[go: up one dir, main page]

JPH01159392A - Production of high purity electrolytic copper - Google Patents

Production of high purity electrolytic copper

Info

Publication number
JPH01159392A
JPH01159392A JP62317880A JP31788087A JPH01159392A JP H01159392 A JPH01159392 A JP H01159392A JP 62317880 A JP62317880 A JP 62317880A JP 31788087 A JP31788087 A JP 31788087A JP H01159392 A JPH01159392 A JP H01159392A
Authority
JP
Japan
Prior art keywords
electrolytic
copper
montmorillonite
soln
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317880A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Kazuhiko Tomomatsu
友松 和彦
Haruo Tominaga
晴夫 冨永
Teruyuki Takayama
高山 輝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62317880A priority Critical patent/JPH01159392A/en
Publication of JPH01159392A publication Critical patent/JPH01159392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To produce high purity electrolytic copper without requiring a troublesome process by adding and dispersing copper-montmorillonite in an electrolytic soln. acidified with nitric acid, filtering the electrolytic soln. to remove impurities in the soln. and electrolytically refining copper in the resulting electrolytic soln. CONSTITUTION:Copper-montmorillonite is added and dispersed in an electrolytic soln. acidified with nitric acid. After impurity cations in the soln. are adsorbed between the montmorillonite layers, the electrolytic soln. is filtered. The impurity cations in the soln. are efficiently removed and a purified electrolytic soln. is obtd. Copper is electrolytically refined in the purified electrolytic soln. to produce high purity electrolytic copper. The pref. average particle size of the copper-montmorillonite is <=about 10mum and the copper-montmorillonite is desirably added by such an amt. that it has >=about 10mg equiv. cation exchange capacity per 1l electrolytic soln.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電解精製により高純度銅を製造する高純度電解
銅の製造ど方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high-purity electrolytic copper, which produces high-purity copper by electrolytic refining.

[従来の技術] 従来、電解銅は硫酸酸性浴によって製造されるのが一般
的であり、その純度は高々的99.99重置火であった
。ところで、近時、半導体装置の結線用導体又は蒸着用
ソース材料等の用途において、純度が99.999重量
%以上の高純度銅に対する需要が高まってきた。
[Prior Art] Conventionally, electrolytic copper has generally been produced using a sulfuric acid acid bath, and its purity has been at most 99.99 ml. Incidentally, recently, there has been an increasing demand for high-purity copper having a purity of 99.999% by weight or more for applications such as connection conductors for semiconductor devices or source materials for vapor deposition.

而して、硫酸酸性浴による電解精製においては、電解液
中の硫黄によるコンタミネーションが不可避であるため
に、高純度電解銅の製造の場合には硝酸酸性浴を使用す
ることが多い。
In electrolytic refining using a sulfuric acid acid bath, contamination due to sulfur in the electrolyte is unavoidable, so a nitric acid acid bath is often used in the production of high-purity electrolytic copper.

しかし、硝酸酸性浴も硫酸酸性浴と同様に、電解精製を
くり返して電解銅の採取量が多くなるにつれて、電解液
中にCuよりもイオン化傾向が大きいカチオン(Na”
、AJI  ”、Fe 2十等)又は微細粒子として懸
濁するスライム等の不純物の含有量が増大してしまう。
However, similar to the sulfuric acid acid bath, the nitric acid acid bath, as well as the sulfuric acid acid bath, have a tendency to contain cations (Na"), which have a greater ionization tendency than Cu, in the electrolytic solution as the amount of electrolytic copper collected increases through repeated electrolytic refining.
, AJI'', Fe20, etc.) or slime suspended as fine particles.

この電解液中の不純物の増加は電解銅の高純度化を阻害
する大きな要因となるので、不純物量が一定濃度を超え
て高くならないように新しい電解液を加えて調整するか
、又は電解液中の不純物を除去することが必要となる。
This increase in impurities in the electrolyte is a major factor that hinders the high purity of electrolytic copper, so either add new electrolyte to prevent the amount of impurities from exceeding a certain concentration, or adjust the amount of impurities in the electrolyte. It is necessary to remove impurities.

しかしながら、新しい電解液を加えて、不純物濃度を調
整する方法は、加える新液量に対応して廃液が生じるた
め、この廃液処理が煩雑であるという問題点がある。ま
た、常に相当量の新液を作製して補給する必要があるた
め、この電解液の補給処理が煩雑であるという問題点も
ある。
However, the method of adjusting the impurity concentration by adding new electrolytic solution has a problem in that waste liquid is generated in proportion to the amount of new electrolyte added, and the treatment of this waste liquid is complicated. Furthermore, since it is necessary to constantly prepare and replenish a considerable amount of new electrolyte, there is also the problem that the replenishment process for this electrolyte is complicated.

一方、電解液中の不純物を除去する方法としては、従来
、第3図にその電解液の流れを示す浄液処理方法がある
On the other hand, as a method for removing impurities in an electrolytic solution, there is a conventional solution purification method whose flow of the electrolytic solution is shown in FIG.

°つまり、第3図に示すように、先ず、電解浴1から循
環浴2へ移された電解液に対し、脱銅電解処理3を実施
した後、浄液電解処理4によって不純物カチオンを除去
する。そして、清浄液5を循環浴2に返戻し、更に電解
浴1に供給する。
In other words, as shown in FIG. 3, first, the electrolytic solution transferred from the electrolytic bath 1 to the circulating bath 2 is subjected to decopper removal electrolytic treatment 3, and then impurity cations are removed by purified liquid electrolytic treatment 4. . The cleaning liquid 5 is then returned to the circulation bath 2 and further supplied to the electrolytic bath 1.

[発明が解決しようとする問題点コ しかしながら、この従来方法においては、電解採取(浄
液電解処理4)によって不純物カチオンが除去されるも
のの、この際に、不純物より先に銅が析出するために、
銅濃度を事前に下げる(脱銅電解処理3)必要が生じる
。従って、浄液処理後の清浄電解液5は、電解浴1又は
循環浴2の電解液に比較して、銅濃度が低く、過剰の遊
離硝酸を含有している。
[Problems to be solved by the invention] However, in this conventional method, impurity cations are removed by electrowinning (purifying solution electrolysis treatment 4), but at this time, copper precipitates before impurities. ,
It becomes necessary to lower the copper concentration in advance (copper removal electrolytic treatment 3). Therefore, the clean electrolyte 5 after the liquid purification treatment has a lower copper concentration and contains excess free nitric acid than the electrolyte in the electrolytic bath 1 or the circulating bath 2.

この遊離の硝酸は陰極に析出した電解銅を溶出させてし
まうという問題点を有する。このような問題点を回避す
るためには、遊離硝酸の濃度を調整し、清浄電解液のP
Hを循環浴液のPHと同程度とする必要があるなめ、煩
雑な処理が必要となる。
This free nitric acid has the problem of eluting electrolytic copper deposited on the cathode. In order to avoid such problems, the concentration of free nitric acid should be adjusted and the P of the clean electrolyte should be adjusted.
Since it is necessary to make H the same level as the pH of the circulating bath liquid, complicated processing is required.

また、不純物として懸濁しているスライムは、従来、フ
ィルターによって除去されているために、フィルターの
目開きより小さいスライム粒子は除去されずに電解液中
に残存し続けるという問題点がある。
Furthermore, since slime suspended as an impurity is conventionally removed by a filter, there is a problem in that slime particles smaller than the opening of the filter are not removed and continue to remain in the electrolyte.

本発明はかかる問題点に鑑みてなされたものであって、
硝酸酸性浴による電解精製によって純度が99.999
重量%以上の高純度電解銅を煩雑な工程を要することな
く製造することができる高純度電解銅の製造方法を提供
することを目的とする。
The present invention has been made in view of such problems, and includes:
Purity is 99.999 by electrolytic refining using nitric acid bath.
It is an object of the present invention to provide a method for producing high-purity electrolytic copper, which can produce high-purity electrolytic copper of % by weight or more without requiring complicated steps.

[問題点を解決するための手段] 本発明に係る高純度電解銅の製造方法は、硝酸酸性の電
解液中にCu−モンモリロナイトを添加して分散させた
後、この電解液を濾過することによって電解液中の不純
物を除去し、次いで銅を電解精製することを特徴とする
[Means for Solving the Problems] The method for producing high-purity electrolytic copper according to the present invention includes adding and dispersing Cu-montmorillonite in a nitric acid acidic electrolyte, and then filtering the electrolyte. It is characterized by removing impurities in the electrolyte and then electrolytically refining copper.

[作用] 本発明においては、硝酸酸性の電解液中にCu−モンモ
リロナイトを添加して分散させることにより、電解液中
の不純物カチオンをモンモリロナイト層間に吸着させる
。次いで、この電解液を濾過すると、電解液中の不純物
が除去され、極めて清浄な電解液が容易に得られる。こ
の電解液を使用して銅を電解精製することにより、純度
が99゜999重量%以上の高純度電解銅が得られる。
[Function] In the present invention, impurity cations in the electrolyte are adsorbed between the montmorillonite layers by adding and dispersing Cu-montmorillonite in a nitric acidic electrolyte. Next, when this electrolytic solution is filtered, impurities in the electrolytic solution are removed, and an extremely clean electrolytic solution can be easily obtained. By electrolytically refining copper using this electrolytic solution, high purity electrolytic copper with a purity of 99.999% by weight or more can be obtained.

[実施例] 以下、添付の図面を参照して本発明の実施例について具
体的に説明する。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the accompanying drawings.

第1図は本発明の実施例方法を示す工程フロー図であり
、矢印は電解液の流れを示す。電解液は電解浴1と循環
浴2との間を循環しており、その一部の電解液が循環浴
2からCu−モンモリロナイト添加分散処理6に供給さ
れる。この処理6において、電解液中にCu−モンモリ
ロナイトが添加されて分散され、Cu−モンモリロナイ
ト中に不純物が吸着する。次いで、電解液は濾過処理7
により濾過されてCu−モンモリロナイトと共に不純物
が除去され、清浄液5は循環浴2に返戻される。このよ
うに、電解液は循環浴2から常に一定量が抽出されて清
浄化処理を受けるから、電解浴1内の電解液はその不純
物濃度が一定量以上には上昇せず、この電解液を使用し
て純度が99゜999重量%以上の高純度電解銅を繰り
返して製造することができる。
FIG. 1 is a process flow diagram showing an example method of the present invention, and arrows indicate the flow of the electrolyte. The electrolytic solution is circulated between an electrolytic bath 1 and a circulating bath 2, and a part of the electrolytic solution is supplied from the circulating bath 2 to the Cu-montmorillonite addition and dispersion treatment 6. In this process 6, Cu-montmorillonite is added and dispersed in the electrolytic solution, and impurities are adsorbed in the Cu-montmorillonite. Next, the electrolyte is subjected to filtration treatment 7.
The cleaning liquid 5 is filtered to remove impurities together with Cu-montmorillonite, and the cleaning liquid 5 is returned to the circulation bath 2. In this way, a certain amount of the electrolyte is always extracted from the circulating bath 2 and subjected to cleaning treatment, so the impurity concentration of the electrolyte in the electrolyte bath 1 does not rise above a certain amount, and this electrolyte is By using this method, high purity electrolytic copper having a purity of 99.999% by weight or more can be repeatedly produced.

Cu−モンモリロナイトは、下記(1)式の化学式に示
す化学構造を有し、第2図に示す層状構造中の交換性カ
チオンがCu、2+で置換されたものである。
Cu-montmorillonite has a chemical structure shown in the chemical formula (1) below, and has the exchangeable cation in the layered structure shown in FIG. 2 replaced with Cu and 2+.

[(○I() 4 S ia  (A!29,4Mgo
、66)020] 066−・Cu  ” o、33−
− (1)第2図において、Aは水酸基、Bはけい素、
Cは酸素、Dはアルミニム(部分的にマグネシウム)を
示し、Eが交換性カチオンである。この交換性カチオン
Eは眉間での位置が必ずしも定まっていない。
[(○I() 4 S ia (A!29,4Mgo
, 66) 020] 066-・Cu” o, 33-
- (1) In Figure 2, A is hydroxyl group, B is silicon,
C is oxygen, D is aluminum (partially magnesium), and E is an exchangeable cation. The position of this exchangeable cation E between the eyebrows is not necessarily fixed.

このCu−モンモリロナイトは酸性水溶液中においても
、眉間のCu 2+が他のカチオンとの交換能を有する
。従って、電解液中の不純物カチオンM”(Na”、A
l1”、Fe  2+等)とも、下記(2)式に示すカ
チオン交換反応を生じる。
In this Cu-montmorillonite, even in an acidic aqueous solution, Cu 2+ between the eyebrows has the ability to exchange with other cations. Therefore, the impurity cations M''(Na'', A
11'', Fe 2+, etc.), the cation exchange reaction shown in the following formula (2) occurs.

[(OH) 4 S is  (Aj?3.34Mgo
、66)020] ”66− ・cuo、332+ +
o 、 66M ”−[(OH) 4 S is  (
A−R3,s4Mgo、6a)020] ”66− ・
Mo、66”+0.33Cu  ”・・・・・・(2) このカチオン交換反応によって、多くの不純物カチオン
はモンモリロナイト層間に吸着される。
[(OH) 4 S is (Aj?3.34Mgo
, 66) 020] "66- ・cuo, 332+ +
o, 66M”-[(OH)4S is (
A-R3,s4Mgo,6a)020] ”66-・
Mo, 66"+0.33Cu" (2) Through this cation exchange reaction, many impurity cations are adsorbed between the montmorillonite layers.

このため、この電解液を濾過すると、電解液中の不純物
がモンモリロナイトと共に除去され、電解液が清浄化さ
れる。
Therefore, when this electrolytic solution is filtered, impurities in the electrolytic solution are removed together with montmorillonite, and the electrolytic solution is purified.

また、この反応はカチオン同士の交換反応であり、電解
液中のカチオン当量数の変化が無いことから、カチオン
交換反応によって新たな遊離硝酸は、生じな゛い。この
ためPHの変化は実質的に生じない。
Furthermore, since this reaction is an exchange reaction between cations and there is no change in the number of cation equivalents in the electrolyte, no new free nitric acid is generated by the cation exchange reaction. Therefore, there is virtually no change in pH.

Cu−モンモリロナイトは、酸性水溶液中で微細な粒子
としてコロイド状に分散するために、比表面積が大きく
、Cu−モンモリロナイト自身よりも更に粒子径が小さ
い微細なスライムも物理吸着することができる。そして
、このCu−モンモリロナイトが濾過処理によって電解
液中から回収されるときに、この微細なスライムも除去
される。
Since Cu-montmorillonite is colloidally dispersed as fine particles in an acidic aqueous solution, it has a large specific surface area and can physically adsorb fine slime whose particle size is even smaller than Cu-montmorillonite itself. When this Cu-montmorillonite is recovered from the electrolytic solution by filtration treatment, this fine slime is also removed.

Cu−モンモリロナイト粒子径は10μm以下とするの
が好ましい。この粒子径が10μmより大きい場合は、
電解液中に分散しているCu−モンモリロナイトの比表
面積は小さくなり、不純物カチオン及び微細スライムの
吸着機能が低下するなめである。
The Cu-montmorillonite particle size is preferably 10 μm or less. If this particle size is larger than 10 μm,
The specific surface area of Cu-montmorillonite dispersed in the electrolytic solution becomes small, and the adsorption function of impurity cations and fine slime decreases.

Cu−モンモリロナイトの添加量は、電解液1(当り1
0mg当量以上のカチオン交換能を有するものにするの
が好ましい。このカチオン交換能が10mg当量より低
い場合は、不純物カチオンを吸着する機能が小さく、所
望の清浄な電解液が得られないからである。
The amount of Cu-montmorillonite added is 1 part of electrolyte (1 part per part)
It is preferable to use one having a cation exchange capacity of 0 mg equivalent or more. This is because if the cation exchange capacity is lower than 10 mg equivalent, the ability to adsorb impurity cations is small and a desired clean electrolyte solution cannot be obtained.

次に、本発明方法により電解液を清浄化し、高純度電解
鋼を製造した実施例1乃至6について、その比較例1及
び2と共に説明する。下記第1表は、繰り返し電解精製
を行った後の硝酸酸性浴電解液の組成を示す。この電解
液に対して、上記第゛2表に示す条件で、1(ミリ当量
/g)のカチオン交換能を有するCu−モンモリロナイ
トを添加し、分散させ、次いで濾過処理して不純物カチ
オンを除去した。
Next, Examples 1 to 6 in which high-purity electrolytic steel was manufactured by cleaning the electrolyte by the method of the present invention will be described together with Comparative Examples 1 and 2. Table 1 below shows the composition of the nitric acid acid bath electrolyte after repeated electrolytic refining. To this electrolytic solution, under the conditions shown in Table 2 above, Cu-montmorillonite having a cation exchange capacity of 1 (milliequivalent/g) was added and dispersed, and then filtered to remove impurity cations. .

第1表 第2表 下記第3表は、この処理後の電解液中に含有されている
不純物カチオンの量を示す。そして、この清浄化処理後
の電解液を使用して、電流密度が0.7A/dm2、電
解時間が100時間の条件で銅を電解精製した。得られ
た電解銅の残留抵抗比(RRR)の測定結果を、前記第
3表に併せて示す。
Table 1, Table 2, and Table 3 below show the amount of impurity cations contained in the electrolyte after this treatment. Then, using the electrolytic solution after this cleaning treatment, copper was electrolytically refined under conditions of a current density of 0.7 A/dm2 and an electrolytic time of 100 hours. The measurement results of the residual resistance ratio (RRR) of the obtained electrolytic copper are also shown in Table 3 above.

第3表 RRRは、4.2にの電気抵抗率ρ4.2にと293に
の電気抵抗率ρ293にとの比ρ29.に/ρ4.2に
で表わされ、−船釣に純度の総合的な指標として使用さ
れている。このRRRの値が大きい程純度は高く、RR
Rが1000を超える場合は99.999重量%クラス
の純度と考えることができる。
Table 3 RRR shows the ratio of the electrical resistivity ρ4.2 of 4.2 to the electrical resistivity ρ293 of 293. It is expressed as /ρ4.2 and is used as a comprehensive indicator of purity in boat fishing. The larger the value of this RRR, the higher the purity;
When R exceeds 1000, it can be considered to have a purity of 99.999% by weight class.

第3表から判るように、実施例1乃至6は電解液中の不
純物カチオンの含有量が極めて少なく、その除去効果が
顕著である。このため、電解精製により高純度の電解銅
を得ることができる。
As can be seen from Table 3, in Examples 1 to 6, the content of impurity cations in the electrolytic solution is extremely small, and the removal effect is remarkable. Therefore, highly pure electrolytic copper can be obtained by electrolytic refining.

特に、実施例1乃至4のように、Cuモンモリロナイト
の平均粒子径が10μm以下であり、添加量が10g#
以上(10mg当量以上のカチオン交換能を得ることが
できるもの)である場合には、RRRは1400以上と
極めて高い値が得られる。
In particular, as in Examples 1 to 4, the average particle diameter of Cu montmorillonite is 10 μm or less, and the amount added is 10 g #
or more (one that can obtain a cation exchange capacity of 10 mg equivalent or more), an extremely high RRR value of 1400 or more can be obtained.

このように、本発明によれば、99.999重量%以上
の高純度銅を簡素な工程で得ることができる。これに対
し、比較例1及び2の場合はRRRが低く、高純度の電
解銅を得ることができない。
As described above, according to the present invention, high purity copper of 99.999% by weight or more can be obtained through a simple process. On the other hand, in the case of Comparative Examples 1 and 2, the RRR is low and high purity electrolytic copper cannot be obtained.

[発明の効果] 以上説明したように本発明によれば、硝酸酸性の電解液
中に、好ましくは、平均粒子径が10μm以下のCu−
モンモリロナイトを10mg当量以上のカチオン交換を
得ることができるように添加し、このCu−モンモリロ
ナイトを分散させた後、濾過するから、電解液中の不純
物カチオンを高効率で除去することができ、清浄な電解
液を得ることができる。このため、この電解液中で電解
精製することにより、純度が99.999重量%以上の
高純度電解銅を繰り返して製造することができる。
[Effects of the Invention] As explained above, according to the present invention, preferably Cu-
Montmorillonite is added to obtain cation exchange of 10 mg equivalent or more, and this Cu-montmorillonite is dispersed and then filtered, so impurity cations in the electrolyte can be removed with high efficiency, resulting in a clean solution. An electrolyte can be obtained. Therefore, by electrolytically refining in this electrolytic solution, high purity electrolytic copper having a purity of 99.999% by weight or more can be repeatedly produced.

【図面の簡単な説明】[Brief explanation of the drawing]

・ 第1図は本発明の実施例方法を示す工程フロー図、
第2図はCu−モンモリロナイトの構造を示す図、第3
図は従来方法を示す工程フロー図である。
- Figure 1 is a process flow diagram showing an example method of the present invention,
Figure 2 shows the structure of Cu-montmorillonite, Figure 3
The figure is a process flow diagram showing a conventional method.

Claims (3)

【特許請求の範囲】[Claims] (1)硝酸酸性の電解液中にCu−モンモリロナイトを
添加して分散させた後、この電解液を濾過することによ
って電解液中の不純物を除去し、次いで銅を電解精製す
ることを特徴とする高純度電解銅の製造方法。
(1) After Cu-montmorillonite is added and dispersed in a nitric acid acidic electrolyte, impurities in the electrolyte are removed by filtering the electrolyte, and then copper is electrolytically refined. A method for producing high-purity electrolytic copper.
(2)前記Cu−モンモリロナイトの平均粒子径が、1
0μm以下であることを特徴とする特許請求の範囲第1
項に記載の高純度電解銅の製造方法。
(2) The average particle diameter of the Cu-montmorillonite is 1
Claim 1 characterized in that it is 0 μm or less
A method for producing high-purity electrolytic copper as described in .
(3)Cu−モンモリロナイトの添加量は、電解液1l
当り10mg当量以上のカチオン交換能を有するもので
あることを特徴とする特許請求の範囲第1項に記載の高
純度電解銅の製造方法。
(3) The amount of Cu-montmorillonite added is 1 liter of electrolyte.
2. The method for producing high-purity electrolytic copper according to claim 1, which has a cation exchange capacity of 10 mg equivalent or more per copper.
JP62317880A 1987-12-16 1987-12-16 Production of high purity electrolytic copper Pending JPH01159392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317880A JPH01159392A (en) 1987-12-16 1987-12-16 Production of high purity electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317880A JPH01159392A (en) 1987-12-16 1987-12-16 Production of high purity electrolytic copper

Publications (1)

Publication Number Publication Date
JPH01159392A true JPH01159392A (en) 1989-06-22

Family

ID=18093087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317880A Pending JPH01159392A (en) 1987-12-16 1987-12-16 Production of high purity electrolytic copper

Country Status (1)

Country Link
JP (1) JPH01159392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895942A (en) * 2012-09-07 2013-01-30 常州大学 Method for synthesizing iron modified bentonite
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895942A (en) * 2012-09-07 2013-01-30 常州大学 Method for synthesizing iron modified bentonite
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device
CN104694978B (en) * 2013-12-05 2018-03-23 阳谷祥光铜业有限公司 The processing method and processing unit of a kind of waste electrolyte

Similar Documents

Publication Publication Date Title
JP4519775B2 (en) Ultra-high purity copper and method for producing the same
CN1273648C (en) Copper electroplating method, pure copper anode for copper electroplating, and semiconductor wafer plated thereby with little particle adhesion
JP2007231363A (en) Process for electrolytic refining of copper
JP2754030B2 (en) Manufacturing method of high purity tin
DE2548620C2 (en) Process for the production of retouched electrolytic copper by reducing electrolysis
JPH01159392A (en) Production of high purity electrolytic copper
CN105734291B (en) A kind of method that depth from zinc sulfate leaching liquid removes cobalt
CN101717960A (en) Method for purifying copper electrolyte by using chemical reduction method
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
CN114525549A (en) Preparation method of high-purity copper
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
JPH01159393A (en) Production of high purity electrolytic copper
JP2642230B2 (en) Manufacturing method of high purity tin
CN109208039B (en) Method for purifying aged copper electrolyte by diaphragm electrolysis method
CN1023131C (en) Method for separating gallium from alkaline solution
CN106319564B (en) A kind of method of the method and electrolytic metal ion of metallic copper, Treatment of Copper ion waste water
RU2093607C1 (en) Electrolytic method for purifying concentrated hydrochloric acid solutions of platinum containing impurities
PL70544B1 (en) Process for preventing supersaturation of electrolytes with arsenic,antimony and bismuth[us3696012a]
CN109183090A (en) A kind of processing method of acid bright tinning solution
JP2007290937A (en) Purification method of nickel chloride aqueous solution
JP5120663B2 (en) Method for producing bismuth oxide powder
JP5542605B2 (en) Method for electrolytic purification of silver
CN114522992B (en) Method for recycling aluminum wiredrawing lubricating liquid
JPWO2022186877A5 (en)
JP2594799B2 (en) Manufacturing method of low-purity high-purity electrolytic copper