[go: up one dir, main page]

JPH01160878A - Production of precursor of ceramic porous article - Google Patents

Production of precursor of ceramic porous article

Info

Publication number
JPH01160878A
JPH01160878A JP31779487A JP31779487A JPH01160878A JP H01160878 A JPH01160878 A JP H01160878A JP 31779487 A JP31779487 A JP 31779487A JP 31779487 A JP31779487 A JP 31779487A JP H01160878 A JPH01160878 A JP H01160878A
Authority
JP
Japan
Prior art keywords
temperature
starch
powder
gelatinization
starch powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31779487A
Other languages
Japanese (ja)
Other versions
JPH0519510B2 (en
Inventor
Kenji Futaki
二木 賢治
Osamu Murayama
修 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP31779487A priority Critical patent/JPH01160878A/en
Publication of JPH01160878A publication Critical patent/JPH01160878A/en
Publication of JPH0519510B2 publication Critical patent/JPH0519510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To efficiently obtain a high-quality and stable ceramic porous article precursor, by packing a mixed liquid of ceramic material powder with two or more kind of starch powder having different gelatinization temperatures and water into a mold frame and heat-heating the mixed liquid at specific temperature. CONSTITUTION:A ceramic material powder is blended with two or more kind of starch powders having different gelatinization temperature to give an uniform, viscous and slurry-like dope, which is then packed into a mold frame. Then, the dope is heat-treated at temperature which is not lower than gelatinization temperature of a starch powder having lowest gelatinization temperature among the above-mentioned starch powder and is not higher than gelatinization temperature of a starch powder having highest gelatinization temperature among the above-mentioned starch powder to solidify the dope and removed from the mold to provide the aimed porous article precursor. In the precursor, starch powder having lower gelatinization temperature than the above- mentioned treating temperature is gelatinized at the above-mentioned temperature, uniformly permeated between particles of ceramic material powder and acted as a binder for bonding the particles. The starch powder having higher gelatinization powder than the above-mentioned treating temperature maintains the shape in swelled state without gelatinizing and works as a pore-forming agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、濾材、触媒担体等に使用するセラミック多
孔体前駆体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a porous ceramic precursor used for filter media, catalyst carriers, and the like.

〔従来の技術〕[Conventional technology]

一般に、セラミック多孔体は、木節粘土、蟇目粘土、長
石、珪石等の粉末状のものを単独または併用して用い、
これに水を加えてスラリーとし、このスラリーを型枠に
充填して成形したのち、上記粉末状原料の焼結温度以上
の温度で焼成することによって得られている。しかしな
がら、上記のようなセラミック多孔体は、原料の粒子間
に気孔を形成するものであり、その形成される気孔の気
孔率、気孔径にともに限度があり濾材としての通気1通
液性を満足させるものではない。このため、気孔率、気
孔径を自在に調節できるセラミック多孔体の製造方法と
して、精製されたセラミック材料粉末を、樹脂バインダ
ー、気孔形成剤および水と混合し、これを型枠等で成形
したのち、昇温により脱脂、焼成するという方法がある
。しかしながら、この方法においては、気孔形成剤とし
て、製紙スラッジ、セルロース等の植物系のもの、また
はポリスチレン等の球形の粒子が用いられ、バインダー
としては、エポキシ、ウレタン、ポリビニルアルコール
等の樹脂が用いられており、これらを脱脂工程で完全に
焼尽除去することが難しく、かつその際に、有害な排気
ガスを発生するという問題がある。また、製造されるセ
ラミック多孔体のセラミック材料粉末の粒子相互間の結
合状態が充分でないため機械的強度が弱く、特に大形の
セラミック多孔体の場合には、割れ、亀裂等を生じやす
いという問題がある。この発明者らはこのような問題点
を解決するために、澱粉を気孔形成剤兼バインダーとし
て使用する方法を特願昭60−229100号によりす
でに開示している。澱粉は、その細胞がそれぞれ独立し
た円形または楕円形の粒子からなり、粒子構造が外殻と
これに包含される内部成分とで構成されている。そして
、この澱粉は略50°C以下の温度では水に不溶であり
、50〜70°Cの温度で膨潤状態を呈し、略70°C
で外殻が破壊されて糊化した状態になる。上記の方法は
、澱粉のこのような性質を利用したものである。すなわ
ち、澱粉を、セラミック材料粉末および水に混合してス
ラリー状にし、これを、澱粉の糊化温度以下の温度に維
持し澱粉を気孔形成剤として作用させた状態で、型枠に
充填して予備成形する。この状態では、成形品は極めて
軟弱であり、単純な形状のものは慎重な作業により離型
し、複雑な形状のものであれば型枠ごと、澱粉の糊化温
度以上の温度に昇温させ熱処理することにより、澱粉の
粒子の外殻を破壊し糊状のバインダーとして作用させ全
体を固めて安定な成形体とする。この状態では、成形体
は比較的安定で、ある程度の強度を有するため、複雑な
形状のものでも容易に離型させることができる。そして
、得られる成形物について、必要に応じてさらに乾燥す
ることにより前駆体を得るものである。
In general, ceramic porous bodies are made using powdered materials such as Kibushi clay, Mimitome clay, feldspar, and silica stone, either alone or in combination.
It is obtained by adding water to make a slurry, filling a mold with this slurry, shaping it, and then firing it at a temperature higher than the sintering temperature of the powdered raw material. However, the above-mentioned porous ceramic material forms pores between the particles of the raw material, and there are limits to both the porosity and the pore diameter of the pores, and it is difficult to satisfy the requirements for ventilation and liquid permeability as a filter material. It's not something you can do. Therefore, as a manufacturing method for ceramic porous bodies whose porosity and pore diameter can be freely adjusted, purified ceramic material powder is mixed with a resin binder, a pore-forming agent, and water, and this is formed using a mold, etc. There is a method of degreasing and firing by raising the temperature. However, in this method, papermaking sludge, plant-based materials such as cellulose, or spherical particles such as polystyrene are used as the pore-forming agent, and resins such as epoxy, urethane, and polyvinyl alcohol are used as the binder. There is a problem in that it is difficult to completely burn out and remove these in the degreasing process, and in doing so, harmful exhaust gas is generated. In addition, the mechanical strength is weak because the bonding state between the particles of the ceramic material powder in the manufactured porous ceramic body is weak, and especially in the case of a large porous ceramic body, there is a problem that cracks and cracks are easily generated. There is. In order to solve these problems, the inventors have already disclosed in Japanese Patent Application No. 60-229100 a method of using starch as a pore-forming agent and binder. Starch consists of circular or elliptical particles each having independent cells, and the particle structure is composed of an outer shell and internal components contained within the outer shell. This starch is insoluble in water at temperatures below approximately 50°C, exhibits a swollen state at temperatures of 50 to 70°C, and exhibits a swelling state at temperatures of approximately 70°C.
The outer shell is destroyed and becomes gelatinized. The above method utilizes these properties of starch. That is, starch is mixed with ceramic material powder and water to form a slurry, and this is filled into a mold while maintaining the temperature below the gelatinization temperature of the starch so that the starch acts as a pore-forming agent. Preform. In this state, the molded product is extremely soft, and those with a simple shape can be released from the mold with careful work, while those with a complex shape must be heated to a temperature above the gelatinization temperature of starch. By heat-treating, the outer shell of the starch particles is destroyed and acts as a glue-like binder, solidifying the whole to form a stable molded product. In this state, the molded product is relatively stable and has a certain degree of strength, so even if it has a complicated shape, it can be easily released from the mold. Then, the obtained molded product is further dried as necessary to obtain a precursor.

〔発明が解決しようとする問題点] しかしながら、上記の方法では、予備形成された予備固
化体が、強度が弱く形崩れしやすいため、予備固化後に
行う糊化温度以上での熱処理を、複雑な形状のものにつ
いては型枠ごと行わなければならず、そのため熱効率が
悪くなり長時間を必要とするという問題がある。かつ、
その際、予備固化体の内部が、熱が伝わりにくいため乾
燥され難く、前駆体を得るまでの処理工程が、澱粉の糊
化温度以下の温度で行う予備固化処理、澱粉の糊化温度
以上の温度で行う熱処理に加えて、さらに離型後にも乾
燥を行う場合があり、作業が煩雑になるという問題を有
している。また、上記熱処理中に、予備固化体の内部と
外部に大きな温度差を生じ亀裂等が生じやすくなるとい
う問題も有している。さらに、気孔形成剤として使用さ
れる澱粉について、一種類のもので、バインダーとして
の機能と気孔形成剤としての機能の双方の機能を課せら
れているため、その両機能に若干安定性が欠け、熱処理
の条件を厳しく管理しないと斑状や不均一の気孔が形成
され、美観を損なったり低品質のものになるという問題
点もある。
[Problems to be Solved by the Invention] However, in the above method, the pre-formed pre-solidified body has low strength and easily loses its shape. For shaped objects, it is necessary to carry out the molding together, which results in poor thermal efficiency and requires a long time. and,
At that time, the inside of the presolidified material is difficult to dry because heat is not easily transmitted, and the processing steps to obtain the precursor include presolidification at a temperature below the gelatinization temperature of starch, and a temperature above the gelatinization temperature of starch. In addition to heat treatment performed at high temperatures, drying may also be performed after mold release, which poses a problem in that the work becomes complicated. Another problem is that during the heat treatment, a large temperature difference occurs between the inside and outside of the pre-solidified body, making it easier for cracks to occur. Furthermore, the starch used as a pore-forming agent has the functions of both a binder and a pore-forming agent, so both functions are somewhat unstable. If the heat treatment conditions are not strictly controlled, patchy or non-uniform pores will be formed, resulting in poor aesthetics and poor quality.

この発明は、このような事情に鑑みなされたもので、処
理工程を削減して効率的な作業が行え、かつ熱効率がよ
く、温度差による亀裂等が生じず、さらに高品質の安定
した前駆体を得ることのできるセラミック成形体前駆体
の製造方法の提供をその目的とする。
This invention was made in view of these circumstances, and it is possible to reduce the number of processing steps and perform efficient work, has good thermal efficiency, does not cause cracks due to temperature differences, and has a high quality and stable precursor. The object of the present invention is to provide a method for manufacturing a ceramic molded body precursor that can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、この発明のセラミック成
形体前駆体の製造方法は、セラミック材料粉末と、糊化
温度の異なる2種類以上の澱粉粉末とを水に混合して均
一な粘稠スラリー状の原液とし、これを型枠内に充填し
たのち、上記澱粉粉末のうちの糊化温度が最低温度の澱
粉粉末の糊化温度以上で、かつ糊化温度が最高温度の澱
粉粉末の糊化温度以下の温度で熱処理して固め脱型する
という構成をとる。
In order to achieve the above object, the method for producing a ceramic molded body precursor of the present invention involves mixing a ceramic material powder and two or more types of starch powders having different gelatinization temperatures in water to form a uniform viscous slurry. After filling this into a mold, gelatinize the starch powder whose gelatinization temperature is higher than or equal to the gelatinization temperature of the starch powder with the lowest temperature among the starch powders and whose gelatinization temperature is the highest temperature. It takes a structure in which it is heat treated at a temperature below that temperature and then hardened and demolded.

[作用] すなわち、この発明の方法は、従来例のように、セラミ
ック材料粉末、澱粉および水を混合してスラリー状にし
、これを澱粉の糊化温度以下の温度で予備成形したのち
、型枠ごと澱粉の糊化温度以上の温度で熱処理して安定
な成形体を得るというものではなく、セラミック材料粉
末および水に、糊化温度の異なる2種類以上の澱粉粉末
を混合し、これを型枠に充填したのち、上記2種類以上
の澱粉の糊化温度の略中間程度の温度で熱処理すること
により安定な予備固化体を得るというものである。この
予備固化体において、上記処理温度よりも糊化温度の低
い澱粉粉末は、上記温度で糊化してセラミック材料粉末
の粒子間に均一に浸透し、その粒子を結合させるバイン
ダーとして作用し、また上記処理温度よりも糊化温度の
高い澱粉粉末は、糊化することなく膨潤した状態でその
形状を維持し気孔形成剤として作用する。このため、上
記予備固化体は糊化した澱粉のバインダー効果により、
ある程度の機械的強度を備えた安定した状態になってお
り、その状態で型枠から離型しても割れたり形成れした
りすることがない。したがって、従来例のように、予備
固化後に、さらに型枠ごと熱処理を行うという複数回の
熱処理を行う必要がなく、離型した状態での一回の熱処
理で足りるようになる。このため、熱効率のよい処理を
行え、かつ乾燥時に予備固化体の内部と外部とに大きな
温度差を生じ割れ等の不良を発生するということを防止
できる。このようにして得られた前駆体は比較的強固な
結合状態になっているため、切断、研削、旋盤加工等の
加工を行うことができる。
[Function] That is, in the method of the present invention, as in the conventional example, ceramic material powder, starch, and water are mixed to form a slurry, which is preformed at a temperature below the gelatinization temperature of starch, and then molded into a mold. Instead of obtaining a stable molded body by heat treatment at a temperature higher than the gelatinization temperature of whole starch, two or more types of starch powders with different gelatinization temperatures are mixed with ceramic material powder and water, and this is mixed into a mold. A stable pre-solidified product is obtained by filling the starch into a starch, followed by heat treatment at a temperature approximately midway between the gelatinization temperatures of the two or more types of starch. In this pre-solidified product, the starch powder whose gelatinization temperature is lower than the above-mentioned treatment temperature is gelatinized at the above-mentioned temperature and uniformly penetrates between the particles of the ceramic material powder, and acts as a binder to bind the particles, and also acts as a binder to bind the particles. Starch powder whose gelatinization temperature is higher than the processing temperature maintains its shape in a swollen state without gelatinization and acts as a pore-forming agent. Therefore, due to the binder effect of the gelatinized starch, the pre-solidified material has
It is in a stable state with a certain degree of mechanical strength, and even if it is released from the mold in that state, it will not crack or break. Therefore, unlike the conventional example, there is no need to perform heat treatment multiple times in which the entire mold is further heat treated after pre-solidification, and one heat treatment in a released state is sufficient. Therefore, processing can be carried out with good thermal efficiency, and defects such as cracks caused by a large temperature difference between the inside and outside of the pre-solidified material during drying can be prevented. Since the precursor thus obtained is in a relatively strong bond, it can be processed by cutting, grinding, lathing, etc.

そして、この前駆体を次工程で、炉内に入れて澱粉の燃
焼温度まで昇温させることにより、澱粉を焼尽除去(脱
脂工程)し、さらにセラミック材料粉末の焼結温度まで
昇温しで焼成を完了させることによりセラミック多孔体
を得ることができる。
In the next step, this precursor is placed in a furnace and heated to the combustion temperature of starch to burn out the starch (degreasing process), and then heated to the sintering temperature of ceramic material powder and fired. A ceramic porous body can be obtained by completing the above steps.

上記セラミック材料粉末としては、木簡粘土。The ceramic material powder mentioned above is wood tablet clay.

蟇目粘土、長石、珪石、カオリン、モンモリロナイトコ
ージライト等の陶磁器用原料となる粉末が単独でもしく
は併せて使用できる外、構造的に高強度を得られるもの
または化学組成的に不純物の少ないものを得る目的で、
酸化アルミニウム。
In addition to being able to use powders that are raw materials for ceramics, such as porcelain clay, feldspar, silica, kaolin, and montmorillonite cordierite, alone or in combination, it is possible to obtain powders that provide high structural strength or have low chemical composition impurities. For the purpose of
Aluminum oxide.

シリケート、アルミニウムシリケート、マグネシア、酸
化ジルコニウム、珪酸ジルコニウム、酸化チタン、炭化
珪素、窒化珪素、酸化鉄等のニューセラミックス材料粉
末を、単独でまたは2種以上を混合して用いることかで
きる。また、先の陶磁器用原料粉末と適宜に混合して使
用することができる。
New ceramic material powders such as silicate, aluminum silicate, magnesia, zirconium oxide, zirconium silicate, titanium oxide, silicon carbide, silicon nitride, and iron oxide can be used alone or in combination of two or more. Moreover, it can be used by appropriately mixing it with the above raw material powder for ceramics.

澱粉粉末としては、一般に市販されているものをそのま
ま使用することができ、特に好適なものは、植物から分
離抽出されたものであって、糖類。
As the starch powder, commercially available starch powders can be used as they are, and particularly preferred starch powders are those separated and extracted from plants, and saccharides.

蛋白質、セルロール類、脂肪類およびその他の夾雑物を
除去し精製したものである。例えば、米。
It is purified by removing proteins, cellulose, fats, and other impurities. For example, rice.

麦、とうもろこし等の穀類、豆類、馬鈴薯、タロイモ、
タピオカ等の芋頚、バナナ等の果実類から分離抽出精製
されたものである。これらの糊化温度は、母体となる植
物によりそれぞれ異なっており、例えば馬鈴薯を母体と
するものが70〜72°C1米を母体とするものが71
〜73°C9小麦を母体とするものが76〜78°C9
とうもろこしを母体とするものが80〜82°Cとなっ
ている。また、その粒子径もそれぞれ異なっており、米
、麦等を母体とするものは比較的細粒であり、芋類。
Grains such as wheat and corn, beans, potatoes, taro,
It is isolated, extracted and purified from sweet potato necks such as tapioca and fruits such as bananas. These gelatinization temperatures differ depending on the parent plant; for example, one whose parent plant is potato is 70 to 72°C, and one whose parent plant is rice is 71°C.
~73°C9 Wheat-based products are 76-78°C9
Those made from corn have a temperature of 80 to 82°C. The particle size also differs, with those made from rice, wheat, etc. having relatively fine grains, and those made from potatoes.

果実類を母体とするものは比較的粗粒である。この発明
では、これらを適当に組み合わせて使用する。
Those whose parent bodies are fruits are relatively coarse-grained. In this invention, these are used in appropriate combination.

このように、この発明の方法は、それ自体はバインダー
成分を含有しないセラミック材料粉末に、糊化温度の異
なる2種類以上の澱粉粉末および水を混合したスラリー
を型枠に充填し、上記2種以上の澱粉の糊化温度のうち
高いものと低いものの略中間程度の温度で熱処理し、澱
粉粉末のうち、糊化温度の低いものを糊化させてバイン
ダーとして作用させることにより安定な予備固化体を得
るとともに、糊化温度の高い澱粉粉末を気孔形成剤とし
て作用させるようにするものである。そして、その製造
においては、セラミック材料粉末100重量部に対して
、バインダー用の糊化温度の低い澱粉粉末を5〜15重
量部、気孔形成剤用の糊化温度の高い澱粉粉末を10〜
40重量部に設定しておくことが好ましい。すなわち、
バインダー用の澱粉粉末が、5重量部以下ではバインダ
ーとしての効果が少な(、これが15重量部を越すとセ
ラミック多孔体の強度が弱くなる。また、気孔形成剤用
の澱粉粉末が10重量部以下では形成される気孔が独立
気泡になりやすく濾材に適した連続気孔構造を形成し難
く、逆に40重量部を越すとセラミック多孔体が構造的
に弱くなるからである。
As described above, the method of the present invention is to fill a mold with a slurry in which a ceramic material powder that does not itself contain a binder component is mixed with two or more kinds of starch powders and water having different gelatinization temperatures, and A stable pre-solidified product is obtained by heat-treating the starch at a temperature approximately halfway between the high and low gelatinization temperatures of the starches above, and gelatinizing the starch powder with a low gelatinization temperature to act as a binder. At the same time, starch powder with a high gelatinization temperature is made to act as a pore-forming agent. In its production, 5 to 15 parts by weight of starch powder with a low gelatinization temperature for the binder and 10 to 15 parts by weight of starch powder with a high gelatinization temperature for the pore forming agent are added to 100 parts by weight of the ceramic material powder.
It is preferable to set the amount to 40 parts by weight. That is,
If the starch powder for the binder is less than 5 parts by weight, it will have little effect as a binder (if it exceeds 15 parts by weight, the strength of the ceramic porous body will be weakened. This is because the pores formed tend to become closed cells and it is difficult to form a continuous pore structure suitable for a filter medium.On the other hand, if the amount exceeds 40 parts by weight, the ceramic porous body becomes structurally weak.

水の使用量については、特に限定するものではないが、
澱粉粉末を完全に分散でき、かつ全体として均一なスラ
リーを得ることができる量であることが重要である。
There are no particular restrictions on the amount of water used, but
It is important that the amount is sufficient to completely disperse the starch powder and to obtain an overall uniform slurry.

このようにして得られるセラミック多孔体は、三次元網
目構造の連続気孔組織を有し、気孔率が略50〜80容
量%であり、気孔径は使用する澱粉粉末の粒子径によっ
て調節することができる。
The ceramic porous body thus obtained has a continuous pore structure with a three-dimensional network structure, and a porosity of approximately 50 to 80% by volume, and the pore size can be adjusted by the particle size of the starch powder used. can.

−Sに、澱粉粉末を用いる場合の平均気孔径は120μ
m程度が上限であり、それ以上の気孔を得るには、加工
糊化したのち硬化した澱粉の塊状物を粉砕し分級したも
のを用いることが行われる。
-When starch powder is used for S, the average pore diameter is 120μ
The upper limit is approximately m, and in order to obtain more pores, a starch lump that has been processed and gelatinized and then hardened is crushed and classified.

つぎに、実施例について説明する。Next, examples will be described.

〔実施例]  − まず、セラミック材料粉末として、純度99.7%の高
純度酸化アルミニウムで平均粒径10μmのものを用意
し、つぎに、バインダー用の澱粉粉末として、馬鈴薯澱
粉(糊化温度、70.5°C)、気孔形成剤用の澱粉粉
末として、小麦澱粉(糊化温度、78°C)を用意し、
下記の比率で配合した。
[Example] - First, as a ceramic material powder, high-purity aluminum oxide with a purity of 99.7% and an average particle size of 10 μm was prepared. Next, as a starch powder for a binder, potato starch (gelatinization temperature, 70.5°C), wheat starch (gelatinization temperature, 78°C) was prepared as a starch powder for a pore-forming agent,
They were blended in the following proportions.

酸化アルミニウム  3500g 馬鈴薯澱粉      250g 小麦澱粉      1000g 水            3580gこの配合の原料
を充分混練してスラリー状の粘稠原液とし、これを70
°Cの状態に維持して塩化ビニル樹脂製の型枠(内径7
5薗、深さ320 mmの筒状のもので、中心に径30
mmの中芯を有するもの)20個にそれぞれ充填した。
Aluminum oxide 3500g Potato starch 250g Wheat starch 1000g Water 3580g Thoroughly knead the raw materials in this combination to form a slurry-like viscous stock solution.
The formwork made of vinyl chloride resin (inner diameter 7
It is a cylindrical piece with a diameter of 5 mm and a depth of 320 mm, with a diameter of 30 mm in the center.
20 pieces (having a core of mm) were each filled.

これを75°Cの温度で16時間熱処理して予備固化し
たのち、型枠から取り出し円筒形の予備固化体を得た。
This was pre-solidified by heat treatment at a temperature of 75°C for 16 hours, and then taken out from the mold to obtain a cylindrical pre-solidified body.

つぎに、この予備固化体を70″Cの温度に設定された
乾燥機内に入れ5日間保持して前駆体を得、これをさら
に酸化性ガス炉に入れて最終到達温度が1600°Cに
なるまで昇温させ脱脂および焼成を行った。その結果、
各工程での良品および不良品の数は下記の通りであった
Next, this pre-solidified material is placed in a dryer set at a temperature of 70"C and held for 5 days to obtain a precursor, which is then further placed in an oxidizing gas furnace to reach a final temperature of 1600°C. Degreasing and firing were performed by raising the temperature to .As a result,
The numbers of non-defective products and defective products in each process were as follows.

(以 下 余 白) 良品  割れ  亀裂  ひび入 離型後    17   1   0   2乾燥後 
   16   0   0   1脱脂、焼成後 1
4   0   1   1上記実施例で得たセラミッ
ク多孔体は、気孔率が68%、平均気孔径が3〜12μ
mで、一般の濾過用フィルターとして、充分に使用でき
るものであり、かつ気孔の偏り等のない均質なものであ
った。
(Margins below) Good product Cracks Cracks After mold release 17 1 0 2 After drying
16 0 0 1 After degreasing and firing 1
4 0 1 1 The ceramic porous body obtained in the above example had a porosity of 68% and an average pore diameter of 3 to 12μ.
m, it could be satisfactorily used as a general filtration filter, and was homogeneous with no uneven pores.

〔比較例〕[Comparative example]

使用する澱粉粉末として、小麦澱粉だけを1250g用
い、予備固化の温度を80°Cとした以外は、上記実施
例と同様にしてセラミック多孔体を製造した。その結果
は下記の通りであった。
A ceramic porous body was produced in the same manner as in the above example except that 1250 g of wheat starch alone was used as the starch powder and the pre-solidification temperature was 80°C. The results were as follows.

良品  割れ  亀裂  ひび入 離型後    13   5   1   1乾燥後 
   12   0   1   0脱脂、焼成後 1
1   0   0   1〔発明の効果〕 以上のように、この発明の方法は、それ自体はバインダ
ー成分を含有しないセラミック材料粉末に、糊化温度の
異なる2種類以上の澱粉粉末および水を混合したスラリ
ーを型枠に充填し、これを2種類以上の澱粉粉末の糊化
温度の中間温度で予備固化させることにより、澱粉粉末
のうち、糊化温度の低いものを糊化させてバインダーと
して作用させ安定な予備固化体を得るとともに、糊化温
度の高い澱粉粉末を気孔形成剤として作用させるように
なっている。したがって、従来例のように、3段階の熱
処理を行う必要がなく、型枠内での熱処理と離型後の乾
燥で前駆体を得ることができる。
Good product Crack Cracks Cracked after mold release 13 5 1 1 After drying
12 0 1 0 After degreasing and firing 1
1 0 0 1 [Effects of the Invention] As described above, the method of the present invention produces a slurry in which a ceramic material powder that does not itself contain a binder component, two or more types of starch powders having different gelatinization temperatures, and water are mixed. By filling the mold into a mold and pre-solidifying it at a temperature intermediate between the gelatinization temperatures of two or more types of starch powder, the one with a lower gelatinization temperature among the starch powders is gelatinized and acts as a binder, making it stable. In addition to obtaining a pre-solidified product, starch powder having a high gelatinization temperature is made to act as a pore-forming agent. Therefore, unlike the conventional example, there is no need to perform three-step heat treatment, and the precursor can be obtained by heat treatment within the mold and drying after release from the mold.

このように、予備固化後の乾燥を離型後に行うため、熱
効率のよい処理を行え、かつ乾燥時に予備固化体の内部
と外部とに大きな温度差を生じ割れ等の不良を発生する
ということを防止できる。また、使用される澱粉が、バ
インダー用および気孔形成剤用の2種類に分かれている
ため、その作用安定性に優れ、均一に分布された気孔が
形成でき高品質のセラミック多孔体を得ることができる
ようになる。
In this way, since drying after pre-solidification is performed after release from the mold, it is possible to carry out processing with good thermal efficiency, and it is possible to avoid defects such as cracks due to large temperature differences between the inside and outside of the pre-solidified product during drying. It can be prevented. In addition, since the starch used is divided into two types, one for the binder and the other for the pore-forming agent, its action stability is excellent, and evenly distributed pores can be formed, making it possible to obtain a high-quality ceramic porous body. become able to.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック材料粉末と、糊化温度の異なる2種類
以上の澱粉粉末とを水に混合して均一な粘稠スラリー状
の原液とし、これを型枠内に充填したのち、上記澱粉粉
末のうちの糊化温度が最低温度の澱粉粉末の糊化温度以
上で、かつ糊化温度が最高温度の澱粉粉末の糊化温度以
下の温度で熱処理して固め脱型することを特徴とするセ
ラミック多孔体前駆体の製造方法。
(1) Ceramic material powder and two or more types of starch powder with different gelatinization temperatures are mixed with water to form a uniform viscous slurry stock solution, which is filled into a mold, and then the above starch powder is mixed with water. A porous ceramic characterized by being hardened and demolded by heat treatment at a temperature that is higher than the gelatinization temperature of the starch powder with the lowest gelatinization temperature and lower than the gelatinization temperature of the starch powder with the highest gelatinization temperature. Method for producing body precursor.
(2)澱粉粉末のうち少なくとも1種類が加工化澱粉で
ある特許請求の範囲第1項記載のセラミック多孔体前駆
体の製造方法。
(2) The method for producing a ceramic porous body precursor according to claim 1, wherein at least one of the starch powders is a processed starch.
JP31779487A 1987-12-15 1987-12-15 Production of precursor of ceramic porous article Granted JPH01160878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31779487A JPH01160878A (en) 1987-12-15 1987-12-15 Production of precursor of ceramic porous article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31779487A JPH01160878A (en) 1987-12-15 1987-12-15 Production of precursor of ceramic porous article

Publications (2)

Publication Number Publication Date
JPH01160878A true JPH01160878A (en) 1989-06-23
JPH0519510B2 JPH0519510B2 (en) 1993-03-16

Family

ID=18092116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31779487A Granted JPH01160878A (en) 1987-12-15 1987-12-15 Production of precursor of ceramic porous article

Country Status (1)

Country Link
JP (1) JPH01160878A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086419A (en) * 2001-07-23 2001-09-12 김준규 Fabrication of porous (Ba,Sr)TiO3
JPWO2003093197A1 (en) * 2002-04-28 2005-09-08 小出 正文 Porous ceramics and method for producing the same
JP2007175174A (en) * 2005-12-27 2007-07-12 Daiichi Shokai Co Ltd Game machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086419A (en) * 2001-07-23 2001-09-12 김준규 Fabrication of porous (Ba,Sr)TiO3
JPWO2003093197A1 (en) * 2002-04-28 2005-09-08 小出 正文 Porous ceramics and method for producing the same
JP2007175174A (en) * 2005-12-27 2007-07-12 Daiichi Shokai Co Ltd Game machine

Also Published As

Publication number Publication date
JPH0519510B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
US6238618B1 (en) Production of porous mullite bodies
JPH03275309A (en) Manufacture of ceramic honeycomb structure
CN1216831C (en) Making process of porous ceraimc filter element
JPH0366373B2 (en)
US20070281127A1 (en) Cordierite formation
Verweij et al. Hollow glass microsphere composites: preparation and properties
EA000616B1 (en) BUILDING HEAT-INSULATING MATERIAL
JPH01160878A (en) Production of precursor of ceramic porous article
CN101264402B (en) Preparation of tripolite filtering screen
US2104609A (en) Manufacture of ceramic articles
JPH11236279A (en) Porous ceramic sintered body and its production
CN111499368A (en) Ultralight domestic ceramic
US2095982A (en) Magnesium oxide products and proc
JP2700800B2 (en) Method for producing porous grindstone for rice polishing and porous grindstone for rice polishing
US4970181A (en) Process for producing ceramic shapes
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JPS58500284A (en) Porous shaped body made of sintered glassy and/or crystalline material and method for producing such a porous shaped body
JP2004261677A (en) Light-weight porous body, method for producing the same, carrier and water purification material
JPS61118139A (en) Manufacture of honeycomb molded carrier
RU2833540C1 (en) Method of producing porous powder materials
UA155806U (en) Method of producing ceramic membranes for filtration water treatment
JP5725689B2 (en) CERAMIC MOLDING CLAY USED FOR EXTRUSION MOLDING AND ITS MANUFACTURING METHOD, CERAMIC MOLDED BODY MANUFACTURING METHOD USING THE CERAMIC MOLDING CLAY AND CERAMIC MOLDED BODY
JPH05238846A (en) Mullite based foaming type porous ceramics and its production
JPH01157803A (en) Manufacture of ceramics molded product precursor
KR0123019B1 (en) Glassy carrier of porosity for fix a microorganism and process for the preparation thereof