[go: up one dir, main page]

JPH01159040A - Method and apparatus for measuring, mixing and distributing liquid - Google Patents

Method and apparatus for measuring, mixing and distributing liquid

Info

Publication number
JPH01159040A
JPH01159040A JP20274588A JP20274588A JPH01159040A JP H01159040 A JPH01159040 A JP H01159040A JP 20274588 A JP20274588 A JP 20274588A JP 20274588 A JP20274588 A JP 20274588A JP H01159040 A JPH01159040 A JP H01159040A
Authority
JP
Japan
Prior art keywords
valve
liquid
flow rate
metering
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20274588A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Chuzo Kobayashi
小林 忠造
Keizo Matsui
敬三 松井
Yasunori Ichikawa
靖典 市川
Shigeru Yamaguchi
滋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP20274588A priority Critical patent/JPH01159040A/en
Publication of JPH01159040A publication Critical patent/JPH01159040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To realize an improvement of measurement accuracy, an enlarge ment of measurement range, and a shortening and fixing of measurement time by carrying out a fuzzy inference etc., based on observed values obtained in the course of measurement and by varying sequentially a flow rate of a liquid to be measured with a special flow rate control valve. CONSTITUTION:In a closed loop control method for measurement of a liquid, a fuzzy control, a learning control or an optimal control of a liquid to be measured with a flow rate control valve 7 is carried out based on observed values of deviations and their differentials with respect to time between measurement values set arbitrarily beforehand and those really measured with measurement sensors 4 weighing the liquid. As the flow rate control valve 7, a control valve driven by a motor 11, which has a property of small and linear flow rate change with respect to a valve lift and, furthermore, a large maximum allowable flow rate, is used. It becomes possible, as a results, to shorten a measurement time while keeping an accuracy of measurement and to carry out a wide range measurement without being influenced by flow rate fluctuations due to disturbances.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体の計量混合分配方法及び装置に関し、更に
詳述すれば計量途中に得られる観測量に基いてファジィ
推論等を行い、特殊な流量制御弁を用いて被計量体の流
速を逐次変化させることにより、計量精度の向上、計量
範囲の拡大及び計量時間の短縮−走化を実現させる液体
の計量混合分配方法及び装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and device for measuring, mixing and distributing liquids, and more specifically, performs fuzzy inference etc. based on observed quantities obtained during measurement, The present invention relates to a liquid metering, mixing and dispensing method and device that improves metering accuracy, expands metering range, and shortens metering time by successively changing the flow rate of an object to be measured using a flow rate control valve.

更に上記の方法及び装置により、多種類の液をそれぞれ
単独又は累積計量後、混合して新たな混合液を作り、そ
の混合液を複数の容器に分配する液体の計量混合分配装
置に関するものである。
Furthermore, the present invention relates to a liquid measuring, mixing and dispensing device that uses the above-mentioned method and device to measure and cumulatively measure various types of liquids, mix them to form a new mixed liquid, and distribute the mixed liquid to a plurality of containers. .

〔従来の技術〕[Conventional technology]

液体計量においては、計量検出器として、重量式(ロー
ドセル等)、圧力式(差圧伝送器等)、容積式(オーバ
ル流量計等)等様々な方式がある。
In liquid measurement, there are various types of measurement detectors, such as weight type (load cell, etc.), pressure type (differential pressure transmitter, etc.), and volumetric type (oval flow meter, etc.).

しかし、いずれの方式においても、計量制御として流速
一定が前提であり、連続的に流速を可変させるクローズ
ドループの計量制御方式はなかった。
However, in both methods, the premise is that the flow rate is constant as metering control, and there has been no closed-loop metering control method that continuously varies the flow rate.

又、計量精度を向上させる方法として、下記の技術が実
施されていた。
Additionally, the following techniques have been implemented as a method for improving measurement accuracy.

■ 流量制御弁における流速を2段階に分割して、計量
設定値の近傍にて、遅い流速側に切り換えて計量する技
術(例えば特開昭56−148019号公報)。
(2) A technique in which the flow rate in a flow rate control valve is divided into two stages, and the flow rate is switched to a lower flow rate side near the metering set value for measurement (for example, Japanese Patent Application Laid-Open No. 148019/1983).

■ 計量停止条件として、流れ込み量(落差量とも言わ
れる)があり、この量を予測して事前に計量を停止させ
て計量する技術(例えば特開昭57−29114号公報
)。
(2) The measurement stop condition includes the amount of inflow (also called the amount of head), and a technique for predicting this amount and stopping the measurement in advance for measurement (for example, Japanese Patent Application Laid-Open No. 57-29114).

しかしながら、従来の計量制御では、流速一定或いは前
述したとおり流速を2段階に分割して切換えているもの
の、ある範囲内では2tfflを一定に固定しての計量
のため、下記の欠点があった。
However, in conventional metering control, although the flow rate is kept constant or the flow rate is divided into two stages and switched as described above, the metering is carried out by fixing 2tffl within a certain range, which has the following drawbacks.

(1)計量精度:外乱による流速変動や、液物性(粘度
など)の違いによる流速変動により、精度が保証されな
い事態を生じる。
(1) Measurement accuracy: Accuracy may not be guaranteed due to flow rate fluctuations due to disturbances or due to differences in liquid physical properties (viscosity, etc.).

例えば、重力移送の場合、上流側容器内の被計量体の残
存量(以下、本明細書ではこの残存量をヘッド差と呼ぶ
。)により、流出する被計量体に流速変動を生じるが、
ヘッド差の変化が大きいと流速がある条件範囲をはみ出
し、精度が悪化する。
For example, in the case of gravity transfer, the remaining amount of the object to be measured in the upstream container (hereinafter, this remaining amount is referred to as the head difference) causes a flow velocity fluctuation in the object to be measured flowing out.
If the change in head difference is large, the flow velocity will go outside a certain range of conditions, and accuracy will deteriorate.

また、このことは、上流側容器のヘッド差の変化中に制
限を生じさせる結果となり、ヘッド差を所定範囲内に維
持しておくためには、計量の停止或いは上流側容器に適
宜原材料を補給しなければならず、二次的に原材料のロ
スの発生につながる。
Additionally, this results in restrictions during changes in the head difference of the upstream container, and in order to maintain the head difference within a predetermined range, it is necessary to stop metering or replenish raw materials appropriately to the upstream container. This leads to secondary loss of raw materials.

(2)計量範囲;流速を制限しているため、計量可能な
最小計量値及び最大計量値の比は通常l:5程度である
(2) Measuring range: Since the flow rate is restricted, the ratio between the minimum measurable value and the maximum measurable value is usually about 1:5.

流速2段階設定タイプでも、最大l:10程度となる。Even with the two-step flow rate setting type, the maximum is about 1:10.

このように、計量範囲が狭い理由は、計量停止しても、
系の応答遅れによる流れ込み量があり、この量が流速に
より決定されるため計量設定値が小さい場合に、この量
が精度の保証範囲を越え、その結果計量レンジが制限さ
れる事となる。
The reason why the weighing range is so narrow is that even when the weighing is stopped,
There is an inflow amount due to the response delay of the system, and this amount is determined by the flow velocity, so if the measurement setting value is small, this amount will exceed the guaranteed accuracy range, and as a result, the measurement range will be limited.

多品種対応の製造プラントにおいては、同一原材料にお
いても計量レンジとして最大1:100程度のものが要
求され、計量設定値範囲に応して計量装置を数種選択す
る必要がある。
In a manufacturing plant that handles a wide variety of products, a maximum weighing range of approximately 1:100 is required even for the same raw material, and several types of weighing devices must be selected depending on the weighing set value range.

(3)計量時間二計量設定値により計量時間が左右され
る。
(3) Measuring time 2. Measuring time is influenced by the metering setting value.

計量設定値が小さい場合は、計量時間は短く、大きい場
合は長くなる。
If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long.

計量設定値が小さい場合は、系の動作時間のバラツキが
あり、計量精度を保証できず、計量範囲を狭くすること
にもつながる。
If the measurement setting value is small, the operating time of the system will vary, making it impossible to guarantee measurement accuracy and leading to a narrowing of the measurement range.

更に、計量された複数種の被計量体を混合して新たな品
種を生産するシステム全体から見ると、製造能力が計量
時間に左右され、特に、パイプレスの移動方式の製造シ
ステムにおいては、搬送能力を制限することとなる。
Furthermore, from the perspective of the entire system that mixes multiple types of weighed objects to produce new products, the manufacturing capacity is affected by the weighing time, and in particular, in pipeless mobile manufacturing systems, the conveyance capacity will be restricted.

本出願人は最近上記欠点を解消し外乱による流速変動に
影響されない高精度な計量を実現すると共に、ワイドレ
ンジな計量範囲を確保し、且つ計置設定値の大小に左右
されずに短時間計量を実現する液体計量方法を提供する
ために、下記の技術を開発し出願した。
The present applicant has recently solved the above drawbacks and realized high-accuracy measurement that is not affected by flow velocity fluctuations caused by disturbances, secured a wide measurement range, and achieved short-time measurement without being influenced by the magnitude of instrument settings. In order to provide a liquid measuring method that achieves this, we have developed and applied for the following technology.

即ち、任意に設定される計量設定値と帰還される実計量
値とにより流速を変化させるクローズドループの液体計
量方法において、液流量を制限する開度調整弁の流量特
性と計量設定値とによりファジィ推論を行い、計量開始
前の弁の初期開度を決定すると共に、逐次観測される実
計量値にもとすいてファジィ制御を行い、弁開度を変化
させることを特徴とする液体計量方法(特願昭62−1
06412号)である。
In other words, in a closed-loop liquid metering method in which the flow rate is changed by an arbitrarily set metering set value and a fed-back actual metered value, fuzzy A liquid measuring method characterized in that the initial opening degree of the valve before the start of metering is determined by making inferences, and the fuzzy control is performed based on the actual measured values that are sequentially observed to change the valve opening degree ( Special application 1986-1
No. 06412).

又従来、複数種の液体の計量混合及び分配装置に適用さ
れる計量装置としては、高精度な計量を達成するために
、流速可変に設けたものはなく、夫々の液に対し流速を
制限した夫々の計量装置(計量タンク、計量検出器及び
流量制御弁等を含めたもの)が用いられていた。
In addition, conventional measuring devices applied to measuring, mixing, and dispensing devices for multiple types of liquids have not been equipped with a variable flow rate in order to achieve highly accurate metering, but have limited the flow rate for each liquid. Respective metering devices (including metering tanks, metering detectors, flow control valves, etc.) were used.

また、従来タイプの液体の計量混合及び分配装置におい
ては、複数の供給容器から1つの受液容器に液を計量供
給し混合する場合、それぞれの供給容器に付属して計量
装置を具備している。
In addition, in conventional liquid metering, mixing and dispensing devices, when liquids are metered and mixed from multiple supply containers to one liquid receiving container, a measuring device is attached to each supply container. .

例えば、容積計量式を用いた場合、第11図に図示する
様に、2液体に対しては2個の計量装置を使用し、流れ
込み鼠の予測制御のため、2ループの制御機能を有する
For example, when a volumetric measuring system is used, as shown in FIG. 11, two measuring devices are used for two liquids, and a two-loop control function is provided for predictive control of inflow.

特開昭57−163426号公報ではそれぞれ「調液装
置J及び「液体の供給方法」が開示されており、これら
公報では複数液の流量が共通の計量装置により計量され
ているものの、7iL量を制限する液供給手段はそれぞ
れ独立の制御ループにより制御されている。
JP-A-57-163426 discloses a "liquid preparation device J" and a "liquid supply method", and although the flow rates of multiple liquids are measured by a common measuring device in these publications, the amount of 7 iL is Each limiting liquid supply means is controlled by an independent control loop.

その理由としては、液の流量は、供給容器内の液足、バ
ルブ流量特性、液物性等により異なるため、同一の制御
a能では高精度な計量が期待できないからである。
The reason for this is that since the flow rate of the liquid varies depending on the liquid foot in the supply container, the valve flow rate characteristics, the physical properties of the liquid, etc., highly accurate metering cannot be expected with the same control ability.

このことは、タンク計量方式においても同様であり、各
県に付属するアクチュエータの閉止弁はそれぞれ独立ル
ープの制御系で制御される必要がある。
The same applies to the tank metering system, and the shutoff valves of the actuators attached to each prefecture must be controlled by independent loop control systems.

また、高精度な計量を実現するため、流速の異なるバル
ブを並列に設置して、所定の計量偏差にて切替る方法が
あるが、この場合でもill ?18 m 能として、
2ループの制御が必要である。
In addition, in order to achieve highly accurate metering, there is a method of installing valves with different flow rates in parallel and switching at a predetermined metering deviation, but even in this case, ill? 18 m As a Noh performance,
Two loops of control are required.

ここで、2ループの制御機能と言う表現を使用している
のは、例えば、分散型制御装置等を使用した場合、計量
は1つの制御装置内で処理可能であり、制御装置が2個
必要であるとは言えないからである。しかし、人出力点
数、ソフトウェアからみた場合、2個の制御装置と言え
る。
Here, we use the expression 2-loop control function because, for example, when using a distributed control device, weighing can be processed within one control device, and two control devices are required. This is because it cannot be said that it is. However, from the point of view of human output points and software, it can be said that there are two control devices.

又従来は液体51星混合装置と81計分配装置とはユ1
呈装置も制御装置も全く関係なく別々に行なわれていた
。又その計量精度も容積式?IL ’!計やバルブのO
N10 F F制御等による大まかなものであった。
Also, conventionally, the liquid 51 star mixing device and the 81 meter distributing device were
The presentation and control devices were completely unrelated and were carried out separately. Also, is the measurement accuracy also volumetric? IL'! Gauge and valve O
This was mainly due to N10 FF control.

また更に多数の液体に加えて多数の粉体を混合溶解して
使用するバッチ製造プロセスでは、これらの液体及び粉
体の物性が異なるので、同一容器にて累積計量を行うこ
とが出来ない場合が多い。
Furthermore, in batch manufacturing processes that mix and dissolve many powders in addition to many liquids, cumulative measurements may not be possible in the same container because the physical properties of these liquids and powders are different. many.

従って、その場合第12図に示すような複数の混合容器
又は受入容器(計量ホッパ、計量タンク)を有して、混
合可能な液種及び籾種は同−受入容器又は混合容器(計
量タンク、計量ホッパ)にて累積計量し、混合不可な液
種及び籾種は別に受入容器(計量ホッパ又は計量タンク
)を有するような製造システムとなる。このため、更に
下流側に反応、調製等のための混合容器(調製タンク)
が必要であり、複雑なシステムとなる。
Therefore, in that case, a plurality of mixing containers or receiving containers (weighing hoppers, measuring tanks) as shown in FIG. The production system has a separate receiving container (a weighing hopper or a measuring tank) for liquid types and rice seeds that cannot be mixed. For this reason, a mixing container (preparation tank) for reaction, preparation, etc. is further downstream.
is required, resulting in a complex system.

反応調製等のための混合容器(調製タンク)が固定式の
製造システムでは、多品種の製造を行う場合、品種の内
容に応じて、設備化する必要があり、特に高精度の計量
のためには前述のとおり多数の受液容器(計量タンク)
、混合容器(調製タンク)及びそれに付属する配管計量
装置、制御装置、付属バルブ等が必要となる。この場合
、それらの設備はある品種では使用されるが、他の品種
では使用されない装置を生じることがあり、非常に、無
駄の多いシステムとなり、設備のイニシャルコストが増
大する。更に、多目的用途の製造システムが近年叫ばれ
ているが、固定式の製造システムでは、配管系の変更が
必要となり、又その付帯装置の変更等が必要であり、今
以上に複雑な製造システムとなる(例えば特開昭56−
74715号、特開昭56−155412号、特開昭5
7−72015号、特開昭54−81559号各公報参
照)。
In manufacturing systems with fixed mixing containers (preparation tanks) for reaction preparation, etc., when manufacturing a wide variety of products, it is necessary to install equipment according to the content of the products, especially for high-precision weighing. As mentioned above, there are many liquid receiving containers (measuring tanks).
, a mixing container (preparation tank) and its attached piping metering device, control device, attached valves, etc. are required. In this case, such equipment may result in devices that are used in some types but not in others, resulting in a very wasteful system and increasing the initial cost of the equipment. Furthermore, although multi-purpose manufacturing systems have been in demand in recent years, fixed manufacturing systems require changes to the piping system and associated equipment, making them even more complex. (For example, Japanese Patent Application Laid-open No. 1983-
No. 74715, JP-A-56-155412, JP-A-5
7-72015 and Japanese Patent Application Laid-Open No. 54-81559).

そこで、近年混合容器、(計おタンク、調製タンク)を
移動する移動式のパンチ製造システムが提案されている
Therefore, in recent years, mobile punch manufacturing systems that move mixing containers (metering tank, preparation tank) have been proposed.

しかし、従来の製造システムにこのシステムを採用した
場合、計量設定値の大小にて、計量時間が異なり、計量
設定値が大きいと、計量に時間がかかり、移動式の製造
システムにおける容器の搬送時間に制限を加えることと
なる。このため従来装造システムでは、搬送時間に制約
を与えないために必要数の計量装置を設置しているが、
これは移動式製造システムの利点に相反することとなる
However, when this system is adopted in a conventional manufacturing system, the measurement time differs depending on the size of the measurement setting value, and if the measurement setting value is large, it takes time to weigh, and it takes time to transport containers in a mobile manufacturing system. will be subject to restrictions. For this reason, in conventional packaging systems, the required number of weighing devices is installed in order not to limit the transportation time.
This is contrary to the advantages of mobile manufacturing systems.

また、このようなシステムではステーションでの滞在時
間を更に延長させる結果となる(計量設定値の範囲、計
量時間の制限、計量精度の条件等々から、非常に多くの
計量装置を必要とする。そのため、配管の結合等の動作
時間が増加する)。
In addition, such a system results in an even longer stay at the station (requires a large number of weighing devices due to the range of weighing settings, limitations on weighing time, weighing accuracy conditions, etc.) (increases operating time for pipe connections, etc.).

例えば写真感光材l′4の製造プロセスにおいては、感
光材料を取扱うので遮光性を保たねばならず、配管を結
合する箇所の増大によるシステムの複雑化、また搬送サ
イクルの変化は製品の性能に影きする。
For example, in the manufacturing process of photographic photosensitive material l'4, since the photosensitive material is handled, it must be kept light-shielded, the system becomes more complex due to an increase in the number of piping connections, and changes in the conveyance cycle affect the performance of the product. Cast a shadow.

更に混合した液の計量分配装置としては、第11図、第
12図に示すように計量混合装置とは計量制御系統が全
く関係なく、各分配容器(受液容器)に夫々計量装置を
有し、そのため液位計又は時間計量の様な節単にして大
まかな計量方法・制御方法が行なわれていた。
Furthermore, as a measuring and dispensing device for mixed liquid, as shown in FIGS. 11 and 12, the metering control system is completely unrelated to the measuring and mixing device, and each distribution container (receiving container) has a measuring device. Therefore, simple and rough measurement and control methods such as liquid level meters or time measurement were used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このファジィ制御等を用いるクローズドループ制御によ
る液体の計は方法は従来の方法に比し、格段と優れた方
法であり、外乱による流速変動に影響されずワイドレン
ジな計量範囲を短時間で計量することを可能にした。
Liquid metering using closed-loop control using fuzzy control is a much superior method compared to conventional methods, and it is not affected by flow velocity fluctuations due to disturbances and can measure a wide measuring range in a short time. made it possible.

しかしながら、使用する流量制御弁によって流量制御弁
のサイズが大きい場合は、最後の微量な計量精度を出す
ためには計量時間を多く要し、又流量制御弁のサイズが
小なる場合は全体の足を計量するために計量時間を必要
とした。
However, if the size of the flow control valve is large depending on the size of the flow control valve used, it will take a long time to measure to achieve the last minute measurement accuracy, and if the size of the flow control valve is small, the overall Weighing time was required to weigh.

そこで本発明の第一の目的は本発明者が先に出願した(
特願昭62−188734号)性能の優れた新規な流量
制御弁を、前記クローズドループ制御と組合わせて用い
ることにより、計量精度を保って更に計量時間を短縮し
、外乱による流速変動に影響されず、ワイドレンジの計
量範囲を計量することを可能にした液体肝吸方法を用い
た液体計量混合分配方法を提供することにある。
Therefore, the first purpose of the present invention is to
By using a new flow control valve with excellent performance in combination with the closed-loop control described above, the measurement accuracy can be maintained, the measurement time can be further shortened, and the measurement time can be reduced without being affected by flow velocity fluctuations caused by disturbances. First, it is an object of the present invention to provide a liquid measuring, mixing and dispensing method using a liquid liver suction method that enables metering over a wide measuring range.

又、従来の多種の液体の計量混合及び計量分配装置では
(粉体を同時に取り扱う場合も含めて)、供給流速一定
を前提とした計9制御のため、以下の欠点を有する。
In addition, the conventional measuring mixing and dispensing apparatus for various types of liquids (including when handling powder at the same time) has the following drawbacks because a total of nine controls are performed on the assumption that the supply flow rate is constant.

■ 計量精度:外乱や液体の物性変化による流速変動に
より、精度が保証されない事態を生じる。
■ Measurement accuracy: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances or changes in the physical properties of the liquid.

亦液体の重力移送の場合、例えば供給容器内の液体の残
存量により、流出する液体の流速は変動するが、残存量
の変化が大きいと流速がある条件範囲をはみ出すため、
計量精度を悪(した。
In the case of gravity transfer of liquid, for example, the flow rate of the outflowing liquid varies depending on the amount of liquid remaining in the supply container, but if the remaining amount changes significantly, the flow rate will exceed a certain range of conditions.
Poor weighing accuracy.

また、このことは、供給容器の液体量をある幅内で制限
し、容器内液体を常にある一定量以上に確保する必要が
あり、供給容器内残存液のロスを生じてランニングコス
トを増加させた。この現象は粉体の場合も同様であり、
参考迄に粉体は又物性にて移送する装置が異なり、例え
ば顆粒状の粉体では流動性がよいため、ダンパー等を使
用し、流動性の悪い粉体ではスクリューフィーダ等を使
用する。しかし、粉体の流れはそれだけでは一律に決定
出来ず粉体の塊性とか粉体形状や振動等の外乱にて流れ
は変化し計量精度に影響を及ぼす。
Additionally, this means that it is necessary to limit the amount of liquid in the supply container within a certain range and ensure that the amount of liquid in the container is always above a certain level, which causes loss of remaining liquid in the supply container and increases running costs. Ta. This phenomenon is the same for powder,
For reference, powders are transported by different devices depending on their physical properties; for example, granular powders have good fluidity, so a damper or the like is used, while powders with poor fluidity use a screw feeder or the like. However, the flow of powder cannot be uniformly determined by this alone, and the flow changes depending on the lumpiness of the powder, the shape of the powder, and disturbances such as vibration, which affects measurement accuracy.

■ 計量範囲:計量範囲が狭い。■ Measuring range: The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み量があり、この量が供給流速により決定されるため
、流速一定のもとでは、計量範囲を狭めることにより、
許容できる流れ込み量を保証している。従って、同一液
体の計量であっても、計量設定値が大きく相異する場合
はおのおの適性な計量範囲の計量装置が必要であり、数
置数が増加する。
The reason for this is that even if the metering is stopped, there is an inflow amount due to the response delay of the system, and this amount is determined by the supply flow rate. Therefore, when the flow rate is constant, by narrowing the metering range,
Guarantees an acceptable flow rate. Therefore, even if the same liquid is to be measured, if the measurement setting values are significantly different, a measuring device with an appropriate measurement range is required for each, and the number of measurements increases.

■ 計量時間二計量設定値により計量時間が左右される
。計量設定値が小さい場合は、計量時間は短く、大きい
場合は長くなる。従って、製造サイクル上適性な計量時
間の計量装置が計量設定値に応じて必要であり、装置数
が増加する。
■Measuring time 2.Measuring time is affected by the weighing setting value. If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long. Therefore, a measuring device with a measuring time suitable for the manufacturing cycle is required depending on the measurement setting value, and the number of devices increases.

また、従来の液体の計量混合及び分配装置は、前述した
理由により、独立に制御される計量装置を、供給容器毎
に多数台設置し、かつ製造能力の制限による最適計量時
間毎に設置しているため、システムを複雑にすると共に
、非常に多くの計量袋:〃が設備化された。又分配装置
としては特に計量精度が高くなく液の無駄が多く、計量
時間も多く要した。
Furthermore, for the reasons mentioned above, conventional liquid metering, mixing and dispensing devices require a large number of independently controlled metering devices to be installed for each supply container, and are installed at each optimal metering time due to manufacturing capacity limitations. This made the system complicated and required a large number of measuring bags. Moreover, as a dispensing device, the measuring accuracy was not particularly high, resulting in a large amount of liquid being wasted, and a long measuring time was required.

そこで本発明の第二の目的は、上記事情に基づいてなさ
れたもので、既に本出願人が先に出願したファジィ制御
による液体計量混合装置(特願昭62−115894号
)を用いて、本発明の液体の計量混合分配装置において
外乱や被計量物の物性値の変化による流速変動に影♂さ
れない高精度な計量を実現すると共に、広範囲な計量範
囲を確保し、かつ計量設定値の大小に左右されないで短
時間計量を実現することは、前記第一の目的と同様で、
更に多種の液体の計量混合分配装置を一貫したシステム
に構成し、設備の筒素化並びに製造能力の増強と、原材
料ロスの低減を計り、■ 装置台数の低域によるイニシ
ャルコストの低減、 ■ 装置台数の低減によるメンテナンス工数低減、 ■ 装置台数の低減による信顛性向上による故障低減 ■ 原材料ロスの低減によるランニングコスト低減の経
済効果の高い液体の計量混合分配方法及び装置を提供す
ることにある。
Therefore, the second object of the present invention has been made based on the above circumstances, and the present invention has been made by using a liquid measuring and mixing device using fuzzy control (Japanese Patent Application No. 115894/1989), which the present applicant had previously applied for. The liquid metering, mixing and distributing device of the invention achieves highly accurate metering that is unaffected by flow rate fluctuations caused by disturbances or changes in the physical properties of the object to be measured, secures a wide metering range, and adjusts the size of the metering setting value. Achieving short-time weighing without being affected is the same as the first objective,
Furthermore, by configuring measuring, mixing and dispensing equipment for various types of liquids into a consistent system, we are able to increase the number of units in equipment, increase production capacity, and reduce raw material loss. The object of the present invention is to provide a method and device for measuring, mixing, and dispensing liquids that have high economic effects such as: (1) reducing maintenance man-hours by reducing the number of devices; (2) reducing failures by improving reliability by reducing the number of devices; and (2) reducing running costs by reducing raw material loss.

〔課題を解決するための手段] 本発明の上記目的は、 (1)  任意に設定される計量設定値と被計量体を計
測する計量検出器からの実計量値との偏差及び偏差の時
間的変化量の観測量から、液体の流量制御弁のファジィ
制御、学習制御又は最適制御を行うクロ−ズトループの
液体の計量制御方法であって、該液体の流量制御弁とし
て弁揚程に対し流量の変化率が小さく且つ直線的な性質
を有し、更に最大流量が大である電動機制御型の流量制
御弁を用いるることを特徴とする液体の計量混合分配方
法。
[Means for Solving the Problems] The above-mentioned objects of the present invention are as follows: (1) Deviation between an arbitrarily set measurement setting value and an actual measurement value from a measurement detector that measures an object to be measured, and the deviation over time. A closed-loop liquid metering control method that performs fuzzy control, learning control, or optimal control of a liquid flow control valve from the observed amount of change, the method controlling the flow rate with respect to the valve lift as the liquid flow control valve. 1. A method for metering, mixing and dispensing liquids, characterized by using a motor-controlled flow control valve having a small rate and linear properties and a large maximum flow rate.

(2)液体を収容した供給容器と、該供給容器に付属す
る流量制御弁と、液体を受ける受液容器と、該受液容器
又は前記供給容器に付属して被計量体の計量を観測する
計量検出器とを有し、任7きに設定される計量設定値と
計量検出器からの実計量値に基いて偏差及び偏差の時間
的変化量の観測量から流量制御弁のファジィ制御、学習
制御又は最適制御を行うクローズドループの液体及び粉
体の計量制御装置であって、液体の流量制御弁が弁昇降
の動力として電動機を使用し、該電動機の回転を送りネ
ジ機構と連結板とにより直線状の動きに変換し、該連結
板には弁軸を取付け、該連結板の昇降にしたがって該弁
軸が上下する構造を有し、該弁軸を中心とする人口側弁
箱と該入口側弁箱に連結する出口側弁箱とを具備し、先
細り円錐台形の弁当り面との間隙を調節する円筒状又は
円錐状の弁頭の収容空間を該出口側弁箱内に設け、該弁
頭表面と弁座との間で構成する弁開度面禎を、弁揚程に
対し流量の変化率が小さく且つ直線的になるように弁頭
形状を決定し、弁座開口が充分全開になる迄の弁揚程を
該人口側弁箱に設けた流量制御弁であることを特徴とす
る液体の計量混合分配装置。
(2) Observing the measurement of a supply container containing a liquid, a flow control valve attached to the supply container, a liquid receiving container for receiving the liquid, and an object to be measured attached to the liquid receiving container or the supply container. Fuzzy control and learning of the flow control valve is performed based on the measured value set at any time and the actual measured value from the measured value from the measured value and the observed amount of deviation and the amount of change over time of the deviation. A closed-loop metering control device for liquids and powders that performs control or optimal control, in which a liquid flow rate control valve uses an electric motor as the power for lifting and lowering the valve, and the rotation of the electric motor is controlled by a feed screw mechanism and a connecting plate. A valve shaft is attached to the connecting plate, and the valve shaft moves up and down as the connecting plate goes up and down, and the artificial side valve box and the inlet center are connected to the valve shaft. an outlet side valve box connected to the side valve box; a space for accommodating a cylindrical or conical valve head that adjusts the gap with the tapered truncated conical valve face; provided in the outlet side valve box; The valve head shape is determined so that the rate of change in flow rate is small and linear with respect to the valve lift, and the valve opening surface formed between the valve head surface and the valve seat is fully opened. 1. A liquid metering, mixing and dispensing device, characterized in that it is a flow rate control valve provided in the artificial side valve box with a valve lift up to the extent that the valve lift reaches .

(3)該供給容器が複数であり、該受液容器が単数又は
複数であって、計量制御装置が所定の流量制御弁に出力
を切替える切替装置を有することを特徴とする請求項(
2)記載の液体の計量混合分配装置。
(3) The supply container is plural, the liquid receiving container is single or plural, and the metering control device has a switching device for switching the output to a predetermined flow rate control valve (
2) A metering, mixing and dispensing device for the liquid described above.

(4)該受液容器の少くとも一つが移動装置を有するこ
とを特徴とする請求項(3)記載の液体の計量混合分配
装置によって達成される。
(4) This is achieved by the liquid metering, mixing and dispensing device according to claim (3), characterized in that at least one of the liquid receiving containers has a moving device.

本発明においてファジィ推論には、計量検出器の動特性
を考慮して、直接観測或いは算出された量と、ローパス
フィルタ処理を施した量を制御演算処理に使用する。
In the present invention, in the fuzzy inference, a directly observed or calculated quantity and a quantity subjected to low-pass filter processing are used for control calculation processing, taking into account the dynamic characteristics of the measurement detector.

制御方式として、ファジィ制御を使用する場合、ファジ
ィ推論においてのメンバーシップ関数について物理量に
対応する軸を片対数表現する。
When using fuzzy control as a control method, the axis corresponding to the physical quantity is expressed semi-logarithmically for the membership function in fuzzy inference.

流量制御弁の初期開度設定として、弁の流量特性と計量
設定値によりファジィ推論を行い、決定する。その後フ
ァジィ制御方法にて操作量を算出し、操作端へ出力する
The initial opening of the flow rate control valve is determined by performing fuzzy inference based on the flow rate characteristics of the valve and the metering set value. After that, the operation amount is calculated using the fuzzy control method and output to the operation terminal.

本発明において流量制御弁として弁揚程に対する流量の
変化率が小さく且つ直線的な性質を有し、更に最大流量
が大である電動機制御型流量制御弁とは、具体的には、
弁昇降の動力として電動機を使用し、該電動機の回転を
送りネジ機構と連結板とにより直線状の動きに変換し、
該連結板には弁軸を取付け、該連結板の昇降に従って該
弁軸が上下する構造を有し、該弁軸を中心とする入り口
側弁箱と該入口側弁箱に連結する出口側弁箱とを具備し
、先細り円錐台形の弁当り面との間隙を調節する円筒状
又は円錐状の弁頭の収容空間を該出口側弁箱内に設け、
該弁頭表面と弁座との間で構成する弁開度面積を、弁揚
程に対し流量の変化率が小さく且つ直線的になるように
弁頭形状を決定し、弁座開口が充分全開になる迄の弁揚
程を該入口弁箱に設けたことを特徴とする流量制御弁で
ある(特願昭62−188734号参照)。
In the present invention, a motor-controlled flow control valve that has a small and linear property of changing the flow rate with respect to the valve lift and has a large maximum flow rate is specifically defined as a flow control valve.
An electric motor is used as the power for raising and lowering the valve, and the rotation of the electric motor is converted into linear movement by a feed screw mechanism and a connecting plate,
A valve shaft is attached to the connecting plate, and the valve shaft moves up and down as the connecting plate goes up and down. An inlet valve box centered on the valve shaft and an outlet valve connected to the inlet valve box. A housing space for a cylindrical or conical valve head that adjusts the gap with the tapered truncated conical valve face is provided in the outlet side valve box,
The valve head shape is determined so that the valve opening area formed between the valve head surface and the valve seat has a small and linear rate of change in flow rate with respect to the valve lift, and the valve seat opening is fully opened. This is a flow control valve characterized in that the inlet valve box is provided with a valve lift of up to 100 mm (see Japanese Patent Application No. 62-188734).

以下、図面により本発明の請求項(1)、 (2)の実
施態様を詳説する。
Hereinafter, embodiments of claims (1) and (2) of the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の1実施態様に適用される本発明の要
点となる液体計量混合分配装置の計量装置部分を例示し
たものである。
FIG. 1 illustrates a measuring device portion of a liquid metering, mixing and dispensing device which is the main point of the present invention and is applied to one embodiment of the present invention.

上流側の供給容器lに充填した材料を、受液容器2に移
送することにより、受液容器2(又は供給容器1)に付
属した計量検出器(ロードセル)4にて重量を計量する
場合について述べる。
Regarding the case where the material filled in the supply container l on the upstream side is transferred to the liquid receiving container 2, and the weight is measured using the weighing detector (load cell) 4 attached to the liquid receiving container 2 (or the supply container 1). state

供給容器1と受液容器2との配管経路には、流速を可変
する流量制御弁7、DRV (ドレインバルブ)9.5
PV(ストップバルブ)8及びCDV(洗浄廃液バルブ
)10とが配置されている。受液容器2(又派供給容器
1)には、被計量体の重量を観測する計量検出器として
のロードセル4が配置されており、ロードセル4はロー
ドセルアンプ5を通じて計量制御装置3と接続されてい
る。
The piping route between the supply container 1 and the liquid receiving container 2 includes a flow rate control valve 7 that varies the flow rate, and a DRV (drain valve) 9.5.
A PV (stop valve) 8 and a CDV (cleaning waste liquid valve) 10 are arranged. A load cell 4 serving as a weighing detector for observing the weight of the object to be weighed is arranged in the liquid receiving container 2 (or supplying container 1), and the load cell 4 is connected to the weighing control device 3 through a load cell amplifier 5. There is.

また、計量制御コI装置3は操作器を構成するサーボド
ライバ6及び流量制御弁7に接続されている。
Further, the metering control device 3 is connected to a servo driver 6 and a flow rate control valve 7 that constitute an operating device.

このように構成された液体計量装置による被計量体の肝
性は、計量制御装置3に計量設定値が設定され、DRV
 (ドレインバルブ)9、CDV(洗浄廃液バルブ)1
0が計量系ラインに切り換えられて開始される。計量制
御装置3により計量開始が指示されると、SPV (ス
トップバルブ)8が開となり、流量制御弁7が、予め定
められた開度となるように、計量制御装′v、3からサ
ーボドライバ6に位置指令が伝送され、サーボモータ1
1を駆動して指示された位置に流量制御弁7の弁ボート
を設定して、開度を調整し、供給容器1の液体は、受液
容器2に移送され始める。
The quality of the object to be measured by the liquid measuring device configured as described above is determined by setting the metering setting value in the metering control device 3 and controlling the DRV.
(Drain valve) 9, CDV (Cleaning waste valve) 1
0 is switched to the metering system line to start. When the metering control device 3 instructs to start metering, the SPV (stop valve) 8 is opened, and the servo driver is operated from the metering control device 'v, 3 so that the flow rate control valve 7 has a predetermined opening degree. The position command is transmitted to servo motor 1.
1 to set the valve port of the flow rate control valve 7 at the indicated position and adjust the opening degree, and the liquid in the supply container 1 begins to be transferred to the liquid receiving container 2.

受液容器2(又は供給容器l)の計量検出器4は、移送
された液体の重量を検知し、その値をロードセルアンプ
5を通じて計量制御装置3にフィードバックする。
The measurement detector 4 of the liquid receiving container 2 (or the supply container 1) detects the weight of the transferred liquid, and feeds back the value to the measurement control device 3 through the load cell amplifier 5.

計量制御装置3は、この実重量値から、設定値との偏差
、偏差の時間的変化量を演算し、ファジィ制御、学習制
御又は最適制御に基づき、適切な流速となる弁の開度指
令(位置1旨令)を演算にて求め、流量制御弁7に新た
な開度指令(位置指令)を指示し、流速を変更する。
The weighing control device 3 calculates the deviation from the set value and the amount of change in the deviation over time from this actual weight value, and based on fuzzy control, learning control, or optimal control, issues a valve opening command ( A new opening command (position command) is calculated to the flow rate control valve 7, and the flow rate is changed.

以上の様に、計量検出器4の観測量を基に流量制御弁7
の開度をクローズドループ(第2図)にて制御し、結果
として連続的又は所定時間間隔毎に近似し、計量偏差が
小さくなると、流量制御弁7は開度を絞り、微小流速と
なる。よって、計量停止後の流れ込み量は小さくなり、
計量精度は、例えばヘッド差等の外乱による流速変動に
左右されず向上する。流■制御n方法としては、ここに
述べた弁開度の調節による方法の他、供給容器側に加圧
手段を設けて圧力制御を行う方法によってもよい。
As described above, based on the observed amount of the metering detector 4, the flow rate control valve 7
The opening degree is controlled in a closed loop (FIG. 2), and as a result, it is approximated continuously or at predetermined time intervals, and when the metering deviation becomes small, the flow rate control valve 7 throttles the opening degree, and the flow rate becomes minute. Therefore, the amount of inflow after the measurement stops becomes smaller.
The measurement accuracy is improved regardless of flow velocity fluctuations caused by disturbances such as head differences. As the flow control method, in addition to the method of adjusting the valve opening described here, a method of controlling the pressure by providing a pressurizing means on the supply container side may be used.

又、本発明の計量制御装置3は、計量範囲において、計
い設定値とかプロセスの系により流量制御弁7の動作が
変わり、計量設定値の大小を問わず同−計量制御装置に
て計量ができ、計量範囲が拡大する。但し、計量検出器
4の静的精度内であり、計量検出器4が受液容器2に設
置された場合は加算計啜となり、供給容器1に設置され
た場合は減算計量を行う。更に、針足時間においても、
流l辻制御弁7の動作パターンが変化し、計量設定値の
大小を問わず、はぼ同一の短時間の計量ができる。
Further, in the metering control device 3 of the present invention, the operation of the flow control valve 7 changes depending on the meter setting value and the process system in the metering range, and the metering control device can perform metering regardless of the size of the metering setting value. This expands the measurement range. However, this is within the static accuracy of the metering detector 4, and if the metering detector 4 is installed in the liquid receiving container 2, it will be an additive metering, and if it is installed in the supply container 1, it will be a subtractive metering. Furthermore, in terms of needle foot time,
The operation pattern of the flow control valve 7 changes, and regardless of the magnitude of the measurement setting value, almost the same short-time measurement can be performed.

次に、本発明に使用する液体計量方法について説明する
Next, a liquid measuring method used in the present invention will be explained.

第2図は、本発明に使用する計量方法に関わる制御プロ
セスをファジィ制御する場合について示している。
FIG. 2 shows a case where the control process related to the weighing method used in the present invention is fuzzy controlled.

第1図及び第2回において、計量設定値が計量制御装置
3に与えられると、計量制御装置3において第3図の弁
の流量特性からファジィ推論による弁の初期開度が算出
される。計量制御装置3は、計上開始と同時に初期開度
設定値を、サーボドライバ6を通じて流量制御弁7のサ
ーボモータ11に指示する。これにより液が供給容器1
から流出し、ロードセル4の実計量値が変化する。また
、計量制御装置3は所定の制御周期にてロードセルアン
プ5よりの実計量値を繰り返し計測しており、計量制御
装置3の中のファジィ演算部(3−1>が、計量設定値
と実計5i値との偏差及び偏差の時間的変化量を算出す
ると共に、これらの量にローパスフィルタ処理を施した
観測量を算出し、定められたファジィルールに基づき弁
開度の推論演算を行う。この際、ファジィ推論によるメ
ンバーシップ関数は、偏差量及び偏差の時間的変化量の
各物理量に対応する軸の分割が物理量の小さい区間を細
かくした、例えば片対数とする第4図のような形を持た
せる。これは、計量精度向上並びに短時間計量を目的と
するためであり、偏差量が大であれば、制御性の良い事
は必要なく、偏差量が小である場合に制御精度を向上さ
せる必要があるからでである。このことは、−次フィル
タ処理機能にも当てはまり、偏差量等が小さい場合に一
次フィルタの偏差量等を使用し、計量検出器の動特性を
緩和して計量精度を向上させる。
In FIGS. 1 and 2, when the metering set value is given to the metering control device 3, the metering control device 3 calculates the initial opening degree of the valve by fuzzy inference from the flow rate characteristics of the valve shown in FIG. The metering control device 3 instructs the servo motor 11 of the flow rate control valve 7 through the servo driver 6 to set the initial opening degree at the same time as accounting starts. This causes the liquid to flow into supply container 1.
The actual measured value of the load cell 4 changes. In addition, the weighing control device 3 repeatedly measures the actual weighing value from the load cell amplifier 5 at a predetermined control cycle, and the fuzzy calculation section (3-1> in the weighing control device 3 calculates the weighing set value and the actual weighing value. In addition to calculating the deviation from the total 5i value and the amount of change over time in the deviation, the observed amount is calculated by applying low-pass filter processing to these amounts, and inference calculation of the valve opening degree is performed based on a predetermined fuzzy rule. At this time, the membership function based on fuzzy inference is created in the form shown in Figure 4, in which the division of the axes corresponding to each physical quantity of the amount of deviation and the amount of change in deviation over time is made into smaller sections of small physical quantities, such as semi-logarithm. This is for the purpose of improving measurement accuracy and short-time measurement.If the amount of deviation is large, it is not necessary to have good controllability, but if the amount of deviation is small, it is necessary to improve control accuracy. This also applies to the -order filter processing function, which uses the deviation amount of the first-order filter when the deviation amount, etc. is small, and relaxes the dynamic characteristics of the weighing detector. Improve weighing accuracy.

次に第5図は本発明の流量制御弁の1実施例の側面断面
図である。
Next, FIG. 5 is a side sectional view of one embodiment of the flow control valve of the present invention.

サーボモータ11の回転により送りネジ12が回転し連
結板13を昇降させる。連結板13には弁軸14が取付
けられており、連結板13の昇降に従って弁軸14が上
下する。
The rotation of the servo motor 11 causes the feed screw 12 to rotate and move the connecting plate 13 up and down. A valve shaft 14 is attached to the connecting plate 13, and the valve shaft 14 moves up and down as the connecting plate 13 moves up and down.

先細り円誰台形の当り面15の先に円筒状又は円錐状の
弁頭16を出口側弁箱17内に有し、該弁!l116の
表面と弁座18との間で構成する弁揚程に対する流量の
変化率を第3図のグラフ(C)に示すように弁揚程Hに
対し流量の変化率が小さく且つ直線的になる様に弁頭1
6の形状が定められている。
A cylindrical or conical valve head 16 is provided in the outlet side valve box 17 at the tip of the tapered trapezoidal contact surface 15, and the valve! The rate of change in the flow rate with respect to the valve lift formed between the surface of the l116 and the valve seat 18 is such that the rate of change in the flow rate with respect to the valve lift H is small and linear, as shown in graph (C) in Figure 3. nibento 1
6 shapes are defined.

弁座18の開口が充分全開になる迄弁揚程19(If)
を入口側弁箱20に有し、・弁昇降の動力としてサーボ
モータ11を使用する。
Valve lift height 19 (If) until the opening of the valve seat 18 is fully opened.
is provided in the inlet side valve box 20, and a servo motor 11 is used as the power for raising and lowering the valve.

弁昇降手段として、ここでは電動機駆υ1と送りネジ機
構との組合せについて述べたが、電気信号を直線運動に
変換するものであれば他の方法でもよく、例えばエアサ
ーボシリンダにより直接連結板13を昇降させる方法で
もよい。
As the means for raising and lowering the valve, a combination of the electric motor drive υ1 and the feed screw mechanism has been described here, but other methods may be used as long as the electric signal is converted into linear motion. For example, the connecting plate 13 may be directly moved by an air servo cylinder. A method of raising and lowering may also be used.

弁頭16の詳細は第6図(a)、 (b)に示す様に、
細長い円錐状(a)又は円筒状[有])により第3図に
示すように弁揚程に対する流用の変化率が小さく且つ直
線的になる様に弁頭の形状が加工されている。
The details of the valve head 16 are as shown in FIGS. 6(a) and (b).
The shape of the valve head is shaped into an elongated conical shape (a) or cylindrical shape (a) so that the rate of change in flow relative to the valve lift is small and linear, as shown in FIG.

次に、第7図により本発明の請求項(3)の実施態様を
説明する。
Next, an embodiment of claim (3) of the present invention will be explained with reference to FIG.

複数の供給容器21a、21bに原材料を充填し、単数
の受液容器である混合容器22(第1次の受液容器であ
り第2次の供給容器になる)に付属する計量検出器とし
てロードセル4を設置して、下流に2個の分配容器(第
2次の受液容器)32a、32bがある構成とする。供
給容器21a、21bの2液を計量し、その混合液を下
流の分配容器32a、32bに分配する。
A plurality of supply containers 21a and 21b are filled with raw materials, and a load cell is used as a measurement detector attached to a single liquid receiving container, the mixing container 22 (the first liquid receiving container and the second supply container). 4 is installed, and there are two distribution containers (secondary liquid receiving containers) 32a and 32b downstream. The two liquids in the supply containers 21a and 21b are measured, and the mixed liquid is distributed to downstream distribution containers 32a and 32b.

計量制御装置3に製造条件(供給容器21aの液の計量
、続いて供給容器21bの液の計量等々の条件)が指定
される。
Manufacturing conditions (conditions for measuring the liquid in the supply container 21a, then measuring the liquid in the supply container 21b, etc.) are specified to the metering control device 3.

計量制御装置3に計量設定値が設定され、DRv(ドレ
インバルブ)9a、9b、CDV (洗浄、廃液バルブ
)10が計量系ラインに切り換えられる。計量開始が指
示されると、spv (ストップバルブ)8が開となり
、供給容器21aに付属する流計制御弁7aが、予め定
められた開度となるように、計量制御装置3からサーボ
ドライバ6に位置指令が伝送され、サーボモータを駆動
して指示された位置に流量制御弁7の弁ボートを設定し
て、開度を調整し、原材料の流れを引き起こす。
A metering set value is set in the metering control device 3, and DRv (drain valves) 9a, 9b and CDV (cleaning, waste liquid valve) 10 are switched to the metering system line. When the start of metering is instructed, the spv (stop valve) 8 is opened, and the servo driver 6 is sent from the metering control device 3 so that the flowmeter control valve 7a attached to the supply container 21a has a predetermined opening degree. A position command is transmitted to the servo motor to set the valve boat of the flow control valve 7 at the commanded position, adjust the opening degree, and cause the flow of the raw material.

これにより、供給容器21aの原材料は、混合容器22
に移送され始める。
As a result, the raw materials in the supply container 21a are transferred to the mixing container 22.
begins to be transferred to

混合容器22の計量検出器ロードセル4は、移送された
原材料の重量を検知し、その値をロードセルアンプ5を
通じて計量制御装置3にフィードバックする。
The weighing detector load cell 4 of the mixing container 22 detects the weight of the transferred raw material, and feeds back the value to the weighing control device 3 through the load cell amplifier 5.

計量制御装置3は、この実計量値から、設定値との偏差
、偏差の時間的変化量等々を演算し、ファジィ制御の制
御方式に基づき、次の適切な流速となる開度指令(位置
指令)を指示し、流速を変更する。
The metering control device 3 calculates the deviation from the set value, the amount of change in the deviation over time, etc. from this actual measured value, and based on the fuzzy control method, issues an opening command (position command) that will give the next appropriate flow velocity. ) and change the flow rate.

以上の様に、計量検出器ロードセル4の観測量を基に、
定められた制御周期にて流量制御弁7aの開度をクロー
ズドループにて制御し、結果として流速を制御する。
As mentioned above, based on the observed amount of the weighing detector load cell 4,
The opening degree of the flow rate control valve 7a is controlled in a closed loop at a predetermined control cycle, and as a result, the flow rate is controlled.

計量偏差が小さくなると、流量制御弁7aは開度を絞り
、微小流速となる。偏差、偏差の時間的変化量が小さく
なり、偏差がある値以下になると、針掛停止し、5PV
8 aは閉となり、流量制御弁7aは全閉方向に移動す
る。このとき、流速は微小であり、流れ込み量は微小で
ある。よって、計量停止後の流れ込み星は小さくなり、
計量精度は、流速変動に依存せず向上する。更に、計量
範囲において、計量設定値とかプロセスの系により流量
制御弁7aの動作が変わり、計量設定値の大小を問わず
同一計量装置にて計量ができ、計量範囲が拡大する。但
し、計量検出器の静的精度内である。
When the metering deviation becomes smaller, the flow rate control valve 7a narrows its opening and the flow rate becomes minute. When the deviation and the amount of change over time of the deviation become smaller and the deviation becomes less than a certain value, the needle will stop hooking and the 5PV
8a is closed, and the flow rate control valve 7a moves in the fully closed direction. At this time, the flow velocity is minute and the amount of inflow is minute. Therefore, after the measurement stops, the falling stars become smaller,
Metering accuracy is improved independent of flow rate fluctuations. Further, in the measurement range, the operation of the flow rate control valve 7a changes depending on the measurement setting value and the process system, and regardless of the magnitude of the measurement setting value, the same measuring device can perform measurement, thereby expanding the measurement range. However, it is within the static accuracy of the weighing detector.

又、計量時間においても、流量制御弁7aの動作パター
ンが変化し、計量設定値の大小を問わず、はぼ同一の短
時間の計量ができる。
Also, during the metering time, the operation pattern of the flow rate control valve 7a changes, and regardless of the magnitude of the metering setting value, almost the same short-time metering can be performed.

次に、計量制御装置3は供給容器21aより21bの液
の計量に切りかわる。切替装置26はタンク21a側の
流量制限弁7aよりタンク21b側の流計制御弁7bに
切替える。計量設定値は予め設定されており、計量開始
指令に従い上記と同様な制御を行い計量する。制御装置
内の制御機能は同一であり、操作端の流量制御弁7b及
び5Pvabに出力信号が切替装置26にて切替えられ
るのみである。
Next, the metering control device 3 switches to metering the liquid in the supply container 21b rather than the supply container 21a. The switching device 26 switches from the flow rate limiting valve 7a on the tank 21a side to the flow meter control valve 7b on the tank 21b side. The measurement setting value is set in advance, and the same control as above is performed in accordance with the measurement start command to perform measurement. The control functions within the control device are the same, and only the output signals to the flow rate control valves 7b and 5Pvab at the operating end are switched by the switching device 26.

液は、連結管23を共有して、混合容器22に移液され
る。この連結管の意味は、配管口径を大きくして、配管
中の残液を自然落下させる。従って、計量精度を向上さ
せるために、本連結管の配管長は極力短いことが必要で
ある。しかし、本連結管を使用せずに、混合容器22に
各々接続する方法もある。この場合、混合容器22の大
きさが有限であり、複数の液を受液する場合、配管構成
が困難となる設備上の問題がある。
The liquid is transferred to the mixing container 22 by sharing the connecting pipe 23. The meaning of this connecting pipe is to increase the diameter of the pipe and allow the remaining liquid in the pipe to fall naturally. Therefore, in order to improve measurement accuracy, it is necessary that the length of this connecting pipe be as short as possible. However, there is also a method of connecting each to the mixing vessels 22 without using the main connecting pipe. In this case, the size of the mixing container 22 is limited, and when receiving a plurality of liquids, there is an equipment problem in that piping configuration is difficult.

以上の説明は、液体における加算式計量(混合容器に貯
めて計量する方式)の−例であり、図中のDRV9a、
9b、CDVIOSC[V24(洗浄開始弁) 、AD
V25 (エア抜き弁)は、付随的な洗浄、廃液等のた
めの弁である。
The above explanation is an example of additive metering (method of storing and measuring liquid in a mixing container), and the DRV9a in the figure,
9b, CDVIOSC [V24 (cleaning start valve), AD
V25 (air bleed valve) is a valve for incidental cleaning, waste liquid, etc.

従って、例えば供給容器21aの液を計量し、その後洗
浄を行い、次に供給容器21bの液を計量する場合につ
いて、供給容器21aの液の計量終了後、配管のみの洗
浄であれば、CDVl 0を廃液側に切替えて、CIV
24を開として洗浄する。この時、ADV25は閉、5
PV8 aとSP■8bも閉とする。ある所定の時間洗
浄すると、CTV24は閉となり、ADV25は開とな
る。
Therefore, for example, in the case where the liquid in the supply container 21a is measured, then cleaned, and then the liquid in the supply container 21b is measured, if only the piping is cleaned after measuring the liquid in the supply container 21a, the CDVl 0 Switch to the waste liquid side, and
24 and wash. At this time, ADV25 is closed, 5
PV8a and SP8b are also closed. After cleaning for a certain predetermined time, the CTV 24 is closed and the ADV 25 is opened.

その後、ADV25は閉となり、次の供給容器21bの
計量に入る。
Thereafter, the ADV 25 is closed and the next supply container 21b is weighed.

次に、供給容器21a、21bの液を受液容器である混
合容器が累積計量し受液したのち、混合工程に入る。所
定の混合条件終了後、下流の受液容器である分配容Wi
f32a、32bに定められた景に従い、供給容器であ
る混合容器22より液が分配される。計ffi it、
!+御装置3は計量検出器4の計量を減算計量機能に変
更され供給容器である混合容器2の底弁を開とする。こ
れによって受入容器に付属する流量制御弁27a、27
bまで液が満たされ、そのため混合容器22の重量変化
が生じる。従って、計量制御装置3は、自動的に、下流
容器に分配する直前に、現在の重量を見掛は上、ゼロと
して減算計量機能し、流量制御弁27a又は27bに切
替装置26で切替えられる。分配の動作は、加算計計時
の機能と全く変わらず、所定の分配星を目標にして、計
量動作を行う。本例の場合は、流量制御弁27aのみ計
量動作を行い、残りの星を流量制御弁27bを使用して
分配するだけで計量精度がi)られる。
Next, after the mixing container serving as a liquid receiving container cumulatively measures and receives the liquid in the supply containers 21a and 21b, a mixing step is started. After completing the predetermined mixing conditions, the distribution volume Wi, which is the downstream liquid receiving container,
The liquid is distributed from the mixing container 22, which is a supply container, according to the conditions defined in f32a and f32b. Total ffi it,
! The control device 3 changes the measurement of the measurement detector 4 to a subtraction measurement function and opens the bottom valve of the mixing container 2, which is a supply container. As a result, the flow control valves 27a, 27 attached to the receiving container
The mixing container 22 is filled with liquid up to a point b, which causes a change in the weight of the mixing container 22. Therefore, the metering control device 3 automatically performs a subtractive weighing function with the current weight apparently above and zero, and is switched to the flow control valve 27a or 27b by the switching device 26 immediately before dispensing to the downstream container. The distributing operation is completely the same as the time counting function of an adder, and the measuring operation is performed with a predetermined distributing star as the target. In the case of this example, only the flow rate control valve 27a performs the metering operation, and the remaining stars are distributed using the flow rate control valve 27b, thereby improving the metering accuracy i).

第8図にその制御ブロック図を示す。FIG. 8 shows its control block diagram.

本発明において混合容器(第1次の受液容器で第2次の
供給容器)としては同一容器にて計量する液種の数が多
数あってもよい。しかし、システム上、同一計量制御装
置にて制御する流量制御弁の数としては、約8個程度が
最適であろう。
In the present invention, a large number of liquid types may be measured in the same mixing container (first liquid receiving container and second supplying container). However, in terms of the system, the optimum number of flow rate control valves to be controlled by the same metering control device is about eight.

連結管によるシステム構成もあるが、配管中の残量が特
に問題となる超高精度な計量が必要な場合は、受液容器
に単独に配管を接続してもよい。
Although there is a system configuration using a connecting pipe, if ultra-high precision metering is required where the remaining amount in the pipe is a particular problem, the pipe may be connected to the liquid receiving container independently.

分配のための流量制御弁の幾何学配置について、第7図
に示す配置となるため、極力混合容器(供給容器でもあ
る)の底弁と流量制御弁の距離を短くする必要がある。
Regarding the geometrical arrangement of the flow rate control valve for distribution, since the arrangement is shown in FIG. 7, it is necessary to shorten the distance between the bottom valve of the mixing container (also the supply container) and the flow rate control valve as much as possible.

本発明において計量のための計量検出器として、ロード
セルを例として挙げたが、他の検出器にても可能である
。例えば、差圧伝送器等の圧力検出器、各種レベル計等
がある。ここで、計量範囲はその検出器の静的精度によ
り異なる。
In the present invention, a load cell is used as an example of a measurement detector for measurement, but other detectors may also be used. For example, there are pressure detectors such as differential pressure transmitters, various level meters, and the like. Here, the measurement range depends on the static accuracy of the detector.

本発明の請求項(3)、 (4)の構成要素について詳
しく説明する。
The components of claims (3) and (4) of the present invention will be explained in detail.

(1)供給容器:計量される供給液体を貯蔵する容器。(1) Supply container: A container that stores the supply liquid to be metered.

計量混合の場合は原料タンク、分配の場合は混合容器が
これに相当する。容器の容量は、製造に適したスケール
を要する。本発明にて、供給容器の残量の制限は無く、
理論的には残量0まで計量できる。又、液体の物性値例
えば、粘度等に影響されず、流出可能な物性値を有して
いれば、どんな液体でも残量0まで計量可能である。
In the case of measuring and mixing, this corresponds to the raw material tank, and in the case of dispensing, it corresponds to the mixing container. The capacity of the container requires a scale suitable for manufacturing. In the present invention, there is no limit to the remaining amount of the supply container,
Theoretically, it is possible to measure until the remaining amount is 0. In addition, any liquid can be measured to 0 remaining amount as long as it is not affected by the physical properties of the liquid, such as viscosity, and has physical properties that allow it to flow out.

(2)流量制御弁:供給容器数に対応した個数分の流量
制御弁を存し、弁の開度を変化させる事で供給流速を広
範囲に亘って変化させる。粉体を同時に扱う場合には、
粉体用としてダンパー及びスクリューフィーダ、ロータ
リー式が適している。
(2) Flow rate control valve: There are a number of flow rate control valves corresponding to the number of supply containers, and by changing the opening degree of the valve, the supply flow rate can be varied over a wide range. When handling powder at the same time,
Dampers, screw feeders, and rotary types are suitable for powder.

また、前記流量制御弁の各流量特性は回転数または弁開
度0%近傍で原材料の流出を全く生じないで、lO%程
度近傍から流量を生じる。
Further, each flow rate characteristic of the flow rate control valve does not cause any outflow of the raw material at around 0% of rotation speed or valve opening, but generates a flow rate around 10%.

これらの流量制御弁の駆動としては、例えばACサーボ
モータ等がある、 流れを停止させる閉止弁としてはストップバルブが用い
られるが、粉体の場合はシャッターゲートを用いる。
These flow rate control valves are driven by, for example, an AC servo motor.A stop valve is used as a shutoff valve to stop the flow, but in the case of powder, a shutter gate is used.

(3)混合容器(第1次受液容器で分配の場合は第2次
供給容器に相当する):製造スケールに適した容量の容
器。混合可能な液については、累積計量にて計量する。
(3) Mixing container (corresponds to the secondary supply container in the case of distribution using the primary receiving container): A container with a capacity suitable for the manufacturing scale. For liquids that can be mixed, measure by cumulative measurement.

計量移液毎の洗浄を行えば、混合不可の場合でも単独に
同一容器にて計量できる。攪拌機を設置することで混合
を行う。
If the liquids are washed after each transfer, even if they cannot be mixed, they can be measured individually in the same container. Mixing is performed by installing a stirrer.

(4)計量検出器:受入容器又は供給容器、第7及び第
8図の場合は混合容器に設置され、1台の計量検出器に
よって複数の供給容器よりの液及び粉体の計量更に混合
した液の分配の計量値を検出する部をいう。累積計量(
加算・戚M、)が可能である。ロードセル、差圧伝送器
、レベル計等タンク計量方式を用いる。計量検出器は、
混合容器に取付ける場合と、混合容器を計量台に乗せる
場合がある。
(4) Weighing detector: Installed in the receiving container or the supply container, or in the case of Figures 7 and 8, the mixing container, and one measuring detector measures and mixes liquid and powder from multiple supply containers. This refers to the part that detects the measured value of liquid distribution. Cumulative weighing (
Addition/relative M,) is possible. Tank measurement methods such as load cells, differential pressure transmitters, and level meters are used. The weighing detector is
Sometimes it is attached to the mixing container, and sometimes the mixing container is placed on a weighing platform.

(5)計量制御装置:流速を変化させるクローズドルー
プ制御の計量制御装置であり、当初流肪大より始まり、
計量値より偏差と偏差の時間的変化を演算し、例えばフ
ァジィ制御により流量を変化させるクローズドループ制
御である。この制御は学習制御又は最適制御によっても
よい。これによって広い計量範囲に亘って、精度よく、
極めて短時間に計量が完了する。又切替装置付にするこ
とによって、複数の液体及び粉体及びそれらの混合液を
同一混合容器にて、又1台の計量検出器にて累積計量(
加算・減算とも)が可能であり、その対象になる供給容
器数としては約8個が最適であろう。これによって装置
数が低減出来る。
(5) Metering control device: It is a closed-loop control metering control device that changes the flow rate, starting from a large flow fat.
This is closed-loop control in which the deviation and the temporal change in the deviation are calculated from the measured value, and the flow rate is changed by, for example, fuzzy control. This control may be based on learning control or optimal control. This allows for high precision over a wide measuring range.
Weighing is completed in an extremely short time. In addition, by installing a switching device, multiple liquids, powders, and their mixtures can be cumulatively measured (
Both addition and subtraction) are possible, and the optimum number of supply containers to be subjected to this is approximately 8. This allows the number of devices to be reduced.

(6)切替装置:複数の供給容器及び分配容器(第2次
の受液容器)用の@星制御弁及びその他粉体の流量調節
器を、−台の駆動制御装置にて制御するための装置であ
り、計量制御装置の構成の一部である。これによって流
砒制御弁1個宛に計量制御部、駆動制御部を取付けなく
て済む。
(6) Switching device: Control valves for multiple supply containers and distribution containers (secondary liquid receiving containers) and other powder flow rate regulators with - drive control devices. It is a device and is part of the configuration of a metering control device. This eliminates the need to install a metering control section and a drive control section for each arsenic flow control valve.

(7)移動装置:受液容器又は混合容器(第1次受液容
器で第2次供給容器)を搬送させるための移動装置であ
る。搬送手段としては、無人搬送車、コンヘア等がある
。又、容器自体に搬送機能を付属させる場合と、容器を
移動装置と分離させて乗り降りさせる場合とある。
(7) Moving device: A moving device for transporting a liquid receiving container or a mixing container (primary liquid receiving container and secondary supply container). Examples of the transport means include automatic guided vehicles, conhairs, and the like. In addition, there are cases in which the container itself is provided with a transport function, and cases in which the container is separated from a moving device for getting on and off the container.

(8)分配容器(第2次受液容器):混合された液を必
要足受は取る容器であり、製造システムにより適切な個
数を設置する。場合によっては移動装置を設けてもよい
(8) Distribution container (secondary liquid receiving container): This is a container that receives the mixed liquid as needed, and an appropriate number is installed depending on the manufacturing system. A moving device may be provided depending on the case.

本発明の請求項(4)の基本構成要素は、上記の通りで
あるが、本発明の要点は流速を可変するファジィ制御等
によるクローズドループの計量制御装置を用いる事と、
前記計量制御装置が多数の流量制御弁に出力の切替装置
を有する事、更に混合容器(受液容器)が移動装置を有
すること、及び計量混合と計量分配を1つの計量制御装
置で行うことにある。
The basic components of claim (4) of the present invention are as described above, but the main point of the present invention is to use a closed-loop metering control device using fuzzy control or the like that varies the flow rate,
The metering control device has an output switching device for a large number of flow rate control valves, the mixing container (liquid receiving container) has a moving device, and the metering and mixing and metering and dispensing are performed by one metering control device. be.

また本発明は液体だけでな(液体及び粉体の計量におい
ても用いることができるので、洗浄等のため、種々の付
帯装置を設置する場合がある。例えば、供給容器、受液
容器(粉体を含める場合受入容器という)等にスプレー
ボール等を設置し、配管途中に切り替え弁を設置する。
In addition, the present invention can be used not only for measuring liquids (liquids and powders), so various auxiliary devices may be installed for cleaning etc. For example, a supply container, a liquid receiving container (for powder If the water is included, a spray ball, etc. will be installed in the receiving container), and a switching valve will be installed in the middle of the piping.

更に保温のため恒温槽等からの温水循環を行う等である
Furthermore, hot water is circulated from a constant temperature bath to maintain heat.

本発明の請求項(4)の実施態様を図によって更に詳し
く説明する。
The embodiment of claim (4) of the present invention will be explained in more detail with reference to the drawings.

なお、本実施態様では、混合容器が計量検出器を備え、
かつ移動装置が自己走行式のものについて述べる。
In addition, in this embodiment, the mixing container is equipped with a measurement detector,
The following describes a self-propelled mobile device.

第9図に示す様に、M個の液体薬品と、それに付随して
N個の粉体薬品の供給容器と、L個の分配容器がある場
合について考える。これら供給容器内の原料は相互の汚
染等が問題にならないとする。製造する品種数が多数あ
るとするが、どの製造品種においても薬品の使用総数は
M+N個以下である。従来の製造システムでは、移動式
、固定式を問わず、計量範囲、計量時間、計量精度から
、同種であっても、製造品種専用に薬品の供給容器、及
び計量検出器を必要としM+N個以上の装置台数になっ
た。しかし、本発明では、流速可変のクローズドループ
の計量制御装置を採用し、かつ該計量制御装置がファジ
ィ制御することによって、計り範囲、計4r1時間、計
量精度に対する心配は不要になり供給容器21は、常時
M十N個の台数で良く、また、計量検出器4は液又だけ
でなく場合によっては粉体も汚染の問題がなければ、搬
送能力から決定した非常に少ない台数で良い。
As shown in FIG. 9, consider a case where there are M liquid medicines, N powder medicine supply containers, and L distribution containers. It is assumed that mutual contamination of the raw materials in these supply containers will not be a problem. Assume that there are a large number of products to be manufactured, but the total number of chemicals used for each product is less than or equal to M+N. Conventional manufacturing systems, regardless of whether they are mobile or fixed, require a chemical supply container and a weighing detector for each product type, even if they are of the same type, due to the weighing range, measuring time, and weighing accuracy. The number of devices has increased. However, in the present invention, by employing a closed-loop metering control device with a variable flow rate and by performing fuzzy control, there is no need to worry about the metering range, total 4r1 time, or metering accuracy, and the supply container 21 , the number of metering detectors 4 may be M10N at any time, and if there is no problem of contamination of not only the liquid but also the powder in some cases, the number of metering detectors 4 may be very small determined from the conveyance capacity.

ここでは、1台の混合容器(受入容器でもある)22及
び1台の計量検出器4(ロードセル)の場合を想定する
。供給容器21については、M十N個の台数で良いが、
計量検出器4付混合容器(受入容器)22の数は薬品調
製時間、品種の製造スケール等から判断して決定される
ため、1台以上で(M+N)台より少ない台数を必要と
する場合もある。
Here, a case is assumed where there is one mixing container (also a receiving container) 22 and one weighing detector 4 (load cell). Regarding the supply containers 21, the number may be M10N, but
The number of mixing containers (receiving containers) 22 with weighing detectors 4 is determined based on the drug preparation time, manufacturing scale of the product, etc., so there may be cases where one or more but fewer than (M+N) devices are required. be.

計量検出器4は、第10図に示す制御ブロックの内容の
計量制御装置3に連結されており、該計量制御装置3の
出力は切替装置26の切替により複数の流量制御弁(1
〜M)だけでなく、粉体流〒制御用スクリューフィーダ
(1〜N)及び分配容器用流量制御弁(1〜L)にも選
択出力される。
The metering detector 4 is connected to a metering control device 3 having the contents of the control block shown in FIG.
~M) as well as the powder flow control screw feeders (1~N) and distribution container flow rate control valves (1~L).

つまり同一の制御アルゴリズムにて多数の薬品とそれら
を混合した′a、(総数M+N+L)の計量が同一の混
合容器(受入容器兼供給容器)22にて行うことが出来
る。
That is, using the same control algorithm, it is possible to measure a large number of chemicals and a mixture of them 'a (total number M+N+L) in the same mixing container (receiving container and supply container) 22.

前記流量制御弁(1〜 M)、スクリューフィーダ(1
〜N)及び流量制御弁(1〜L )により示される流量
制御弁7及び27は、それぞれの流量特性が、例えば流
量制御弁(1〜M)、(1〜L)では、イコールパーセ
ント特性を有すると共に、弁開度0%近傍で全閉とし、
10%程度近傍から液が流れ出すように設けられている
The flow control valve (1 to M), the screw feeder (1
The flow rate control valves 7 and 27 indicated by the flow rate control valves (1 to N) and the flow rate control valves (1 to L) have respective flow characteristics such that, for example, the flow rate control valves (1 to M) and (1 to L) have equal percentage characteristics. At the same time, the valve is fully closed when the opening degree is near 0%,
It is provided so that the liquid flows out from around 10%.

粉体用スクリューフィーダ(+−N)は回転数を可変す
る事により粉体送流速度を広範に亘って変化させること
が出来るものが用いられる。
A powder screw feeder (+-N) is used that can vary the powder feeding speed over a wide range by varying the rotation speed.

前記計量制御装置3は、ファジィ演算部3−1、ファジ
ィ制御部3−2とを含み、前記流量制御弁7(1〜M)
、27(1〜L)及びスクリューフィーダ(1〜N)の
流量特性と、計量検出器4により得られる計量値及び計
量設定値とに基づいてファジィ制御を行い、前記流■制
御弁?(1−M)27(1〜L)の弁開度及び前記スク
リューフィーダ(1−N)の回転数を制御する。
The metering control device 3 includes a fuzzy calculation section 3-1 and a fuzzy control section 3-2, and the flow rate control valves 7 (1 to M).
, 27 (1 to L) and the screw feeder (1 to N), and the measured value and measured value set by the measuring detector 4, the fuzzy control is performed to control the flow control valve ? (1-M) Controls the valve opening degree of 27 (1-L) and the rotation speed of the screw feeder (1-N).

次に、本発明の液体の計量混合分配装置を用いた液体及
び粉体の計量混合分配装置の動作プロセスを説明する。
Next, the operation process of the liquid and powder metering, mixing and dispensing device using the liquid metering, mixing and dispensing device of the present invention will be described.

上位の製造制御装置より、移動させるための自己走行式
の混合容器22に対し、混合容器を所定の液又は粉体の
供給容器21(例えば貯蔵ホッパ2)下に移動する指示
が出される。
The higher-level manufacturing control device issues an instruction to the self-propelled mixing container 22 to move the mixing container below a predetermined liquid or powder supply container 21 (eg, storage hopper 2).

先ず粉体の計量について第9図及び第1O図により説明
すると、上位の型造制御装置より、付帯装置である供給
容器21の貯蔵ホッパーの結合装置30−2と、混合容
器22(計量タンク)の結合装r!131を結合する指
示が出される。更に、計量検出器4(ロードセルA)に
対し、前記供給容器21である貯蔵ホッパー2からの粉
体薬品を計量する指示が出される。切替装置26は系統
選択信号により切替り、選択された前記貯蔵ホッパー2
の流量調節器であるスクリューフィーダー2及び閉止弁
であるシャッタゲート−2を計量制御装置3により制御
可能にする。
First, the measurement of powder will be explained with reference to FIG. 9 and FIG. The combination r! 131 is issued. Furthermore, an instruction is issued to the metering detector 4 (load cell A) to meter the powdered chemical from the storage hopper 2, which is the supply container 21. The switching device 26 switches according to the system selection signal to select the selected storage hopper 2.
The screw feeder 2, which is a flow rate regulator, and the shutter gate 2, which is a shutoff valve, can be controlled by a metering control device 3.

このような初期設定を通じて、計量準備状態が確認でき
ると、上位から計量開始指示が出される。
When the measurement preparation state is confirmed through such initial settings, a measurement start instruction is issued from a higher level.

計量開始指令により、切替装置26が切替り、最初に選
択された供給系、ここでは前述のとおり、貯蔵ホッパー
2の粉体供給系が選択されて、閉止弁であるシャッタゲ
ート−2が開となり、流量調節器であるスクリューフィ
ーダー2が予め定められた回転数で粉体を移送するよう
に、計量制御装置3の駆動制御部3−4からの回転数指
令により、駆動モーター2が駆動されて回転し、原材料
の流れを引き起こす。この際、前記スクリューフィーダ
ー2の回転数は、スクリューフィーダの流量特性と計量
設定値とにより、計量制御装置のファジィ制御部3−2
により算出される。これにより供給容器21である貯蔵
ホッパー2の原材料は、混合容器22に移送され始める
。前記混合容器22(7) fit 量装置4(ロード
セル)は、移送された原材料の重量を検出し、その値を
計量制御装置3にフィードバックする。
In response to the measurement start command, the switching device 26 is switched, and the first selected supply system, here, as described above, the powder supply system of the storage hopper 2 is selected, and the shutter gate 2, which is a shutoff valve, is opened. The drive motor 2 is driven by a rotation speed command from the drive control unit 3-4 of the metering control device 3 so that the screw feeder 2, which is a flow rate regulator, transfers the powder at a predetermined rotation speed. It rotates and causes the flow of raw materials. At this time, the rotation speed of the screw feeder 2 is determined by the fuzzy control section 3-2 of the metering control device based on the flow rate characteristics of the screw feeder and the metering setting value.
Calculated by As a result, the raw material in the storage hopper 2, which is the supply container 21, begins to be transferred to the mixing container 22. The mixing container 22 (7) fit quantity device 4 (load cell) detects the weight of the transferred raw material and feeds the value back to the weighing control device 3 .

前記計量制御装置3は、フィードバックされた供給粉体
計量値から、ファジィ演算部3−1が計量設定値との偏
差、偏差の時間的変化量を演算すると共に、これら量に
ローパスフィルタ処理を施した値を算出する。前記ファ
ジィルールに基づく推論演算を行い、次の制御周期にお
いて適切な流速となるスクリューフィーダの回転数を算
出する。
In the metering control device 3, the fuzzy calculation unit 3-1 calculates the deviation from the metering set value and the amount of change in the deviation over time from the fed powder metering value that has been fed back, and also performs low-pass filter processing on these amounts. Calculate the value. Inference calculations based on the fuzzy rules are performed to calculate the rotational speed of the screw feeder that will provide an appropriate flow velocity in the next control cycle.

計理開始後、偏差が小さくなると、前記スクリューフィ
ーダー2は回転数を下げ、微小流速となる。偏差、偏差
の時間的変化量が小さくなり、偏差がある値以下になる
と、計量停止し、前記シャッタゲート−2は全閉方向に
移動する。このとき流速は微小であり、流れ込み量は微
小である。よって、針足停止後の流れ込み量は小さくな
り、計量精度は、流速変動に依存せず向上する。また、
前記スクリューフィーダー2は、偏差O近傍にて回転数
約10%程度をファジィ推論演算に基づぎ推移する。従
って、スクリューフィーダの回転ムラ、機械的ガタ等が
あっても、このデッドゾーン及びファジィ制御方式によ
り、ガタ等の悪影響を吸収し、高精度の計量が出来る。
After the start of accounting, when the deviation becomes smaller, the screw feeder 2 lowers its rotational speed and becomes a minute flow velocity. When the deviation and the amount of change over time of the deviation become smaller and the deviation becomes less than a certain value, measurement is stopped and the shutter gate 2 moves in the fully closed direction. At this time, the flow velocity is minute and the amount of inflow is minute. Therefore, the amount of flow after the needle foot stops becomes smaller, and the metering accuracy improves regardless of flow velocity fluctuations. Also,
The screw feeder 2 changes its rotational speed at about 10% in the vicinity of the deviation O based on fuzzy inference calculation. Therefore, even if there is uneven rotation of the screw feeder, mechanical play, etc., the dead zone and fuzzy control system absorbs the negative effects of the play and allows highly accurate measurement.

更に、計量範囲において、計量設定値とかプロセスの系
により流量調節器の動作が変わり、計量設定値の大小を
問わず同一計量制御装置にて計量制御ができ、計量範囲
が拡大する。又、計量時間においても、前記流量調節器
の動作パターンが変化し、計量設定値の大小を問わず、
はぼ同一の短時間の計量ができる。上記の様に粉体も液
体同様に計量検出器4と計量制御装置3によって扱うこ
とが出来る。
Furthermore, in the metering range, the operation of the flow rate regulator changes depending on the metering set value and the process system, and regardless of the size of the metering set value, the same metering control device can perform metering control, expanding the metering range. Also, during the metering time, the operation pattern of the flow rate regulator changes, regardless of the size of the metering set value.
It is possible to perform the same measurement in a short time. As mentioned above, powder can also be handled by the metering detector 4 and metering control device 3 in the same way as liquids.

次に、液体の計量について第9図及びそのブロック図で
ある第10図によって説明する。
Next, liquid measurement will be explained with reference to FIG. 9 and FIG. 10, which is a block diagram thereof.

11■記混合容器22が混合対象となる所定の供給容器
21 (例えばタンク−1)下に移動すると共に、前記
切替装置26が前記タンク−1側に切替り、その流量制
御弁7−1及び閉止弁8−1を選択する。計量設定値は
予め設定されており、計量開始指令に従い前述と同様な
制御を行い計量する。
As the mixing container 22 mentioned in 11. Select shutoff valve 8-1. The measurement setting value is set in advance, and the same control as described above is performed in accordance with the measurement start command to perform measurement.

すなわち、制御装置内の制御機能は同一であり、前記粉
体の場合の操作端のスクリューフィーダ及びシャッタゲ
ートへの出力信号が、切替装置26にて流量制御弁7−
1及び閉止弁8−1に切替られるのみである。
That is, the control functions within the control device are the same, and the output signal to the screw feeder and shutter gate of the operating end in the case of the powder is changed to the flow rate control valve 7- by the switching device 26.
1 and the shutoff valve 8-1.

なお、この際、計量制御装置3から出力される制御信号
は、回転数指令から、弁開度に対応した位置指令に変換
されて出力される。すなわち、前記ファジィ制御部3−
2の出力が位置指令変換部3−3に送られて位置指令信
号に変換された後、駆動制御部3−4に出力される。位
置指令信号は、駆動モータ11を駆動して指示された位
置に流量制御弁7−1の弁ボートを設定して、開度を調
整し、原材料の流れを引き起こす。この際、前記流量制
御弁7−1は初朋度が、先の粉体計量の場合と同様、前
記ファジィ制御部3−2により演算され、弁の流量特性
と計量設定値とに基づいてファジィルールにより算出さ
れる。混合容器22の計量検出器4(ロードセル)は、
移送された原材料の重量を検出し、その値を計量制御装
置3にフィードバックする。
At this time, the control signal output from the metering control device 3 is converted from a rotation speed command to a position command corresponding to the valve opening degree and output. That is, the fuzzy control section 3-
The output of No. 2 is sent to the position command conversion section 3-3, converted into a position command signal, and then output to the drive control section 3-4. The position command signal drives the drive motor 11 to set the valve port of the flow control valve 7-1 at the commanded position, adjust the opening degree, and cause the flow of the raw material. At this time, the initial familiarity of the flow rate control valve 7-1 is calculated by the fuzzy control unit 3-2, as in the case of powder metering, and the fuzzy control valve 7-1 is Calculated according to rules. The weighing detector 4 (load cell) of the mixing container 22 is
The weight of the transferred raw material is detected and the value is fed back to the weighing control device 3.

前記計量制御装置3は、フィードバックされた供給液計
量値から、ファジィ制御部3−2が計量設定値との偏差
、偏差の時間的変化量を演算すると共に、これら量にロ
ーパスフィルタ処理を施した値を算出する。前記ファジ
ィ制御部3−2はこの算出された値をもとに、ファジィ
ルールに基づく推論演算を行い、次の制御周期において
適切な流速となる弁開度を得る。この際、弁の流量特性
は、先のスクリューフィーダのそれと同様、弁開度0%
近傍で全閉とし、10%程度近傍から液が流出する特性
を有しており、従って、弁は弁開度約10%程度をファ
ジィHI論に凸づいて推移する。
In the metering control device 3, the fuzzy control unit 3-2 calculates the deviation from the metering set value and the amount of change in the deviation over time from the fed-back measured value of the supply liquid, and also performs low-pass filter processing on these amounts. Calculate the value. The fuzzy control unit 3-2 performs inference calculations based on fuzzy rules based on this calculated value, and obtains a valve opening that will provide an appropriate flow velocity in the next control cycle. At this time, the flow rate characteristics of the valve are the same as those of the previous screw feeder, with a valve opening of 0%.
It has a characteristic that the valve is fully closed in the vicinity and the liquid flows out from the vicinity of about 10%, so the valve opening degree changes at about 10% according to the fuzzy HI theory.

これにより、弁の機械的ガタ等は吸収されて、高精度計
量が得られる。
As a result, mechanical looseness of the valve is absorbed, and high-precision metering can be achieved.

以上の内容の動作を品種内容に従い実行し、品種内の全
薬品を計量し混合すると、下流工程の分配容器への計量
分配動作に移る。
After the above-mentioned operations are performed according to the product type and all the chemicals in the product type are measured and mixed, the process moves on to the downstream process of dispensing to the distribution container.

本実施態様では、複数分配容器32(1〜L)は、配管
接続装置の下部に結合されている。混合容器22(計量
タンク)の底弁が搬送制御装置にて制御され、開となり
混合液の計量分配が前記流量制御弁と同様な要領で順序
よく行われるその計量制御装置は第1O図に示すとおり
前記と同一のものであり、精度よく短時間で計量分配を
終えることが出来る。
In this embodiment, multiple dispensing vessels 32 (1-L) are coupled to the bottom of the piping connection. The bottom valve of the mixing container 22 (measuring tank) is controlled by the conveyance control device and opened, and the metering and dispensing of the mixed liquid is performed in an orderly manner in the same manner as the flow rate control valve.The metering control device is as shown in Figure 1O. This is the same as above, and the dispensing can be completed in a short time with high precision.

第9図は混合容器22(計量タンク)が計量検出器4を
備え、移動装置が自己走行式の形式のものであるが、計
量装置を計量台に配置して、所定の位置で計量して無人
搬送車で1般送するものであってもよい。
In FIG. 9, the mixing container 22 (measuring tank) is equipped with a weighing detector 4, and the moving device is of a self-propelled type. It may be generally transported by an automatic guided vehicle.

なお、特に、移動装置が自己走行式のものにあっては、
付属設備として各結合位置に位置センサー等の電気関係
の接Uε装置を必要とする。
In particular, if the mobile device is self-propelled,
As ancillary equipment, an electrical connection Uε device such as a position sensor is required at each connection position.

計量のための計量検出器としてロードセルを例として挙
げたが、他のタンク計量式検出器を用いても同様である
。特に、計量タンク又は計量ホッパに差圧伝送器等を使
用すると、混合容器を自走車に固定することが出来、製
作が容易となり、振動等の影響が無くなる。
Although a load cell is used as an example of a measurement detector for measurement, the same applies to other tank measurement type detectors. In particular, if a differential pressure transmitter or the like is used in the metering tank or metering hopper, the mixing container can be fixed to a self-propelled vehicle, making manufacturing easier and eliminating the effects of vibrations and the like.

混合容器(計量2;:付)における加算計量と更に供給
粉体容器(貯蔵ホンバ又はタンク)に計量装置をつけて
減算計量との機能をもつ計量制御装置を使用すると、よ
り広範囲な精密計量が可能となる。
By using a weighing control device that has the functions of additive weighing in the mixing container (with weighing 2) and subtractive weighing by attaching a weighing device to the supply powder container (storage chamber or tank), a wider range of precision weighing can be achieved. It becomes possible.

尚、本実施態様は液体と粉体とが1つの受入容器(計量
タンク)に受入られて計量されるが、液体は液体同士、
粉体は粉体同士のそれぞれ計量タンク、計量ホッパーに
計量する組み合わせになっていてもよい。
In addition, in this embodiment, liquid and powder are received and measured in one receiving container (measuring tank), but liquids are mixed with each other,
The powder may be a combination of powders that are weighed into a weighing tank and a weighing hopper, respectively.

上記に説明した如く本発明の好ましい実施態様として、 (1)複数の供給容器よりそれぞれの液体及び粉体を累
積計量して混合容器に受けて混合し、該混合容器より複
数の分配容器に該混合液を計量分配する装置であって、
該供給容器からの供給配管と該分配容器への分配配管に
流量調節器を存し、供給容器からの液体及び粉体と混合
容器から分配容器への混合液の計量検出器を混合容器側
に有し、計量制御装置が各供給計量値及び分配液計量値
に対応し、前記それぞれの流量調節器の流量をファジィ
制御、学習制御、又は最適制御により変化させて計量す
るクローズドループ制御の切替装置付針鼠制御装置であ
り、更に混合容器の移動装置を有することを特徴とする
液体及び粉体の針掛混合分配装置。
As explained above, as a preferred embodiment of the present invention, (1) liquids and powders are cumulatively measured from a plurality of supply containers, received in a mixing container and mixed, and distributed from the mixing container to a plurality of distribution containers. A device for dispensing a mixed liquid,
A flow regulator is provided in the supply piping from the supply container and the distribution piping to the distribution container, and a measuring detector for the liquid and powder from the supply container and the mixed liquid from the mixing container to the distribution container is provided on the side of the mixing container. A closed-loop control switching device in which the metering control device corresponds to each supply metered value and distributed liquid metered value, and measures the flow rate of each of the flow rate regulators by changing it by fuzzy control, learning control, or optimal control. A needle-type mixing and dispensing device for liquids and powders, which is a needle-type control device and further includes a mixing container moving device.

をあげることが出来る。I can give you.

〔作  用〕[For production]

本発明はファジィ制御を行うクローズドループの液体計
量方法において、該流量制御弁として弁揚程に対する流
量の変化率が小さく且つ直線的な性質を有し、更に最大
流量が大である電動機制御型の流量制御弁を用いること
により、 計量初期においては弁全開に近く高流量を流すことが出
来るので計量速度が早くなり、目的計量値に近づくに従
って弁開度を閉じていっても、弁揚程の調節量を大きく
動かして流量を極めて精度よく調節することが出来るの
で、計量の終期における計量速度も早く精密に行うこと
が可能になり、従って従来の流量制御弁によるファジィ
制御に比較して、計量初期から終期迄更に迅やかに且計
量情度よ<it制御を行うことができるのである。
The present invention is a closed-loop liquid metering method that performs fuzzy control, and the flow rate control valve is an electric motor-controlled flow rate control valve that has a small and linear property of changing the flow rate with respect to the valve lift and has a large maximum flow rate. By using a control valve, it is possible to flow a high flow rate when the valve is fully open at the beginning of metering, so the metering speed becomes faster, and even if the valve opening is closed as the target metering value approaches, the amount of adjustment of the valve lift will be reduced. Since the flow rate can be adjusted extremely accurately by moving the flow rate greatly, the metering speed at the final stage of metering can be performed quickly and precisely. It is possible to carry out more rapid and quantitatively controlled control until the final stage.

又、本発明は請求項(3)、 (4)において、複数の
供給容器よりそれぞれの液体を累積計量して受液容器で
ある混合容器に受は混合し、該混合液を該混合容器(こ
の場合は供給容器になる)より複数の分配容器(受液容
器)に該混合液を計量分配する装置であって、該供給容
器が供給配管に又該混合容器(この場合は供給容器にな
る)が分配配管に流量制御弁を有し、供給容器からの液
体(及び粉体を含めてもよい)の計量検出器を混合容器
(受液容器)に付属し、混合容器(その場合は供給容器
になる)からの分配容器(受液容器)への混合液の計量
検出器を前記混合容器側の計量検出器で兼用し、計量制
御装置が各供給計量値及び分配液計量値に対応し前記そ
れぞれの流量制御弁の流量をファジィ制御により変化さ
せて計量するクローズドループ制御の切替装置付計量制
御装置であり、更に混合容器が移動装置を備えることに
より、■ 各供給液体の場合容器の供給配管は連結管を
使用せず単純化出来、設備が筒車化する。
Further, the present invention is provided in claims (3) and (4), in which a receiver cumulatively measures each liquid from a plurality of supply containers and mixes the liquid into a mixing container which is a liquid receiving container, and transfers the mixed liquid to the mixing container ( A device for metering and distributing the mixed liquid from a plurality of distribution containers (receiving containers) to a plurality of distribution containers (receiving containers), in which the supply container is connected to the supply piping and the mixing container (in this case, the supply container). ) has a flow control valve in the distribution piping, a metering detector for the liquid (and may contain powder) from the supply vessel is attached to the mixing vessel (receiving vessel), and the mixing vessel (in that case the supply The measurement detector on the side of the mixing container also serves as a measurement detector for the mixed liquid from the container) to the distribution container (liquid receiving container), and the measurement control device corresponds to each supply measurement value and distribution liquid measurement value. This is a metering control device with a switching device for closed loop control that measures the flow rate of each of the flow rate control valves by changing it by fuzzy control, and the mixing container is further equipped with a moving device, so that: The piping can be simplified without using connecting pipes, and the equipment can be reduced to hour wheels.

■ 混合容器(受液容器でもあり計量タンク又は計量ホ
ッパ)は移動出来るため、全ての供給容器から受液が可
能となり、又全での調製タンクに固定配管無しで計量し
た液体又は粉体を配給することが出来るので、混合容器
を少くして設備の融通性が出来る。したがって多品種の
製造を行う場合、混合容器側の設備の遊休を無くするこ
とが出来るし、処方変更等に対しても設備の増設を極力
減らして対応することが出来る。
■ Since the mixing container (also a receiving container and metering tank or metering hopper) is movable, it is possible to receive liquid from all supply containers, and it is possible to distribute measured liquid or powder to all preparation tanks without fixed piping. Therefore, the number of mixing containers can be reduced and equipment flexibility can be achieved. Therefore, when manufacturing a wide variety of products, it is possible to eliminate idle equipment on the mixing container side, and it is also possible to respond to prescription changes by minimizing the need for additional equipment.

■ 又混合容器(針鼠タンク又は計量ホッパ)の移動に
より計量サイクルを早くすることが出来るので、大規模
調製により経時変化を少くおさえることが出来る。
(2) Also, since the measuring cycle can be sped up by moving the mixing container (needle tank or measuring hopper), changes over time can be suppressed by large-scale preparation.

■ 供給容器よりの液体の混合容器(計量タンク又は計
量ホッパ)に攪拌機を取り付は調製タンクとして用いる
ことが出来る。
(2) A mixing vessel (measuring tank or measuring hopper) for mixing liquid from the supply vessel can be equipped with an agitator and used as a preparation tank.

■ 計量分配を計量混合と同じ計量制御装置を用いファ
ジィ制御出来るので計量精度の向上、計量時間の短縮、
混合液ロスの節減、設備の簡素化を行うことが出来る。
■ Measuring and dispensing can be fuzzy controlled using the same metering control device as for measuring and mixing, which improves metering accuracy, shortens metering time,
It is possible to reduce mixed liquid loss and simplify equipment.

〔実 施 例〕〔Example〕

実施例−1 第3図に示す様な3種の流量制御弁、(a)は従来のイ
コールパーセント型に近い特性をもつもの。
Example-1 Three types of flow control valves as shown in Fig. 3, (a) having characteristics close to the conventional equal percentage type.

[有])従来のリニア型、(C)が本発明に関わるリニ
ア型で大流量可能な弁を用いて1000gの液体を計量
した。
1000 g of liquid was measured using a conventional linear type valve (C) and a linear type valve according to the present invention capable of a large flow rate.

何れもファジィ制御を用いて計量を行った結果、計測に
要する時間は第13図に示す様に(a)は口中で60秒
、(b)は×印51秒、(C)は0140秒で計量を終
了した。計量精度はいづれも±1.og以内であったが
やはり(C)が優れていた。ファジィ制御は優れた制御
方法であるが、上記の如く流量制御弁による計量時間の
差は明確である。
As a result of measuring each using fuzzy control, the time required for measurement was 60 seconds in the mouth for (a), 51 seconds for (b), and 0140 seconds for (C), as shown in Figure 13. Finished weighing. Weighing accuracy is ±1. Although it was within og, (C) was still superior. Fuzzy control is an excellent control method, but as mentioned above, there is a clear difference in metering time depending on the flow control valve.

実施例−2 第7図の構成系における実施例について説明する。Example-2 An example of the configuration shown in FIG. 7 will be described.

混合容器22の容器は、最大10kgの計量ができ、計
量検出器ロードセル4の精度は5ooo分の1である。
The mixing container 22 can weigh up to 10 kg, and the accuracy of the weighing detector load cell 4 is 1/5ooo.

流量制御弁7 a、  7 b、 27a 、 27b
等はそれぞれの計量時にサーボモータにて位置制御され
、針鼠制御装置3から位置指令が出力される。
Flow control valves 7a, 7b, 27a, 27b
etc. are controlled in position by a servo motor at the time of each measurement, and a position command is output from the needle control device 3.

第14図は、供給容器21aよりの加算計量時の計量特
性図であり、第15図は、分配容器32aへの減算計啜
時の計量特性図である。つまり、制御方式等全く変更せ
ずに計量・分配動作を同−計量制御装置3にて行った時
の結果である。尚、針鼠は、2種の液体を供給容器21
a、21bより+000gづつ計量し、混合容器22よ
り分配容器の一つ32aに1000g分配し、残りの量
1000gを別の分配容器32bに排出した時の結果で
ある。
FIG. 14 is a measurement characteristic diagram during addition measurement from the supply container 21a, and FIG. 15 is a measurement characteristic diagram during subtraction measurement into the distribution container 32a. In other words, these are the results obtained when the metering and dispensing operations were performed using the same metering control device 3 without changing the control method or the like. In addition, the needle mouse supplies two types of liquids to the container 21.
This is the result when +000g was weighed from a and 21b, 1000g was distributed from the mixing container 22 to one of the distribution containers 32a, and the remaining amount of 1000g was discharged to another distribution container 32b.

点線は弁開度、実線は計量偏差を示す。The dotted line shows the valve opening, and the solid line shows the measurement deviation.

当然流量制御弁7a、27aの弁開度の動作パターンは
変わるが、供給容器21aよりの加算計算計量時56秒
、混合容器22よりの減算計量時72秒のほぼ同じ計量
時間で、高精度の計量・分配が得られた。
Naturally, the operation pattern of the valve opening of the flow rate control valves 7a and 27a changes, but the measurement time is approximately the same: 56 seconds for addition calculation measurement from the supply container 21a and 72 seconds for subtraction measurement from the mixing container 22, and high precision is achieved. Measurement and distribution were obtained.

本系での実験では、同一の液体について行い、流量制御
弁7a、27aの流量特性を異ならせて、液物性の違い
による効果を評価した。更には、上流タンクのヘッドを
異ならせての実験も行った。
In experiments using this system, the same liquid was used, and the flow characteristics of the flow rate control valves 7a and 27a were varied to evaluate the effect of the difference in liquid physical properties. We also conducted experiments with different upstream tank heads.

その結果、同一の制御装置にて、流量制御弁への出力箇
所の変更のみで、高精度、広範囲、短時間計量・分配が
確認できた。
As a result, we were able to confirm high accuracy, wide range, and short-time metering and dispensing using the same control device by simply changing the output point to the flow control valve.

〔発明の効果〕〔Effect of the invention〕

上記のとおり、本発明は流量制御弁による効果がファジ
ィ制御による効果に加えて得られる。
As described above, the present invention provides the effects of the flow control valve in addition to the effects of fuzzy control.

即ち、 ■ 外乱による流速変動に影響されない高精度な計量、
■ 計量設定値の範囲の広いワイドレンジの計量、■ 
計量設定値の大小に依存しない短時間の計量に加えて、
更に(4)流量制御弁の選定により迅速な計量時間と計
量精度が得られた。
In other words, ■ Highly accurate measurement that is unaffected by flow velocity fluctuations caused by disturbances;
■ Wide range of weighing with a wide range of weighing settings, ■
In addition to short-time weighing that does not depend on the size of the weighing set value,
Furthermore, (4) rapid metering time and metering accuracy were achieved by selecting a flow control valve.

従って本発明の液体計量混合分配方法を用いると従来の
流量制御弁を用いたファジィ制御よりも更に短時間で計
量を行えるので、計量作業の能率の増大となり、又計量
設備の合理化等産業上の貢献は極めて大きい。
Therefore, by using the liquid metering, mixing and distributing method of the present invention, metering can be performed in a shorter time than the conventional fuzzy control using a flow rate control valve, which increases the efficiency of metering work and also improves industrial efficiency such as rationalizing metering equipment. The contribution is extremely large.

更に、本発明は流速を連続的に変化させるクローズドル
ープの液体計量方法により、複数液を累積計量して混合
し、更に該混合液を計量して分配ずろ液体計量混合分配
装置に応用した。原料液が充填された複数の供給容器と
、該複数の供給容器からの液を受けて混合する混合容器
と、該混合容器内の混合液を分配される複数の分配容器
、と所定範囲で流量を生じないデッドゾーンを有し各供
給容器、及び各分配容器に付属して流量を制限する流量
制御弁と、前記混合容器に配置されて液を計量する計量
検出器と、前記計量検出器により観測される実計星値及
び任意に設定される計量設定値とに基づいてファジィ制
御を行い、前記流量制御弁の弁開度を算出する計量制御
装置と、計量制御装置の出力を切替えて所定の前記各流
量制御弁に出力する切替装置と、から成ることを特長と
する液体計量混合分配装置により、 計量混合装置と計
量分配装置を一つのクローズドループのファジィ制御に
よる針鼠制御装置で可能になったことにより、計量分配
も高精度・広計量範囲・短時間の計量が可能となり、設
備の簡素化並びに製造能力の増強と原材料ロスの低減が
可能となった。従って、イニシャルコストメンテナンス
コスト。
Furthermore, the present invention applies a closed-loop liquid measuring method that continuously changes the flow rate to cumulatively measure and mix a plurality of liquids, and then meter the mixed liquid and apply it to a liquid metering, mixing and dispensing device. A plurality of supply containers filled with raw material liquid, a mixing container that receives and mixes the liquid from the plurality of supply containers, and a plurality of distribution containers that distribute the mixed liquid in the mixing containers, and a flow rate within a predetermined range. a flow control valve that limits the flow rate and is attached to each supply container and each distribution container and has a dead zone that does not cause a A metering control device performs fuzzy control based on the observed actual star value and an arbitrarily set metering set value to calculate the valve opening of the flow control valve, and a metering control device that switches the output of the metering control device to a predetermined value. and a switching device that outputs output to each of the flow rate control valves.The liquid metering, mixing, and dispensing device is characterized by comprising a switching device that outputs output to each of the flow rate control valves.The metering and mixing device and the metering and dispensing device can be combined into one closed-loop fuzzy control device. As a result, it has become possible to perform high-precision, wide-metering range, and short-time metering for dispensing, simplifying equipment, increasing manufacturing capacity, and reducing raw material loss. Therefore, the initial cost and maintenance cost.

ランニングコストの低減による経済的効果を得ることが
出来る。
Economical effects can be obtained by reducing running costs.

本発明は、複数の供給容器よりそれぞれの液体更に粉体
を累積計量して混合容器に受けて混合し、該混合容器よ
り複数の分配容器に該混合液を分配する装置に用いても
、該供給容器からの供給配管と該分配容器への分配配置
に流量制御弁を有し、供給容器からの液体及び粉体と混
合容器から分配容器への混合液の計量装置を・混合容器
側に有し、計量制御装置が各供給計量値及び分配計量値
に対応し前記それぞれの流量制御弁の流量をファジィ制
御により変化させて計量するクローズドループ制御の切
替装置付計量制御装置であり、更に混合容器の移動装置
を有することを特長とする液体及び粉体の計量混合分配
装置により、外乱や被31星物の物性値変化による流速
変動番こ影響されない高精度な計量が実現でき、広範囲
な計量範囲でも計量時間が短時間で迅速に可能になり、
計量混合と計量分配が一つの計り制御装置により精密に
迅速に且つ液ロスを少く出来る様になりそれによって更
に設備の簡単化と計量装置台数の低減、大規模設備であ
っても製造能力が増大し、大規模調製による製品品質の
向上と原材料のロスの低減を実現出来た。これによって
、イニシャルコストダウン、メンテナンスコストダウン
、ランニングコストダウン、信頼性の向上を得た。
The present invention can also be used in an apparatus that cumulatively measures each liquid and powder from a plurality of supply containers, receives them in a mixing container, and mixes them, and then distributes the mixed liquid from the mixing container to a plurality of distribution containers. A flow control valve is provided in the supply piping from the supply container and the distribution arrangement to the distribution container, and a metering device for the liquid and powder from the supply container and the mixed liquid from the mixing container to the distribution container is provided on the mixing container side. The metering control device is a metering control device with a switching device for closed loop control that measures the flow rate of each flow control valve by changing it by fuzzy control in response to each supply metering value and distribution metering value, and further includes a mixing container. The liquid and powder metering, mixing and distributing device, which is characterized by having a moving device, can achieve high-precision metering that is unaffected by flow velocity fluctuations caused by external disturbances or changes in the physical properties of objects, and can be used over a wide measuring range. However, it is now possible to quickly measure in a short time,
Measuring and mixing and dispensing can be performed accurately and quickly using a single metering control device, with less liquid loss, which further simplifies equipment, reduces the number of metering devices, and increases manufacturing capacity even in large-scale facilities. Through large-scale preparation, we were able to improve product quality and reduce raw material loss. This has resulted in lower initial costs, lower maintenance costs, lower running costs, and improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様に適用される液体計重装置
を説明するフローシート。第2図は第1図の装置におけ
る制御プロセスを説明するブロック図、第3図は流量制
御弁の特性図、第4図はファジィ制御のメンバーシップ
関数を説明する図、第5図は本発明に係わる流量制御弁
の側面断面図、第6図は第5図の)h尾制御弁の弁頭の
側面図及びA−A′断面図、第7図は本発明の複数の供
給容器による液体計量混合分配装置の1実施例のフロー
シート、第8図は第7図の制御ブロック図、第9図は本
発明の受液容器の移動装置を伴う装置の一実施例のフロ
ーシート、第10図は第9図の関係する制御ブロック図
:第11図は従来の液体計量混合分配装置の1例のフロ
ーシート、第12図は従来の液体及び粉体の計量混合分
配装置のフローシート、第13図は各種流量制御弁の計
量時刻に対する計量偏差のグラフ、第14.15図は本
発明の流量制御方法による計量時刻に対する計量偏差の
グラフである。 l・・・供給容器   2・・・受液容器3・・・計重
制御装置 4・・・検出器(ロードセル) 5・・・ロードセルアンプ 6・・・サーボドライハー フ、27・・・流量制御弁 11・・・サーボモータ 12・・・送りネジ  13・・・連結板14・・・弁
軸    15・・・弁当り面16・・・弁頭    
17・・・出口側弁箱18・・・弁座    19・・
・弁揚程20・・・入口側弁箱 21a、21b・・・供給容器 22・・・混合容器(受入容器兼供給容器)23・・・
連結管   26・・・切替装置32 a、  32 
b・・・分配容器(受液容器)30.31・・・結合装
置 第  3  図 牟埠1i(H) 第4図 4A遵((’/、) 第50 第  11   図
FIG. 1 is a flow sheet explaining a liquid weighing device applied to one embodiment of the present invention. Fig. 2 is a block diagram explaining the control process in the device shown in Fig. 1, Fig. 3 is a characteristic diagram of the flow control valve, Fig. 4 is a diagram explaining the membership function of fuzzy control, and Fig. 5 is a diagram of the present invention. FIG. 6 is a side view and A-A' sectional view of the valve head of the flow control valve of FIG. 5, and FIG. FIG. 8 is a control block diagram of FIG. 7; FIG. 9 is a flow sheet of an embodiment of the apparatus with the liquid receiving container moving device of the present invention; FIG. The figures are related control block diagrams of Fig. 9: Fig. 11 is a flow sheet of an example of a conventional liquid metering, mixing, and dispensing device; Fig. 12 is a flow sheet of a conventional liquid and powder metering, mixing, and dispensing device; FIG. 13 is a graph of measurement deviation versus measurement time for various flow rate control valves, and FIGS. 14 and 15 are graphs of measurement deviation versus measurement time according to the flow rate control method of the present invention. l... Supply container 2... Liquid receiving container 3... Weight control device 4... Detector (load cell) 5... Load cell amplifier 6... Servo dry half, 27... Flow rate control Valve 11... Servo motor 12... Feed screw 13... Connecting plate 14... Valve shaft 15... Valve face 16... Valve head
17... Outlet side valve box 18... Valve seat 19...
- Valve lift 20... Inlet side valve boxes 21a, 21b... Supply container 22... Mixing container (receiving container and supply container) 23...
Connecting pipe 26...Switching device 32a, 32
b...Distribution container (receiving container) 30.31...Coupling device No. 3 Figure 1i (H) Figure 4 4A (('/,) Figure 50 Figure 11

Claims (4)

【特許請求の範囲】[Claims] (1)任意に設定される計量設定値と被計量体を計測す
る計量検出器からの実計量値との偏差及び偏差の時間的
変化量の観測量から、液体の流量制御弁のファジィ制御
、学習制御又は最適制御を行うクローズドループの液体
の計量制御方法であって、該流量制御弁として弁揚程に
対し流量の変化率が小さく且つ直線的な性質を有し、更
に最大流量が大である電動機制御型の流量制御弁を用い
ることを特徴とする液体の計量混合分配方法。
(1) Fuzzy control of the liquid flow rate control valve based on the deviation between the arbitrarily set measurement setting value and the actual measurement value from the measurement detector that measures the object to be measured, and the observed amount of change over time of the deviation, A closed-loop liquid metering control method that performs learning control or optimal control, in which the flow rate control valve has a small and linear rate of change in flow rate with respect to the valve lift, and has a large maximum flow rate. A liquid metering, mixing and dispensing method characterized by using a motor-controlled flow rate control valve.
(2)液体を収容した供給容器と該供給容器に付属する
流量制御弁と、液体を受ける受液容器と該受液容器又は
前記供給容器に付属して被計量体の計量を観測する計量
検出器とを有し、任意に設定される計量設定値と計量検
出器からの実計量値に基づいて偏差及び偏差の時間的変
化量の観測量から流量制御弁のファジィ制御、学習制御
又は最適制御を行うクローズドループの液体の計量制御
装置であって、液体の流量制御弁が弁昇降の動力として
電動機を使用し、該電動機の回転を送りネジ機構と連結
板とにより直線状の動きに変換し、該連結板には弁軸を
取付け、該連結板の昇降にしたがって該弁軸が上下する
構造を有し、該弁軸を中心とする入口側弁箱と該入口側
弁箱に連結する出口側弁箱とを具備し、先細り円錐台形
の弁当り面との間隙を調節する円筒状又は円錐状の弁頭
の収容空間を該出口側弁箱内に設け、該弁頭表面と弁座
との間で構成する弁開度面積を、弁揚程に対し流量の変
化率が小さく且つ直線的になるように弁頭形状を決定し
、弁座開口が充分全開になる迄の弁揚げ程を該入口側弁
箱に設けた流量制御弁であることを特徴とする液体の計
量混合分配装置。
(2) A supply container containing a liquid, a flow control valve attached to the supply container, a liquid receiving container for receiving the liquid, and a measurement detection device attached to the liquid receiving container or the supply container to observe the measurement of an object to be measured. fuzzy control, learning control, or optimal control of the flow control valve from the observed amount of the deviation and the amount of change over time of the deviation based on the arbitrarily set measurement setting value and the actual measurement value from the measurement detector. A closed-loop liquid metering control device that performs , a valve shaft is attached to the connecting plate, and the valve shaft moves up and down as the connecting plate goes up and down, and an inlet valve box centered on the valve shaft and an outlet connected to the inlet valve box. A space for accommodating a cylindrical or conical valve head that adjusts the gap between the valve head surface and the valve seat is provided in the outlet side valve box, and the valve head surface and the valve seat Determine the valve head shape so that the rate of change in flow rate is small and linear with respect to the valve lift, and determine the valve lift until the valve seat opening is fully opened. A liquid metering, mixing and distributing device characterized by a flow rate control valve provided in an inlet side valve box.
(3)該供給容器が複数であり、該受液容器が単数又は
複数であって、計量制御装置が所定の流量制御弁に出力
を切替える切替装置を有することを特徴とする請求項(
2)記載の液体の計量混合分配装置。
(3) The supply container is plural, the liquid receiving container is single or plural, and the metering control device has a switching device for switching the output to a predetermined flow rate control valve (
2) A metering, mixing and dispensing device for the liquid described above.
(4)該受液容器の少くとも一つが移動装置を有するこ
とを特徴とする請求項(3)記載の液体の計量混合分配
装置。
(4) The liquid metering, mixing and dispensing device according to claim (3), wherein at least one of the liquid receiving containers has a moving device.
JP20274588A 1987-08-21 1988-08-16 Method and apparatus for measuring, mixing and distributing liquid Pending JPH01159040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20274588A JPH01159040A (en) 1987-08-21 1988-08-16 Method and apparatus for measuring, mixing and distributing liquid

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP62-206588 1987-08-21
JP62-206587 1987-08-21
JP20658787 1987-08-21
JP62-245755 1987-10-01
JP62-245757 1987-10-01
JP62-257393 1987-10-14
JP20274588A JPH01159040A (en) 1987-08-21 1988-08-16 Method and apparatus for measuring, mixing and distributing liquid

Publications (1)

Publication Number Publication Date
JPH01159040A true JPH01159040A (en) 1989-06-22

Family

ID=26513548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20274588A Pending JPH01159040A (en) 1987-08-21 1988-08-16 Method and apparatus for measuring, mixing and distributing liquid

Country Status (1)

Country Link
JP (1) JPH01159040A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178704A (en) * 1988-07-29 1993-01-12 The Yokohama Rubber Co., Ltd. Spirally winding a belt reinforcing layer for a pneumatic radial tire at a higher density beneath the groove areas
JP2008216020A (en) * 2007-03-02 2008-09-18 Asahi Breweries Ltd Weighing system
JP2012228690A (en) * 2005-07-27 2012-11-22 Cargill Inc Solution making system and method
KR20180030529A (en) * 2015-07-17 2018-03-23 에리 파워 가부시키가이샤 A battery electrode slurry dispensing apparatus, a battery electrode slurry disposal apparatus, a battery electrode slurry dispensing method, a suspension dispensing apparatus, a suspension dispensing method, a battery electrode slurry disposal method, a manufacturing apparatus and a manufacturing method
JP2019175869A (en) * 2019-07-16 2019-10-10 エリーパワー株式会社 Circulation device, processing device, and battery electrode slurry circulation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238723A (en) * 1987-03-26 1988-10-04 Yamaha Corp Digital signal processing circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238723A (en) * 1987-03-26 1988-10-04 Yamaha Corp Digital signal processing circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178704A (en) * 1988-07-29 1993-01-12 The Yokohama Rubber Co., Ltd. Spirally winding a belt reinforcing layer for a pneumatic radial tire at a higher density beneath the groove areas
JP2012228690A (en) * 2005-07-27 2012-11-22 Cargill Inc Solution making system and method
JP2008216020A (en) * 2007-03-02 2008-09-18 Asahi Breweries Ltd Weighing system
KR20180030529A (en) * 2015-07-17 2018-03-23 에리 파워 가부시키가이샤 A battery electrode slurry dispensing apparatus, a battery electrode slurry disposal apparatus, a battery electrode slurry dispensing method, a suspension dispensing apparatus, a suspension dispensing method, a battery electrode slurry disposal method, a manufacturing apparatus and a manufacturing method
JP2019175869A (en) * 2019-07-16 2019-10-10 エリーパワー株式会社 Circulation device, processing device, and battery electrode slurry circulation method

Similar Documents

Publication Publication Date Title
US4976377A (en) Liquid and powder measuring apparatus
US4830508A (en) Controlling method and a measuring mixer for liquids and powders
US4880142A (en) Powder weighing mixer and method thereof
EP0290889B1 (en) Method of and apparatus for measuring liquid
US11768099B2 (en) Calibration method for liquid flowmeter
US5240324A (en) Continuous flow system for mixing and processing bulk ingredients
RU2219503C2 (en) Technique to control feeder based on measurement of loss in weight
JPS62502422A (en) Device for automatic measurement of fluid material passing amount using continuous balance
JPS6234413B2 (en)
JPS63283731A (en) Liquid and powder metering and mixing apparatus
JPH01159040A (en) Method and apparatus for measuring, mixing and distributing liquid
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
JPS63283734A (en) Powder material metering and mixing apparatus
JPS63283732A (en) Liquid-powder metering and mixing apparatus
JPS63279119A (en) Powder weighing method
CN105836421A (en) Linkage control method for multi-stage solid conveying equipment
JPH01100615A (en) Liquid/powder measuring, mixing and distributing device
JPH01100613A (en) Liquid measuring, mixing and distributing device
JPS63283730A (en) Liquid metering and mixing apparatus
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
JPS63273013A (en) Measurement of liquid
JPS63279120A (en) Supply amount control apparatus of weighing machine
CN118771009B (en) High-precision batching and discharging device for plastic packaging powder
JPS63274439A (en) Liquid and powder weighing and mixing apparatus
JP3699216B2 (en) Metering device