JPH01163690A - Radiation detector - Google Patents
Radiation detectorInfo
- Publication number
- JPH01163690A JPH01163690A JP62321218A JP32121887A JPH01163690A JP H01163690 A JPH01163690 A JP H01163690A JP 62321218 A JP62321218 A JP 62321218A JP 32121887 A JP32121887 A JP 32121887A JP H01163690 A JPH01163690 A JP H01163690A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- conversion section
- switch
- divided
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract 10
- 238000006243 chemical reaction Methods 0.000 claims abstract 7
- 238000001514 detection method Methods 0.000 claims abstract 3
- 239000000758 substrate Substances 0.000 claims abstract 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract 2
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はX線CTなど放射線を利用した診断装置に用い
る放射線検出器に係り、特に従来の電離箱型検出器に代
る固体検出器に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a radiation detector used in diagnostic equipment using radiation such as an X-ray CT, and particularly relates to a solid-state detector that replaces a conventional ionization chamber type detector. .
放射線の固体検出器は一般に、放射線を光に変換するシ
ンチレータと光を検出する光電変換部とからなる。シン
チレータには、蛍光体の単結晶もしくは焼結体などが用
いられ、光電変換部にはシリコンフォトダイオードなど
が用いられる。従来シンチレータと光電変換部は独立し
て製造され、接着などの工程により固体検出器を構成し
ていた。Solid-state radiation detectors generally consist of a scintillator that converts radiation into light and a photoelectric conversion section that detects light. A single crystal or sintered body of a phosphor is used for the scintillator, and a silicon photodiode or the like is used for the photoelectric conversion section. Conventionally, the scintillator and photoelectric conversion unit were manufactured independently, and a solid-state detector was constructed using processes such as adhesion.
しかし、多チャンネルの放射線検出器を構成する場合、
シンチレータ素子アレイとフォトダイオードアレイの位
置合わせが困難で製造歩留りが低下する等の問題があっ
た。そこで、光電変換部として非晶質シリコン膜などが
直接シンチレータ基板上に形成する技術が開示されてい
る(特開昭57−172273 、放射線検出器)。However, when configuring a multi-channel radiation detector,
There were problems such as difficulty in aligning the scintillator element array and the photodiode array, resulting in a decrease in manufacturing yield. Therefore, a technique has been disclosed in which an amorphous silicon film or the like is directly formed on a scintillator substrate as a photoelectric conversion section (Japanese Patent Laid-Open No. 57-172273, Radiation Detector).
上記従来技術は薄膜技術でシンチレータ上に直接光電変
換部を形成するもので集積化の利点はあるが、検出器機
能を直接向上させるものではない。The above-mentioned conventional technology uses thin film technology to directly form a photoelectric conversion section on a scintillator, and although it has the advantage of integration, it does not directly improve the detector function.
本発明の目的は放射線の有効検出幅が可変という機能を
付加した多チヤンネル集積化放射線検出器を提供するこ
とにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-channel integrated radiation detector with an added function of varying the effective detection width of radiation.
上記目的は、シンチレータ基板上に直接形成される光電
変換部をチャンネル配列方向と直交する方向に複数個に
分割し、これらをスイッチを介して電気的に接続するこ
とにより達成される。The above object is achieved by dividing a photoelectric conversion section directly formed on a scintillator substrate into a plurality of parts in a direction perpendicular to the channel arrangement direction and electrically connecting these parts through a switch.
通常多チャンネル放射線検出器は、チャンネル方向に広
がった放射線を検出するものであるがチャンネル方向と
直交する方向の有効検出幅も重要な因子である。チャン
ネル方向と直交する方向の有効検出幅はその方向の光電
変換部の幅でほぼ決まるが、これが複数個に分割されス
イッチ4を介して電気的に接続されていれば、スイッチ
を適当に開閉することによりチャンネル方向と直交する
方向の光電変換部の幅を変化させることができる。Multi-channel radiation detectors usually detect radiation that spreads in the channel direction, but the effective detection width in the direction perpendicular to the channel direction is also an important factor. The effective detection width in the direction orthogonal to the channel direction is approximately determined by the width of the photoelectric conversion section in that direction, but if this is divided into a plurality of sections and electrically connected via the switch 4, the switch can be opened and closed appropriately. By this, the width of the photoelectric conversion section in the direction orthogonal to the channel direction can be changed.
これによりチャンネル方向と直交する方向の放射線有効
検出幅が可変となる。This makes the effective radiation detection width in the direction orthogonal to the channel direction variable.
以下、本発明を実施例を参照しながら詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図は本発明の放射線検出器の概念を示した図である
。放射線]−3を光に変換するシンチレータ11は多素
子に分割されており、各々の素子は、光学的に分離、放
射線的に分離の少なく −とも一方を目的とし
て金属からなるセパレータ板14により分離されている
。分割された各々のシンチレータ素子の上には薄膜から
なる光電変換部12が形成されている。光電変換部は例
えば、シンチレータ側から順番に、保護膜、透明電極膜
。FIG. 1 is a diagram showing the concept of the radiation detector of the present invention. The scintillator 11 that converts radiation]-3 into light is divided into multiple elements, and each element is separated by a separator plate 14 made of metal for at least one of optical separation and radiation separation. has been done. A photoelectric conversion section 12 made of a thin film is formed on each of the divided scintillator elements. For example, the photoelectric conversion section includes, in order from the scintillator side, a protective film and a transparent electrode film.
P型非晶質シリコン膜、j型非晶質シリコン膜。P-type amorphous silicon film, J-type amorphous silicon film.
n型非晶質シリコン膜、アルミニウム電極膜からなる。It consists of an n-type amorphous silicon film and an aluminum electrode film.
光電変換部12はチャンネル配列方向とは直交する方向
に3分割されている。光電変換部は薄膜プロセスで形成
するため分割は容易である。The photoelectric conversion section 12 is divided into three parts in a direction perpendicular to the channel arrangement direction. Since the photoelectric conversion section is formed by a thin film process, it is easy to divide it.
このように分割した光電変換部を例えば第2図に示した
ようにスイッチ21を介して電気的に接続し、電流/電
圧変換回路22に導く。いま放射線13がシンチレータ
]−1全体に照射されている場合を考える。このときス
イッチ・21が閉じていると検出器の有効検出幅はほぼ
シンチレータ全幅となるが、スイッチ21が開いている
と、中央の光電変換部のみからの信号電流を検出するこ
ととなり有効検出幅ははボ中央の光電変換部の幅となる
。このようにスイッチ21を開閉することに、チャンネ
ル配列方向と直交する方向の放射線検出幅を変化させる
ことができる。The thus divided photoelectric conversion sections are electrically connected via a switch 21, for example, as shown in FIG. 2, and led to a current/voltage conversion circuit 22. Now consider the case where the radiation 13 is irradiated to the entire scintillator]-1. At this time, if the switch 21 is closed, the effective detection width of the detector is approximately the full width of the scintillator, but if the switch 21 is open, the signal current from only the central photoelectric conversion section is detected, and the effective detection width is This is the width of the photoelectric conversion section at the center of the circle. By opening and closing the switch 21 in this manner, the radiation detection width in the direction perpendicular to the channel arrangement direction can be changed.
本実施例は、光電変換部の分割を3分割としたが何も3
分割に限ることなく、任意の個数に分割し適当にスイッ
チを介して電気的に接続することにより任意に放射線検
出幅を変化させることができるのは明らかである。In this example, the photoelectric conversion section is divided into three parts, but there is no difference between the three parts.
It is clear that the radiation detection width can be arbitrarily changed by dividing the radiation detection device into any number of pieces and electrically connecting them via appropriate switches without being limited to division.
本発明によれば、シンチレータ基板と光電変換部を一体
化させた多チヤンネル集積化放射線検出器において、光
電変換部をチャンネル配列方向と直交する方向に複数個
に分割し、これらを適当にスイッチを介して電気的に接
続することにより、チャンネル配列方向と直交する方向
の有効検出幅が可変な検出器を得ることができる。この
ような検出器を例えばX線CTの検出器に用いると、ス
イッチの開閉によりX線のビーム幅を変化させることな
く実効的にスライス方向分解能を変化させることができ
る。さらに光電変換部を分割することにより有効検出幅
の部分の小面積のみを電気的に接続するため、非分割の
大面積光電変換部に比較してノイズの低減化が計れ、S
/Nが向上する。According to the present invention, in a multi-channel integrated radiation detector in which a scintillator substrate and a photoelectric conversion section are integrated, the photoelectric conversion section is divided into a plurality of sections in a direction orthogonal to the channel arrangement direction, and these sections are appropriately switched. By electrically connecting through the channels, it is possible to obtain a detector whose effective detection width in the direction perpendicular to the channel arrangement direction is variable. When such a detector is used, for example, in an X-ray CT detector, the slice direction resolution can be effectively changed by opening and closing a switch without changing the X-ray beam width. Furthermore, by dividing the photoelectric conversion section, only the small area of the effective detection width is electrically connected, which reduces noise compared to an undivided large-area photoelectric conversion section.
/N improves.
第1図、第2図は本発明の放射線検出器の一実施例を示
す図である。FIGS. 1 and 2 are diagrams showing an embodiment of the radiation detector of the present invention.
Claims (1)
チレータ基板上に直接形成した光電変換部とからなる多
チャンネル放射線検出器において、チャンネル配列方向
と直交する方向に光電変換部が複数個に分割されている
ことを特徴とする放射線検出器。 2、前記複数個に分割された光電変換部がスイッチを介
して電気的に接続されており、スイッチを開閉すること
により放射線の有効検出幅を可変にすることを特徴とす
る特許請求の範囲第1項に記載の放射線検出器。 3、前記光電変換部が非晶質シリコン膜からなるPIN
ダイオードであることを特徴とする特許請求の範囲第1
項もしくは第2項に記載の放射線検出器。[Claims] 1. In a multi-channel radiation detector consisting of a scintillator substrate that converts radiation into light and a photoelectric conversion section formed directly on the scintillator substrate, the photoelectric conversion section is arranged in a direction perpendicular to the channel arrangement direction. A radiation detector characterized in that the radiation detector is divided into a plurality of pieces. 2. The photoelectric conversion section divided into a plurality of parts is electrically connected via a switch, and the effective detection width of radiation is made variable by opening and closing the switch. The radiation detector according to item 1. 3. PIN in which the photoelectric conversion section is made of an amorphous silicon film
Claim 1 characterized in that it is a diode.
The radiation detector according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62321218A JPH01163690A (en) | 1987-12-21 | 1987-12-21 | Radiation detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62321218A JPH01163690A (en) | 1987-12-21 | 1987-12-21 | Radiation detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01163690A true JPH01163690A (en) | 1989-06-27 |
Family
ID=18130124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62321218A Pending JPH01163690A (en) | 1987-12-21 | 1987-12-21 | Radiation detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01163690A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08236800A (en) * | 1995-01-12 | 1996-09-13 | E I Du Pont De Nemours & Co | Image capture panel using solid state element |
-
1987
- 1987-12-21 JP JP62321218A patent/JPH01163690A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08236800A (en) * | 1995-01-12 | 1996-09-13 | E I Du Pont De Nemours & Co | Image capture panel using solid state element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5587611A (en) | Coplanar X-ray photodiode assemblies | |
US6046454A (en) | Semiconductor radiation detector with enhanced charge collection | |
US5512750A (en) | A-dual band IR sensor having two monolithically integrated staring detector arrays for simultaneous, coincident image readout | |
US5130776A (en) | Ultraviolet-light photodiode | |
CA2234684A1 (en) | Semiconductor radiation detector with enhanced charge collection | |
JP6058310B2 (en) | Direct conversion X-ray detector with radiation protection for electronic equipment and arrangement of X-ray detector | |
US4996432A (en) | Radiation detector | |
US4292645A (en) | Charge splitting resistive layer for a semiconductor gamma camera | |
US3916200A (en) | Window for radiation detectors and the like | |
JPH0671097B2 (en) | Color sensor | |
JPH01163690A (en) | Radiation detector | |
CN1053295C (en) | Photodiode array | |
US4914299A (en) | Glass cold shield | |
JPH01172792A (en) | Radiation detector and is manufacture | |
US6586742B2 (en) | Method and arrangement relating to x-ray imaging | |
US4411059A (en) | Method for manufacturing a charge splitting resistive layer for a semiconductor gamma camera | |
JP4170514B2 (en) | Radiation detector | |
JP3380686B2 (en) | Variable response X-ray detector assembly and method of using it | |
JPS59132382A (en) | Multichannel type radiation detector | |
JP2706942B2 (en) | Light sensor | |
US20230327039A1 (en) | Light detection device | |
EP0553982A1 (en) | Amorphous multilayer avalanche photodiode | |
JPH07218642A (en) | Semiconductor radiation detector | |
JPS6249680A (en) | semiconductor position detector | |
RU178899U1 (en) | Two-channel photodetector |