group 3.11 when it is at the reference position.

直角プリズム5が基準位置の前後に移動した場合、レン
ズ群11による半導体レーザーの像も光位置検出素子の
前後に変動する。この時、レンズ群11の近傍の光軸外
にスリット状の絞りを設ければ、前記像位置の変動を光
位置検出素子13上のスリット像の動きに変えることが
できる。つまり、このスリット像の動きを光位置検出素
子13上で検出すれば、直角プリズム5の変位を測定可
能である。この方法は直角プリズム5のタオレがプリズ
ム5の変位の測定誤差とならないので有効である。
When the right-angle prism 5 moves back and forth from the reference position, the image of the semiconductor laser formed by the lens group 11 also moves back and forth on the optical position detection element. At this time, if a slit-shaped aperture is provided outside the optical axis near the lens group 11, the fluctuation in the image position can be converted into a movement of the slit image on the optical position detection element 13. That is, by detecting the movement of this slit image on the optical position detection element 13, the displacement of the right angle prism 5 can be measured. This method is effective because the distortion of the right angle prism 5 does not cause a measurement error in the displacement of the prism 5.

以上の本発明の実施例によれば、直角プリズムの移動量
によって測定範囲が決まる為、信号の線形部分を利用す
る従来の方式に比較し、格段に測定範囲をとることがで
きる。また、対物レンズは固定であるため、W、D、を
大きく、つまり、対物レンズを大きくすることも可能と
なり、さらに、光源像(S”)を直角プリズム5の中央
付近に形成すれば、プリズム5付近で光束が最も細くな
り、従ってプリズム5の形状を極めて小さくし、駆動手
段に対する負荷を非常に減少させることとなる。
According to the above-described embodiments of the present invention, the measurement range is determined by the amount of movement of the rectangular prism, so it is possible to obtain a much wider measurement range than in the conventional method that uses the linear portion of the signal. Furthermore, since the objective lens is fixed, it is possible to increase W and D, that is, to increase the size of the objective lens.Furthermore, if the light source image (S") is formed near the center of the right-angle prism 5, the prism The light beam becomes narrowest near the prism 5. Therefore, the shape of the prism 5 can be made extremely small, and the load on the driving means can be greatly reduced.

以上の様に装置全体を動かす必要もな(。W。There is no need to move the entire device as described above (W.

D、を大きく、コンパクトである程度の測定範囲をとる
ことが可能である。
D is large and compact, and it is possible to take a certain measurement range.

実際に測定する被検物体の面形状には種々のものが考え
られるが、光学式の場合投射する光束の角度が小さく、
かつ、スポット形状が変化しない方が面形状の影響を受
けにくい。本発明の実施例の場合、投射する角度が、三
角測量の原理ないしはシャイン・プルーブの条件(Sc
heimpf jug’ 5Condition)等を
用いた従来の非接触変位計より、格段に小さく、かつ、
測定状態では常に被検物体面と光源及び検出素子が共役
となるため、被検物体面の面形状の影響を受げにくい。
There are various surface shapes of the object to be measured, but in the case of an optical method, the angle of the projected light beam is small;
Moreover, if the spot shape does not change, it is less affected by the surface shape. In the case of the embodiment of the present invention, the projection angle is determined by the triangulation principle or the Shine Probe condition (Sc
It is much smaller than the conventional non-contact displacement meter using Heimpf Jug' 5 Condition), and
In the measurement state, the surface of the object to be measured, the light source, and the detection element are always conjugate, so they are not easily affected by the surface shape of the object to be measured.

従って、被検物体の面形状が限定できず、かつ、精度を
要する3次元測定機の非接触プローブのようなものに適
用すれば効果がある。
Therefore, it is effective if applied to non-contact probes of three-dimensional measuring machines where the surface shape of the object to be inspected cannot be limited and requires precision.

また、2つの固定レンズ群3.6間の光学的距離を変化
させるためには、プリズム5を移動させる上述の剥取外
にも、電気信号によって屈折率の変化する電気光学素子
等信の手段を用いることができる。
In addition, in order to change the optical distance between the two fixed lens groups 3.6, in addition to the above-mentioned stripping that moves the prism 5, it is also possible to use a means such as an electro-optical element whose refractive index changes depending on an electric signal. can be used.

なお、本発明の基本的者えである投受光光学系を構成す
るレンズ群間の距離を変えてその変更量より被検物体の
変位を測定する方法は以上述べた如きナイフエッヂ方式
の他、非点収差法、臨界角法の如(、焦点位置を検出す
る原理のものには同様に適用可能である。
In addition to the above-mentioned knife edge method, the method of changing the distance between the lens groups constituting the light emitting/receiving optical system and measuring the displacement of the object to be measured from the amount of change, which is the basic idea of the present invention, can be used as well. It is similarly applicable to the astigmatism method, the critical angle method, etc., which are based on the principle of detecting the focal position.

(発明の効果) 以上述べたように本発明によれば、作動距離、合焦検出
範囲を大きくし、かつコンパクトで装置全体を移動する
ことなしに被検物体面の位置を測定可能な光電式位置検
出装置を得ることができる。
(Effects of the Invention) As described above, according to the present invention, the photoelectric type has a large working distance and focus detection range, is compact, and can measure the position of the object surface without moving the entire device. A position detection device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1実施例の光学系を
示す図であり、第11F(a)は基準位置における光学
系の様子を示す図、第1図(b)は被検物体面が変位し
た場合の光学系の様子を示す図、第2図は従来の1実施
例の光学系を示す図、第3図(a)、(b)、(c)は
被検物体面の変位に対応した2分割素子上の反射像の様
子を示す図であり、第3図(a)は被検物体面が基準位
置より遠方にある場合、第3図(b)は被検物体面が基
準位置にある場合、第3図(c)は被検物体面が基準位
置より手前にある場合をそれぞれ示す図、第4図は本発
明の第2実施例の光学系を示す図、第5図は第1図と共
に用いられる電気ブロック図、第6図は第5図の動作を
説明するためのタイミングチャート、である。 (主要部分の符号の説明) 1・・・半導体レーザ、 2・・・光束分割部材、3・
・・固定レンズ群、  5・・・直角プリズム、6・・
・固定レンズ群、 7・・・プリズム駆動装置。 出願人  日本光学工業株式会社
FIGS. 1(a) and 1(b) are diagrams showing the optical system of the first embodiment of the present invention, FIG. 11F(a) is a diagram showing the state of the optical system at the reference position, and FIG. 1(b) 2 is a diagram showing the state of the optical system when the object surface to be tested is displaced, FIG. 2 is a diagram showing the optical system of one conventional embodiment, and FIGS. FIG. 3(a) is a diagram showing the state of the reflected image on the two-split element corresponding to the displacement of the test object surface, and FIG. FIG. 3(c) shows the case where the object surface to be tested is at the reference position, and FIG. 4 shows the case where the object surface to be tested is in front of the reference position. 5 is an electrical block diagram used together with FIG. 1, and FIG. 6 is a timing chart for explaining the operation of FIG. 5. (Explanation of symbols of main parts) 1... Semiconductor laser, 2... Luminous flux splitting member, 3...
...Fixed lens group, 5...Right angle prism, 6...
・Fixed lens group, 7... Prism drive device. Applicant Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 光源からの光を投受光光学系により被検物体面に光スポ
ットとして投射し、その被検物体面での反射光の一部を
前記投受光光学系により光位置検出用受光素子上に入射
させ、前記受光素子の出力から前記被検物体面の位置を
検出する光電式位置検出装置において、 前記投受光光学系を2つの固定レンズ群により構成して
前記固定レンズ群の間に前記光源の像を形成するように
なすと共に、前記2つの固定レンズ群の間に前記2つの
固定レンズ群間の光学的距離を変化させる光路長可変手
段と、前記光学的距離の変化量を測定する測定手段と、
を設けたことを特徴とする光電式位置検出装置。
[Scope of Claims] Light from a light source is projected as a light spot onto the surface of the object to be tested by a light projection/reception optical system, and a part of the light reflected from the surface of the object to be tested is used for light position detection by the light projection/reception optical system. In a photoelectric position detection device that detects the position of the object surface to be detected from the output of the light receiving element by inputting the light onto a light receiving element, the light emitting and receiving optical system is constituted by two fixed lens groups, and the light emitting and receiving optical system is composed of two fixed lens groups. an optical path length variable means for forming an image of the light source between the two fixed lens groups and changing an optical distance between the two fixed lens groups; and an amount of change in the optical distance. a measuring means for measuring;
A photoelectric position detection device characterized by being provided with.
JP32488987A 1987-12-22 1987-12-22 Photoelectric position detector Expired - Fee Related JPH07111345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32488987A JPH07111345B2 (en) 1987-12-22 1987-12-22 Photoelectric position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32488987A JPH07111345B2 (en) 1987-12-22 1987-12-22 Photoelectric position detector

Publications (2)

Publication Number Publication Date
JPH01165911A true JPH01165911A (en) 1989-06-29
JPH07111345B2 JPH07111345B2 (en) 1995-11-29

Family

ID=18170753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32488987A Expired - Fee Related JPH07111345B2 (en) 1987-12-22 1987-12-22 Photoelectric position detector

Country Status (1)

Country Link
JP (1) JPH07111345B2 (en)

Also Published As

Publication number Publication date
JPH07111345B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPH02161332A (en) Device and method for measuring radius of curvature
JP3300803B2 (en) Displacement gauge, displacement measurement method, thickness gauge
JPH0256604B2 (en)
JPH05203431A (en) Surface shape measuring device
JPH01165911A (en) Photoelectric type position detector
JPH07294231A (en) Optical surface roughness meter
JPS60200108A (en) Optical type thickness measuring method and apparatus thereof
JPH06102025A (en) Optical displacement gauge
JP3840619B2 (en) Displacement meter
JPH05164556A (en) Focusing type non-contact displacement gage
JPH056643B2 (en)
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
JP2625209B2 (en) Optical micro displacement measuring device
JP2808713B2 (en) Optical micro displacement measuring device
JPS635208A (en) Apparatus for measuring surface shape
JPH07169071A (en) Optical pickup system for focus error detection
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPH10103915A (en) Apparatus for detecting position of face
JPS60211304A (en) Measuring instrument for parallelism
RU1796901C (en) Device for contact-free measuring items profile
JPH044167Y2 (en)
JP2591143B2 (en) 3D shape measuring device
SU1281950A1 (en) Device for determining focal plane of lens
JPS6283612A (en) Displacement transducer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees