[go: up one dir, main page]

JPH01160838A - Method for manufacturing base material for dispersion-shifted optical fiber - Google Patents

Method for manufacturing base material for dispersion-shifted optical fiber

Info

Publication number
JPH01160838A
JPH01160838A JP62316070A JP31607087A JPH01160838A JP H01160838 A JPH01160838 A JP H01160838A JP 62316070 A JP62316070 A JP 62316070A JP 31607087 A JP31607087 A JP 31607087A JP H01160838 A JPH01160838 A JP H01160838A
Authority
JP
Japan
Prior art keywords
core
fluorine
rod
refractive index
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62316070A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Hiroshi Suganuma
寛 菅沼
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62316070A priority Critical patent/JPH01160838A/en
Publication of JPH01160838A publication Critical patent/JPH01160838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/29Segmented core fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce the subject preform having a prescribed refractive index profile shape formed with a high accuracy, by pretreating and heating a specific composite rod for a core in an atmosphere of chlorine (compound gas) and collapsing the resultant rod. CONSTITUTION:A pure SiO2 rod 1 for an inner core is inserted into an SiO2 glass pipe 2 containing F added thereto for an outer core, set in a furnace core tube 4 of an electric furnace 3, pretreated, heated at 1000-1300 deg.C in an atmosphere of chlorine (compound gas) and collapsed to provide a composite rod for the core, which is then inserted into an SiO2 glass pipe containing F added thereto for a clad, heated and integrated at 1800-1900 deg.C in the same atmosphere as that described above to afford the aimed dispersion-shift optical fiber preform having a stepped refractive index profile.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は零分散波長が1.5μm帯にあり、伝送損失の
低減されたシングルそ一ド光ファイバ用母材の製造方法
に関するものである。本発明の母材から製造される1、
5μm帯苓外敵シフトシングルモードファイバに、長距
離かつ大伝送容酋の元通信線錫として用いて好適である
[Detailed Description of the Invention] [Industrial Application Field] The invention relates to a method for manufacturing a base material for a single-stranded optical fiber having a zero dispersion wavelength in the 1.5 μm band and reduced transmission loss. . 1 manufactured from the base material of the present invention,
It is suitable for use in 5 μm band foreign shifted single mode fibers as a source of communication lines with long distance and large transmission capacity.

〔従来の技術〕[Conventional technology]

石英(S10□)系元ファイバでは、元の波長1.5〜
1.6μm′18jl域(1,5μm帯)で伝送損失が
最小となるため、この波長域で光伝送すれば最大の中継
間隔が得られ、長距離通信が0T能となる。一方、大伝
送容1tt−得るには、マルチモードファイバよりもは
るかに広い伝送帯域を持ち、非常に高い伝送速度を可能
とするシングルモードファイバが用いられるが、この際
、便用波長におけるファイバの分散効果を最小としてお
く必嶽がある。
For quartz (S10□) based fiber, the original wavelength is 1.5~
Since the transmission loss is minimum in the 1.6 μm'18jl range (1.5 μm band), optical transmission in this wavelength range provides the maximum repeating interval and enables long-distance communication at 0T. On the other hand, to obtain a large transmission capacity of 1tt, single-mode fiber is used, which has a much wider transmission band than multi-mode fiber and enables extremely high transmission speeds. There is a need to minimize the dispersion effect.

したがって、長距離・大伝送容量用の石英系元ファイバ
として、1.55μm帯で材料分散と構造分散の和が零
となるようにファイバ構造を設計した1、55μm 外
賓分散シフト・シングルモー)”7フイバ(以下分散シ
フトファイバという)の開発が進められている。
Therefore, as a silica-based fiber for long distances and large transmission capacity, the fiber structure was designed so that the sum of material dispersion and structural dispersion was zero in the 1.55 μm band (1.55 μm dispersion shifted single mode). 7 fiber (hereinafter referred to as dispersion-shifted fiber) is being developed.

ところで、シングルモードファイバにおいて零分散波長
全通常の1.5μm帯から1.5μm帯ヘシフトさせる
には、ファイバの径をよシ細くすると共に、コアとクラ
ッドの比屈折率差Δn を増大させる必要がある。コア
としてG602 1?iS加石英(G e 02−8 
i O2と略す)を用い之場合、Δnを大きくとるため
にG e O2添加1重を増すと、伝送損失も増加する
という現象は、よく知られた問題である。そこで、1.
55μm で伝送損失が最低で69、しかも耐放射線特
性、耐水素特性、初期伝送損失等に2いても原理的に優
れている純石英(純3102) 2コアとし、フッ素添
加石英(7ツ累−8102と略す)をクラッドとしたフ
ァイバ構造が棟々検討されている。
By the way, in order to shift the zero dispersion wavelength from the usual 1.5 μm band to the 1.5 μm band in a single mode fiber, it is necessary to make the diameter of the fiber much thinner and to increase the relative refractive index difference Δn between the core and the cladding. be. G602 1 as core? iS quartz (G e 02-8
It is a well-known problem that when using G e O2 (abbreviated as iO2), if the addition of G e O2 is increased in order to increase Δn, the transmission loss also increases. Therefore, 1.
It has two cores of pure quartz (Pure 3102), which has a minimum transmission loss of 69 at 55 μm, and is excellent in principle in terms of radiation resistance, hydrogen resistance, initial transmission loss, etc. A number of fiber structures are being studied using 8102 (abbreviated as 8102) as a cladding.

不発明者等は、第2図に示すように内側コア21が純S
iO2からなり、外側コア22が内側コア21より右(
%)低い屈折率n、のフッ素−8102、クラッド25
が外側コア22よりさらにΔ2(比)低い屈折率n2の
フッ素−8102(Δ、〉Δ2)からなる階段状屈折率
分布を有する分散シフトファイバ構造を、既に%願昭6
0−220189号明細書にて提案している。このとき
のΔ、は0.6〜0.8比、Δ2は0.1〜0.5であ
ることが好ましく、1友、外径125μmのファイバで
内側コア径は約4μm1外側コア径は6.5μm1クラ
ツド径/内側コア径(比)は大体506度である。
The non-inventor, etc., has made the inner core 21 pure S as shown in FIG.
Consisting of iO2, the outer core 22 is located to the right of the inner core 21 (
%) low refractive index n, fluorine-8102, cladding 25
A dispersion-shifted fiber structure having a step-like refractive index distribution made of fluorine-8102 (Δ, 〉Δ2) with a refractive index n2 lower than that of the outer core 22 by Δ2 (relative) was already developed in 1986.
This is proposed in the specification of No. 0-220189. In this case, Δ is preferably a ratio of 0.6 to 0.8, and Δ2 is preferably a ratio of 0.1 to 0.5. In one fiber with an outer diameter of 125 μm, the inner core diameter is approximately 4 μm, and the outer core diameter is 6 μm. .5 μm 1 clad diameter/inner core diameter (ratio) is approximately 506 degrees.

また、第2図の構造のファイバ用母材全作製するには、
内側コア用ロッドを外側コア用パイプ内に収容し、外側
から酸水素バーナで加熱する、いワユるロッドインチュ
ーブ法によりコラップスしてコア用ガラス体金得た後、
これとクラッド用パイプを再度コラップスする方法によ
っていた。このようにロッドインチューブ法によるコラ
ップスでガラス母材を作製する理由は、複数バーナ全周
いたVAD法によりこのような内側が純SiO2で外側
がフッ素−5in2からなるスート体を作製しようとす
るζ、フッ素が内側コアへと拡散してし1い、第2図の
ようなステップ型屈折率分布構造が集塊できないからで
ある。このようなステップ型グロファイルt−有する1
、5μm帯分散シフト元ファイバは、モードフィールド
が大きく、長波長側で側圧の影響なく使用できるという
利点全方[、ている。
In addition, in order to fabricate the entire fiber base material with the structure shown in Figure 2,
After collapsing the rod for the inner core into the pipe for the outer core and heating it from the outside with an oxyhydrogen burner to obtain the glass body for the core,
This was done by collapsing the cladding pipe again. The reason why the glass base material is produced by collapsing using the rod-in-tube method is that the soot body made of pure SiO2 on the inside and 5in2 of fluorine on the outside is created by the VAD method with multiple burners all around. This is because fluorine diffuses into the inner core, and the step-type refractive index distribution structure as shown in FIG. 2 cannot be agglomerated. Such a step-type profile t- has 1
The 5 μm band dispersion shifted source fiber has all the advantages of having a large mode field and being usable on the long wavelength side without being affected by lateral pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来法のように酸水素バーナを用いてコラップスす
る方法は、局部的加熱が容易にできるため、母材中のア
ワ残留はないが、バーナから多数のOH基が発生するた
めに、母材中に水系(H)の影響を及ぼすことが考えら
れ、好ましいものではない。また、高温のH2Oにフッ
素−8102がさらされてフッ素が揮発するために第4
図のように屈折率分布形状が変動したシ、重量が減少す
るという問題もめつ之。さらに、酸水素バーナによる加
熱では、コア径がせいぜい4.5 III程度のものし
かコラップスできず、かなシ太径のガラスロッドを作製
しても、これに適応するようにわざわざ径を細く延伸し
たシする必豐があった。
In the method of collapsing using an oxy-hydrogen burner like the above conventional method, local heating can be easily carried out, so there is no leaving of bubbles in the base material, but since a large number of OH groups are generated from the burner, the base material It is considered that the water system (H) may have an influence on the water, which is not preferable. In addition, because fluorine-8102 is exposed to high temperature H2O and fluorine volatilizes, the fourth
As shown in the figure, there is also the problem that the shape of the refractive index distribution fluctuates and the weight decreases. Furthermore, heating with an oxyhydrogen burner can only collapse a core diameter of about 4.5 III at most, and even if a glass rod with a large diameter was made, the diameter was purposely stretched to be thinner to accommodate this. It was necessary to do so.

不発明はこのような現状に鑑みて、第2図の構造の1.
5p+m帯零分散シフトファイバ用母材の改良され次製
造法全目的としてなされ友ものであって、所定の屈折率
分布形状を精度良く形成することができ、l九人型母材
が作製できる几め生産性もよい方法を提供するものであ
る。
In view of this current situation, the uninvention is to improve 1. of the structure shown in Figure 2.
This is an improved base material for 5p+m band zero-dispersion shifted fibers, which has been developed for all purposes, and is capable of forming a predetermined refractive index distribution shape with high accuracy, and is capable of producing nine-shaped base materials. This provides a method with high productivity.

〔問題点全解決するための手段〕[Means to solve all problems]

不発明は純SiO2からなる内側コア部及びその外周に
あってフッ素添加SiO2ガラスからなる外側コア部を
有するコア部と、前記外1il!コア部外周にあって該
外側コア部よシ低い屈折率のフッ素添加SiO2ガラス
からなるクラッド部を有する階段状屈折率分布の分散シ
フト元ファイバ用母材を、内側コア用純SiO20ツド
金外側コア用フツ素添加SiO2ガラスパイプ内に収容
せしめて加熱一体化してコア用複合ロッドとし、次に該
コア用複合ロッドをクラッド用フッ素第加SiO2ガラ
スパイプ内に収容せしめて加熱一体化することにより製
造する方法において、加熱一体化は電気炉内で塩素又は
塩素化合vIJを含む雰囲気下100051300℃の
温度範囲内で前処理加熱した後、上記雰囲気下1800
51900℃の温度範囲内で加熱することを特徴とする
分散シフト元ファイバ用母材の製造方法である。
The invention is characterized by a core part having an inner core part made of pure SiO2 and an outer core part made of fluorine-doped SiO2 glass on the outer periphery of the inner core part, and the outer core part made of fluorine-doped SiO2 glass. A base material for a dispersion-shifting fiber with a stepped refractive index distribution having a cladding part made of fluorine-doped SiO2 glass with a lower refractive index than the outer core part on the outer periphery of the core part is used as a pure SiO20 gold outer core for the inner core. Manufactured by housing the core composite rod in a fluorine-added SiO2 glass pipe for cladding and heating and integrating it, and then housing the core composite rod in a fluorine-added SiO2 glass pipe for cladding and heating and integrating it. In the method of
This is a method for producing a base material for a dispersion-shifted fiber, which is characterized by heating within a temperature range of 51,900°C.

本発明は、従来の酸水素バーナを用いるコラップスにか
えて、5g1図に示すように電気炉5で加熱してコラッ
プスするものである。まず第1図のようにガラスロッド
1をガラスパイプ2の中に挿入した状態で電気炉5の炉
心管4内にセットし、炉内の雰囲気を塩素又は塩素化合
物を含むものとし、1000〜1300℃の温度範囲内
で加熱して前処理を行なう。次に同じ雰囲気で1800
51900℃に加熱してガラスロッド1とガラスパイプ
2を一体化する。このときの炉内雰囲気に含まれる上記
塩素又は塩素化合物としては例えばat2. cat4
.5oar2  等が挙げられる。なお′電気炉は実施
例では抵抗炉を用いたが高周波炉を用いることもできる
・不発明においては、1ず第1段として、内側コアとな
る純5in2ガラスロツドと外側コアとなる7ツ%−3
iO2パイプとff1g1図の構成で上記のようにコラ
ップスし、コア用複合ロッドを得る。次に姥コア用複合
ロッドとクラッドとなるF−8102パイプを同様にコ
ラップスして、純8102内側コア/フツ累−8102
外側コア/フツ素−8iO□クラツドからなる分散シフ
ト元ファイバ用母材を得るのである。
In the present invention, instead of collapsing using a conventional oxyhydrogen burner, collapsing is performed by heating in an electric furnace 5 as shown in Fig. 5g1. First, as shown in Fig. 1, the glass rod 1 is inserted into the glass pipe 2 and set in the furnace core tube 4 of the electric furnace 5, and the atmosphere in the furnace is set to contain chlorine or chlorine compounds, and the temperature is set at 1000 to 1300°C. Perform pretreatment by heating within the temperature range. Next, 1800 in the same atmosphere
The glass rod 1 and the glass pipe 2 are integrated by heating to 51,900°C. The chlorine or chlorine compound contained in the furnace atmosphere at this time is, for example, at2. cat4
.. 5oar2 etc. are mentioned. Note that although a resistance furnace was used as the electric furnace in the embodiment, a high frequency furnace may also be used. 3
Collapse the iO2 pipe and the configuration shown in ff1g1 as described above to obtain a composite rod for the core. Next, similarly collapse the composite rod for the inner core and the F-8102 pipe that will become the cladding, and then
A base material for a dispersion-shifted fiber consisting of an outer core/fluorine-8iO□ cladding is obtained.

本発明における純SiO2からなるガラスロッドは、1
.5μm帯用零分散シングルモードファイバのコア材と
して使用できる品質のものであればどのような製法によ
ってもよいが、通常は公知のVAD法により作製した純
SiO2スート体を透明化したロッドを用いる。
The glass rod made of pure SiO2 in the present invention has 1
.. Any manufacturing method may be used as long as it is of a quality that can be used as a core material for a zero-dispersion single mode fiber for a 5 μm band, but usually a rod made of a transparent pure SiO2 soot body manufactured by a known VAD method is used.

フッ素5i02からなる外側コア又はクラッド用パイプ
としては、やはfiVAD法で作製したSiO2ス一ト
体を脱水し、例えばSF6. SiF4゜CC/2F2
 等のフッ素化合物を含有する雰囲気中で加熱すること
により、該スート体に設計量のF(フッ素)を伶加し、
これを透明化してフッ索−8in2透明ガラス体を得た
後、その中央を超音波穿孔機で穴明は加工したものが用
いられる。
For the outer core or cladding pipe made of fluorine 5i02, a SiO2 stub body produced by the fiVAD method is dehydrated and made of, for example, SF6. SiF4゜CC/2F2
A designed amount of F (fluorine) is added to the soot body by heating in an atmosphere containing a fluorine compound such as,
This is made transparent to obtain an 8in2 transparent glass body, and then a hole is punched in the center using an ultrasonic perforator.

また、瑳パイプ内面はコラップスに先立ち、予めSF6
号のガスでその内面をエツチング処理して2〈ことが、
コラップス後の母材中の気泡発生を防止する上で、また
伝送損失を低減する上で好ましい。
In addition, the inner surface of the porcelain pipe was prepared with SF6 before collapsing.
By etching the inner surface with No. 2 gas,
This is preferable in terms of preventing the generation of bubbles in the base material after collapse and reducing transmission loss.

なお、外付法によりマンドレル外周にスートを堆積させ
て、パイプ状のスート体を作製する方法が知られており
、この方法でフッ素−8102パイプを作製することも
可能であるが、マンドレル抜き取りの際に、パイプ内面
に傷を発生させやすい。
A method is known in which a pipe-shaped soot body is produced by depositing soot on the outer periphery of a mandrel using an external deposition method. Although it is also possible to produce a fluorine-8102 pipe using this method, it is difficult to remove the mandrel. This can easily cause damage to the inner surface of the pipe.

内側コア用ロッドは前記のように純810□であるが、
外側コア用パイプとしては、$1図のΔ。
The rod for the inner core is pure 810□ as mentioned above,
As a pipe for the outer core, use Δ in the $1 diagram.

が0.6 So、8%となるように2.7〜5.5重量
%のフッ素を添加し友SiO2が好筐しい。また、クラ
ッド用パイプとしては、第1図のΔ2が0.1〜0.5
%となるように0.5〜1重量%のフッ素を祭加したS
iO2が好ましい。さらに、内側コアと外側コアはその
径比が内側コア径/外側コア径=0.4〜0.8程度で
あることが好ましい。以上のような限定は1.5μm帯
零分散シフトシングルモードファイバとし、’!ft曲
げ損失(側圧)の影響を受けにくくするためのものであ
る。
It is preferable to add 2.7 to 5.5% by weight of fluorine so that the amount of SiO2 becomes 0.6 So and 8%. In addition, as a cladding pipe, Δ2 in Fig. 1 is 0.1 to 0.5.
S containing 0.5 to 1% by weight of fluorine so that the
iO2 is preferred. Further, it is preferable that the diameter ratio of the inner core and the outer core is about 0.4 to 0.8 (inner core diameter/outer core diameter). The above limitations apply to a 1.5 μm band zero dispersion shifted single mode fiber, and '! This is to make it less susceptible to bending loss (lateral pressure).

〔作用〕[Effect]

従来も電気炉を用いてコラップスする方法が試みられた
が、母材中にアワが残留したυ、母材が変形する問題が
あり実用できなかつ友。不発明者らは、′電気炉を用い
ても塩素または塩素化合物ガスを含む雰囲気中で100
0〜1300℃の温度範囲で行なう前処理により、母材
中の気泡残留を防止できることを実験により確認した。
A method of collapsing using an electric furnace has been attempted in the past, but it was impractical and impractical due to the problems of residual foxing in the base material and deformation of the base material. The inventors have found that even if an electric furnace is used, 100
It was confirmed through experiments that the pretreatment performed at a temperature range of 0 to 1300°C can prevent bubbles from remaining in the base material.

更に研究の結果この前処理の後に上記と同じく塩素また
は塩素化合物を含む雰囲気で1800へ1900℃の電
気炉を用いるコラップスによつて、コア径10s+sφ
、外径6011Iφといった大型母材の製造全可能とし
たものである。これは、従来の酸水素バーナでは、せい
ぜいコア径4.5鵡φ、外径22m1φ程度のものしか
好適にコラップスできなかったのに比較して、非常に大
型の母材製造を実現したと言える。
As a result of further research, after this pretreatment, a core diameter of 10s + sφ was obtained by collapsing using an electric furnace at 1800°C to 1900°C in an atmosphere containing chlorine or chlorine compounds as described above.
This makes it possible to manufacture large base materials such as 6011Iφ in outer diameter. This can be said to have made it possible to produce a very large base material compared to conventional oxyhydrogen burners, which could only properly collapse materials with a core diameter of 4.5mmφ and an outer diameter of 22m1φ. .

不発明によって、例えば第1回目のコラップスで外径8
〜12騙φの内側コア用ロッドと、外径40550mφ
の外側コア用パイプを一体化し、第2回目は上記で得た
一体化コア用ロッドを外径8〜121alφに延伸して
、これと外径40へ50鵡φのタララドパイプを再び一
体化することで、最終的にはクラツ、ド径/コア径(比
)が約50倍のものが得られる。この母材サイズは酸水
素バーナを用いた従来法による大径ファイバ母材の約1
0倍(ファイバ換算長)に達する。
Due to inventiveness, for example, the outer diameter is 8 on the first collapse.
~12mmφ inner core rod and outer diameter 40550mφ
For the second time, extend the integrated core rod obtained above to an outer diameter of 8 to 121 alφ, and integrate it again with a Talarado pipe with an outer diameter of 40 to 50 alφ. In the end, a core diameter/core diameter (ratio) of about 50 times is obtained. The size of this base material is about 10% of that of the large diameter fiber base material made using the conventional method using an oxyhydrogen burner.
It reaches 0 times (fiber equivalent length).

また、本発明は電気炉を用いることで、酸水素炎によっ
た場合の悪影響、特に屈折率分布の変動と鳳濾減少の問
題を排除できる。酸水素炎に7ツ累−8iO□ガラスが
高温に曝されると、火炎からのH2Oによシ、 2 S、FO,,5+H20→25in2+2 HF 
 ・・・(1)SiO+ 4 )IF i”! 5IF
J +2820    ・・・(2)上記+13、(2
ン弐等の反応が起り、表向のフッ素(FlがHF、 S
iF4  となって揮発してし1い、屈折率分布が−J
7!J4図に示すように変ってし1うと同時に母材の重
量も減少するわけである。
Furthermore, by using an electric furnace, the present invention can eliminate the adverse effects caused by oxyhydrogen flame, particularly the problems of fluctuations in refractive index distribution and decrease in filtration. When glass is exposed to high temperatures in an oxyhydrogen flame, the H2O from the flame is removed, 2 S, FO,, 5 + H20 → 25 in2 + 2 HF
...(1)SiO+ 4)IF i"! 5IF
J +2820...(2) Above +13, (2
The following reactions occur, and the surface fluorine (Fl is HF, S
It volatilizes as iF4, and the refractive index distribution becomes -J.
7! As shown in Figure J4, the weight of the base material decreases at the same time as it changes.

これに対し、本発明の′電気炉によるコラプスでは、上
記の高温のH2Oが存在しないので、(1)、(2)式
の反応は殆んど起らず、従って、屈折率分布の変化、本
被減少は抑えられる。
On the other hand, in the collapse using the electric furnace of the present invention, since the above-mentioned high-temperature H2O is not present, the reactions of equations (1) and (2) hardly occur, and therefore, the changes in the refractive index distribution, This decrease can be suppressed.

さらに、本発明の方法は谷ロッドやパイプを別個に作製
しておいて、これをロッドインチューブ法を繰返して順
次一体化するという簡単な方法で、第2図に示すような
高N、Aである屈折率分布構造を実現できるという点で
有利である。
Furthermore, the method of the present invention is a simple method in which the valley rods and pipes are manufactured separately and then integrated one after another by repeating the rod-in-tube method. This is advantageous in that a refractive index distribution structure can be realized.

〔実施例〕〔Example〕

実施例1 VAD法により作製した純SiO2のガラスロッドを電
気抵抗炉を用いて延伸し、外径12111@φ、長さ7
00鵡の内側コア用ロッドとし次。別に、VAD法によ
り作製した純SiO2からなる多孔質母材を脱水、F際
加、透明化して、フッ素を2重量%含むフッ素−810
2ガラスからなる外径50鵡φのロッドを得た。このフ
ッ素−8in20ツドの中央に超音波穿孔機を用いて内
径12mφの穴を貫通させ、外側コア用フッ素−3in
、パイプ材とした。
Example 1 A pure SiO2 glass rod produced by the VAD method was stretched using an electric resistance furnace to have an outer diameter of 12111@φ and a length of 7.
Next is the rod for the inner core of 00 parrot. Separately, a porous base material made of pure SiO2 produced by the VAD method was dehydrated, F-added, and made transparent to produce fluorine-810 containing 2% by weight of fluorine.
A rod made of 2 glass and having an outer diameter of 50 mm was obtained. A hole with an inner diameter of 12 mφ is penetrated in the center of this fluorine-8 inch 20 piece using an ultrasonic drilling machine, and a fluorine-3 inch hole for the outer core is made.
, used as pipe material.

上記外側コア用フッ素−8iO□パイプを第1図に示し
九と同じ抵抗炉に取りつけ、下記の表1に示す条件でパ
イプ内壁をエツチング処理した。
The above-mentioned fluorine-8iO□ pipe for the outer core was attached to the same resistance furnace as shown in FIG. 1 and 9, and the inner wall of the pipe was etched under the conditions shown in Table 1 below.

仄で、内側コア用純5in20ツドを該パイプ中空部に
挿入し、表1の条件で前処理した後に、両以上で得らf
i7を内側コア及び外側コアからなるガラスロッドを抵
抗炉を用いて外径8.5Wφに延伸し、複合コア用ロッ
ドとした。
After inserting a pure 5 inch 20 piece for the inner core into the hollow part of the pipe and pre-treating it under the conditions shown in Table 1, the f
A glass rod consisting of an inner core and an outer core of i7 was drawn to an outer diameter of 8.5 Wφ using a resistance furnace to obtain a composite core rod.

’/AD法により外側コアパイプを作製した上記方法に
準じ、別途、外径50鵠φでフッ素を2.5重量%含有
するクラッド用フッ素−8iO□ガラスロツドを得、こ
の中央部にも同様に内径8鵡φの孔を頁通させ、表1の
条件で内面エツチング処理して、クラッド用フッ素−8
102ガラスパイプを得た。該クラッド用フッ素−”l
O。
According to the above method for producing the outer core pipe by the '/AD method, a fluorine-8iO□ glass rod for the cladding with an outer diameter of 50mm and containing 2.5% by weight of fluorine was separately obtained, and the inner diameter was also The page was passed through a hole of 8 mm diameter, and the inner surface was etched under the conditions shown in Table 1.
A 102 glass pipe was obtained. Fluorine for the cladding
O.

ガラヌパイブと前記複合コア用ロッドを、前記したと同
様に表1の条件でコラップスして一体化した。
Galanupive and the composite core rod were collapsed and integrated under the conditions shown in Table 1 in the same manner as described above.

以上で得られたプリフォームは、第5図に示す屈折率分
布構造を有しており、Δ1は0.6%、Δ2はo、1s
比であり、正常な屈折率分布でかつ、重量変化もきたし
ていなかった。’E7t、これを線引きして、外径12
5μm1内径コア径4μm。
The preform obtained above has a refractive index distribution structure shown in FIG. 5, where Δ1 is 0.6%, Δ2 is o, 1s
ratio, the refractive index distribution was normal, and there was no weight change. 'E7t, draw a line and the outer diameter is 12
5μm 1 inner diameter core diameter 4μm.

外側コア径6.5μmの所期の屈折率分布を有する1、
55μm 分散シフトファイバを得た。
1 having the desired refractive index distribution with an outer core diameter of 6.5 μm,
A 55 μm dispersion shifted fiber was obtained.

比較例1 内側コア用5io20ツド、外側コア用2重量%フッ累
−810□ガラスノくイブ及びクラッド用2.5重量エ
フッ素−8102ガラスノくイブを、それぞれ実施例1
の場合と同様に作製し友が、抵抗炉にかえて酸水素バー
ナを用い、表2の条件でノくイブ内面エツチング、前処
理、コラップスを行った。なお、複合コア用ロッド外径
は4.5 IIφ、クラッド用バイク径は25IIlφ
にした。
Comparative Example 1 A 5io20 glass tube for the inner core, a 2% by weight fluorine-810 glass tube for the outer core, and a 2.5 weight percent fluorine-8102 glass tube for the cladding were used in Example 1, respectively.
A sample was prepared in the same manner as in the case of , but an oxyhydrogen burner was used instead of the resistance furnace, and etching, pretreatment, and collapse of the inner surface of the nozzle tube were performed under the conditions shown in Table 2. The outer diameter of the rod for the composite core is 4.5 IIφ, and the bike diameter for the cladding is 25IIlφ.
I made it.

表  2 得られたプリフォームは第4図のように変化し友屈折率
分布構造を有しており、重量は10%減少していた。当
然このプリフォームからは所期の屈折率分布を肩するコ
アイノ(は得られなかった。
Table 2 The obtained preform had a modified refractive index distribution structure as shown in FIG. 4, and its weight was reduced by 10%. Naturally, from this preform, core ino having the desired refractive index distribution could not be obtained.

以上の実施例1、比較例1の結果から、抵抗炉を用いる
本発明の方法が、従来法の酸水素炎による悪影響の問題
ftm決で@次ことが明らかである。
From the results of Example 1 and Comparative Example 1 above, it is clear that the method of the present invention using a resistance furnace overcomes the problem of the adverse effects caused by oxyhydrogen flame in the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明し次ように、不発明の分散シフト元ファイバ用
母材の製造方法は電気炉中で塩素または塩素化合物ガス
を含む雰囲気中で前処理加熱、コラップスを行なうこと
によシ、H2Oによる悪影響を排除できるので、正常な
所期の屈折率分布構造を有し、かつ重量減のない母材が
得られるに加え、従来の酸水素炎による場合よりも大型
母材を製造できるので、生理性を向上し、大量生産の途
を開〈産業上有利な発明である。
As explained above and as follows, the uninvented method for manufacturing the base material for the dispersion-shifted fiber is performed by pre-heating and collapsing in an atmosphere containing chlorine or chlorine compound gas in an electric furnace. By eliminating this, a base material with a normal desired refractive index distribution structure and no weight loss can be obtained. In addition, it is possible to produce a larger base material than in the conventional oxyhydrogen flame method, resulting in a physiologically It is an industrially advantageous invention that improves the quality of the product and opens the way to mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を説明する模式図、第2図は
階段状屈折率分布を有する分散シフト元ファイバの屈折
率分布を示す図、第5図は本発明の実施例で得られ九分
散シフト元ファイバ用母材の屈折率分布を示す図、第4
図は従来法(比較例)で得られ九九ファイバ用母材の屈
折率分布を示す図である。
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention, FIG. 2 is a diagram showing a refractive index distribution of a dispersion-shift source fiber having a stepped refractive index distribution, and FIG. Diagram showing the refractive index distribution of the base material for the nine-dispersion shifted source fiber, No. 4
The figure is a diagram showing the refractive index distribution of a base material for a 99 fiber obtained by a conventional method (comparative example).

Claims (1)

【特許請求の範囲】[Claims] 純SiO_2からなる内側コア部及びその外周にあつて
フッ素添加SiO_2ガラスからなる外側コア部を有す
るコア部と、前記外側コア部外周にあつて該外側コア部
より低い屈折率のフッ素添加SiO_2ガラスからなる
クラッド部を有する階段状屈折率分布の分散シフト光フ
ァイバ用母材を、内側コア用純SiO_2ロッドを外側
コア用フッ素添加SiO_2ガラスパイプ内に収容せし
めて加熱一体化してコア用複合ロッドとし、次に該コア
用複合ロッドをクラッド用フッ素添加SiO_2ガラス
パイプ内に収容せしめて加熱一体化することにより製造
する方法において、加熱一体化は電気炉内で塩素又は塩
素化合物を含む雰囲気下1000〜1300℃の温度範
囲内で前処理加熱した後上記雰囲気下1800〜190
0℃の温度範囲内で加熱することを特徴とする分散シフ
ト光ファイバ用母材の製造方法。
A core part having an inner core part made of pure SiO_2 and an outer core part made of fluorine-doped SiO_2 glass on its outer periphery, and a fluorine-doped SiO_2 glass on the outer periphery of the outer core part having a lower refractive index than the outer core part. A base material for a dispersion-shifted optical fiber with a step-like refractive index distribution having a cladding part is housed in a fluorine-doped SiO_2 glass pipe for an inner core and a pure SiO_2 rod for an outer core, and heated and integrated to form a composite rod for the core, Next, in a manufacturing method in which the core composite rod is housed in a fluorine-added SiO_2 glass pipe for cladding and heated and integrated, the heating and integration is performed in an electric furnace under an atmosphere containing chlorine or chlorine compounds at a temperature of 1000 to 1300°C. After pretreatment heating within the temperature range of ℃ 1800 ~ 190℃ under the above atmosphere
A method for producing a preform for a dispersion-shifted optical fiber, the method comprising heating within a temperature range of 0°C.
JP62316070A 1987-12-16 1987-12-16 Method for manufacturing base material for dispersion-shifted optical fiber Pending JPH01160838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316070A JPH01160838A (en) 1987-12-16 1987-12-16 Method for manufacturing base material for dispersion-shifted optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316070A JPH01160838A (en) 1987-12-16 1987-12-16 Method for manufacturing base material for dispersion-shifted optical fiber

Publications (1)

Publication Number Publication Date
JPH01160838A true JPH01160838A (en) 1989-06-23

Family

ID=18072927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316070A Pending JPH01160838A (en) 1987-12-16 1987-12-16 Method for manufacturing base material for dispersion-shifted optical fiber

Country Status (1)

Country Link
JP (1) JPH01160838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0966407A1 (en) * 1997-02-05 1999-12-29 Corning Incorporated Method of producing an optical fiber having depressed index core region
WO2000026150A1 (en) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Methods for producing preform and optical fiber
JP2008087075A (en) * 2006-09-29 2008-04-17 Trinc:Kk Solenoid valve with ionizer, vacuum chuck arranged with ionizer, and receiving stand wherein ionizer is disposed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162441A (en) * 1979-06-01 1980-12-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material
JPS6280607A (en) * 1985-10-04 1987-04-14 Sumitomo Electric Ind Ltd 1.5μ band zero dispersion single mode fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162441A (en) * 1979-06-01 1980-12-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material
JPS6280607A (en) * 1985-10-04 1987-04-14 Sumitomo Electric Ind Ltd 1.5μ band zero dispersion single mode fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422042B1 (en) 1994-12-20 2002-07-23 Corning Incorporated Rit method of making optical fiber having depressed index core region
EP0966407A1 (en) * 1997-02-05 1999-12-29 Corning Incorporated Method of producing an optical fiber having depressed index core region
EP0966407A4 (en) * 1997-02-05 2000-06-14 Corning Inc Method of producing an optical fiber having depressed index core region
WO2000026150A1 (en) * 1998-10-29 2000-05-11 Sumitomo Electric Industries, Ltd. Methods for producing preform and optical fiber
JP2008087075A (en) * 2006-09-29 2008-04-17 Trinc:Kk Solenoid valve with ionizer, vacuum chuck arranged with ionizer, and receiving stand wherein ionizer is disposed

Similar Documents

Publication Publication Date Title
EP0198510B1 (en) Method of producing glass preform for optical fiber
KR900002047B1 (en) Preparation method of preform for optical fibers
AU753111B2 (en) Method of manufacturing optical fiber base material
CN106116135A (en) A kind of manufacture method of pure silicon core low loss fiber
JP5945516B2 (en) Optical fiber
WO2024190234A1 (en) Multicore optical fiber
JPS60176945A (en) Optical fiber
JPS61191543A (en) Quartz base optical fiber
JPH01160838A (en) Method for manufacturing base material for dispersion-shifted optical fiber
JP2012171802A (en) Method for producing optical fiber preform
JPH0236535B2 (en)
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JPS6086047A (en) Manufacturing method of glass base material for optical fiber
JP2001010837A (en) Manufacturing method of optical fiber preform and alignment jig
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPS63139028A (en) Manufacturing method of glass base material for optical fiber
JPS5884137A (en) Manufacture of optical fiber retaining polarized light
JPS62167235A (en) Method for manufacturing base material for optical fiber
JPH01160840A (en) Base material for dispersion-shifted optical fiber and its manufacturing method
JP2001192233A (en) Optical fiber and method for manufacturing the same
JPS63230533A (en) Production of optical fiber preform
JPH05286735A (en) Production of dispersion-shift optical fiber
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber