[go: up one dir, main page]

JPH01156632A - Multi component force sensor - Google Patents

Multi component force sensor

Info

Publication number
JPH01156632A
JPH01156632A JP62315144A JP31514487A JPH01156632A JP H01156632 A JPH01156632 A JP H01156632A JP 62315144 A JP62315144 A JP 62315144A JP 31514487 A JP31514487 A JP 31514487A JP H01156632 A JPH01156632 A JP H01156632A
Authority
JP
Japan
Prior art keywords
cross
connecting member
elastic beam
force
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315144A
Other languages
Japanese (ja)
Inventor
Yoshimichi Kominami
小南 善道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62315144A priority Critical patent/JPH01156632A/en
Publication of JPH01156632A publication Critical patent/JPH01156632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To obtain a miniaturized multi component force sensor having a structure which is not subjected to interference as a mechanical structure by providing two pieces of cross-shaped elastic beams interposing an intermediate connecting member and providing two pieces of distortion detecting parts in the longitudinal directions of the elastic beams, respectively. CONSTITUTION:Between the upper connecting member 1 and the lower connecting member 4a connected to two rigid bodies being measuring objects, two pieces of cross-shaped elastic beams 3, 4 are provided through an intermediate connecting member 2. In the longitudinal directions of both side faces of the cross of each elastic beam 3, 4, two pieces of respective distortion detectors 20-35 are attached. Subsequently, one end part of the cross of a first elastic beam 3 is coupled with the upper connecting member 1, and also, the other end part of the cross is coupled with the intermediate connecting member 2. Also, each end part of the cross of a second elastic beam 4 and the intermediate connecting member 2 are coupled so as to align the phase with the first elastic beam 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多分力センサに係り、特に例えばロボットの
指先部に作用する力やモーメントを同時に検出するのに
好適な力測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a multi-force sensor, and particularly to a force measuring device suitable for simultaneously detecting force and moment acting on a fingertip of a robot, for example.

〈従来の技術〉 例えば、産業用ロボットにおいては、ロボットの手先の
動作を制御するために、ロボットの指先に作用する力や
モーメントを検出するための力検小装置が必要となる。
<Prior Art> For example, in an industrial robot, in order to control the motion of the robot's fingers, a force detection device is required to detect the force or moment acting on the fingertips of the robot.

産業用ロボットの一例として、第8図に示すように複数
の関節を有するロボットアーム51の先端につかみ機構
57により開閉動作するロボット手先部56が取付けら
れている。このロボットは、ロボット手先部56で部品
54をつかみ、基台52上へ供給された物体53の内孔
へこの部品54を挿入する作業を繰り返し実行する。こ
のロボット手先部56とロボットアーム51との間には
力検出装置55が取付けられ、作業中に部品54と物体
53との間に作用する力やモーメントを検出し、検出情
報をコンピュータを用いた制御回路へ入力してロボット
の作業状態を修正制御する。
As an example of an industrial robot, as shown in FIG. 8, a robot arm 51 having a plurality of joints has a robot arm 51 at its tip, and a robot arm 56 that is opened and closed by a gripping mechanism 57. This robot repeatedly grasps a part 54 with a robot hand 56 and inserts this part 54 into the inner hole of an object 53 supplied onto a base 52. A force detection device 55 is attached between the robot hand portion 56 and the robot arm 51, and detects the force or moment that acts between the part 54 and the object 53 during work, and uses the detected information to transmit the detected information to a computer. It is input to the control circuit to correct and control the robot's working status.

従来の力検出装置としては、例えば特開昭61−500
30号公報に開示されているような複数のT塑弾性ビー
ムを用いるものや、特開昭60−62497号公報に開
示されているような多軸力センサなどが提案されている
As a conventional force detection device, for example, Japanese Patent Application Laid-Open No. 61-500
A sensor using a plurality of T plastic elastic beams as disclosed in Japanese Patent No. 30, a multi-axial force sensor as disclosed in Japanese Patent Application Laid-Open No. 60-62497, and the like have been proposed.

〈発明が解決しようとする問題点〉 しかしながら、前者の特開昭61−50030号公報に
記載されている検出方法は、構成する弾性ビームが一方
向にのみ反応するのではなく多方向の力に反応するため
に、弾性ビームに接着された歪みゲージの歪み量から直
ちに力の検出を行うことができず、6元1次方程式を解
く形でしか求められないという欠点を有する。
<Problems to be Solved by the Invention> However, in the detection method described in the former Japanese Patent Application Laid-open No. 61-50030, the constituent elastic beams do not react only in one direction but in response to forces in multiple directions. Because of the reaction, the force cannot be immediately detected from the amount of strain in a strain gauge bonded to the elastic beam, but has the disadvantage that it can only be determined by solving a linear equation with six elements.

一方、後者の特開昭60−62497号公報では、機械
構造的に決められた方向以外の力による干渉を防いでい
るので検、出性能は高いと想定されるが、構造が複雑で
機械加工上コストが高くつくことおよび弾性ビームに均
一な歪みを発生させるためには有限長さを必要とするの
で、半径方向に3箇所の弾性部を設けると小型化を図る
ことができず、重量も大きくなるといった欠点を有して
いる。
On the other hand, in the latter Japanese Patent Application Laid-open No. 60-62497, it is assumed that the detection and output performance is high because it prevents interference due to forces other than those determined by the mechanical structure, but the structure is complex and the machining process is difficult. Moreover, since the cost is high and a finite length is required to generate uniform strain in the elastic beam, providing three elastic parts in the radial direction makes it impossible to achieve miniaturization and increases the weight. It has the disadvantage of being large.

本発明は、上記のような問題点を解決すべくなされたも
のであって、機械構造的に干渉を受けない構造であって
、かつ製造コストの安い小型で軽量な多分力センサを提
供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a small and lightweight multi-force sensor that is mechanically free from interference and that is inexpensive to manufacture. With the goal.

〈問題点を解決するための手段〉 本発明者は、上記問題点を解決すべく鋭意研究した結果
、力を検出する弾性ビームを2層、2分割化するように
すれば、弾性ビームの長さを短くし、かつ検出装置の外
径を小さくすることが可能であることを見出し、この知
見に基づいて本発明を完成させるに至った。
<Means for Solving the Problems> As a result of intensive research to solve the above problems, the present inventor found that if the elastic beam for detecting force is divided into two layers, the length of the elastic beam can be reduced. It was discovered that it is possible to shorten the length and reduce the outer diameter of the detection device, and based on this knowledge, the present invention was completed.

すなわち、本発明は、測定対象物である2つの剛体の間
に結合され、これら剛体に作用する力やモーメントを検
出する多分力センサであって、前記2つの剛体と連結す
る上下2個の連結部材の間に中間連結部材を介して十字
状の第1と第2の2個の弾性ビームが一体的に構成され
、前記第1の弾性ビームを形成する十字の両側面の長手
方向にそれぞれ2個の歪み検出器が取付けられるととも
に、この十字の一方の直線部分の両端部と前記上部連結
部材とが結合され、さらにこの直線部分と直角をなすも
う一方の直線部分の両端部と前記中間連結部材の一方の
面とが結合され、一方、前記第2の弾性ビームを形成す
る十字の両表面の長手方向にそれぞれ2個の歪み検出器
が取付けられるとともに、この第2の弾性ビームを形成
する十字のそれぞれの端部と前記中間連結部材の他方の
面とが前記第1の弾性ビームと位相を合わせるようにし
て結合されることを特徴とする多分力センサである。
That is, the present invention is a multi-force sensor that is connected between two rigid bodies that are objects to be measured and that detects the force or moment acting on these rigid bodies, and which includes two upper and lower connections that are connected to the two rigid bodies. Two cross-shaped first and second elastic beams are integrally constructed with an intermediate connecting member interposed between the members, and two cross-shaped elastic beams are formed in the longitudinal direction of both sides of the cross forming the first elastic beam. At the same time, both ends of one straight section of the cross are connected to the upper connecting member, and both ends of the other straight section that is perpendicular to this straight section are connected to the intermediate connecting member. one surface of the member is coupled to the other, and two strain detectors are attached to each longitudinal direction of both surfaces of the cross forming the second elastic beam, and the second elastic beam is formed. The multi-force sensor is characterized in that each end of the cross and the other surface of the intermediate connecting member are coupled to be in phase with the first elastic beam.

なお、前記十字状の弾性ビームは、ビームの表面または
側面から穴ぐりされて形成された平行ビームとしてもよ
く、また力やモーメントを受けて変形し易い方向と変形
し難い方向とを有する異方性のある矩形断面をもつ単一
ビームとしてもよい。
Note that the cross-shaped elastic beam may be a parallel beam formed by drilling a hole from the surface or side surface of the beam, or may be an anisotropic beam having a direction in which it is easily deformed and a direction in which it is difficult to deform when subjected to force or moment. It may also be a single beam with a uniform rectangular cross section.

〈作用〉 本発明によれば、中間連結部材を間に介装した2個の十
字状の弾性ビームと上部連結部材とを一体的に構成する
ようにして、歪み検出部を半径方向に2箇所にのみ設け
るようにしたので、弾性ビームの平行ビーム部分の長さ
を短くすることができ、かついずれの方向からの歪みで
あっても正確に検出することが可能である。
<Operation> According to the present invention, the two cross-shaped elastic beams with the intermediate connecting member interposed therebetween and the upper connecting member are integrally configured, so that the strain detecting portion can be installed at two locations in the radial direction. Since the parallel beam portion of the elastic beam is provided only in the parallel beam portion, the length of the parallel beam portion of the elastic beam can be shortened, and it is possible to accurately detect distortion from any direction.

〈実施例〉 以下に、本発明の実施例について、図面に基づいて詳し
く説明する。
<Example> Below, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明に係る多分力センサの(a)正面図、
(b)側面図、(C)平面図、(d)A−A矢視断面図
である。
FIG. 1 is (a) a front view of a multi-force sensor according to the present invention;
(b) A side view, (C) a plan view, and (d) a sectional view taken along the line A-A.

図において、1は、例えばフランジのような円板状の上
部連結部であって、図示しない一方の剛体例えばロボッ
トの手と連結可能とされる。2は、円板状の中間連結部
材であって、この中間連結部材2と上部連結部1との間
に第1の゛弾性ビーム3が介装され、また、中間連結部
材2の他方の面には第2の弾性ビーム4が取付けられる
。ここで、4aは、第2の弾性ビーム4の下部中央に突
起して設けられた下部連結部であって、図示しない他方
の剛体例えばロボットの腕と連結可能とされる。
In the figure, reference numeral 1 denotes a disk-shaped upper connecting portion, such as a flange, which can be connected to one rigid body (not shown), such as a robot's hand. Reference numeral 2 denotes a disk-shaped intermediate connecting member, in which a first elastic beam 3 is interposed between the intermediate connecting member 2 and the upper connecting part 1, and the other surface of the intermediate connecting member 2 A second elastic beam 4 is attached to. Here, 4a is a lower connecting portion provided protruding from the center of the lower part of the second elastic beam 4, and is connectable to another rigid body (not shown), such as an arm of a robot.

なお、ロボットの腕との接合手段の関係で、この下部連
結部4aとロボットの腕との間にフランジを介装させて
もよい。
Note that a flange may be interposed between the lower connecting portion 4a and the robot arm in relation to the connection means with the robot arm.

第2図は、第1の弾性ビーム3を示す平面図であり、第
3図は、第2の弾性ビーム4を示す平面図である。
FIG. 2 is a plan view showing the first elastic beam 3, and FIG. 3 is a plan view showing the second elastic beam 4.

第1の弾性ビーム3は、第2図に示すように、上下左右
対称な4個の平行ビーム5.5’、6゜6′で十字状に
構成され、平行ビーム5.5′のそれぞれの端部に設け
られた取付は穴7.7′と上部連結部材1に設けられた
取付は穴9,9′とによって上部連結部材1に固定結合
され、また平行ビーム6.6′のそれぞれの端部に設け
られた取付は六8.8′と中間連結部材2に設けられた
取付は穴10.10”とによって中間連結部材2に固定
結合される。
As shown in FIG. 2, the first elastic beam 3 is configured in a cross shape with four parallel beams 5.5' and 6°6' that are vertically and horizontally symmetrical, and each of the parallel beams 5.5' The fittings provided at the ends are fixedly connected to the upper connecting part 1 by holes 7.7' and the fittings provided in the upper connecting part 1 by holes 9, 9', and each of the parallel beams 6.6' The attachment provided at the end is fixedly connected to the intermediate coupling member 2 by means of a hole 68.8' and the attachment provided in the intermediate coupling member 2 by a hole 10.10''.

また、これら平行ビーム5.5’、6.6’の表面の中
央部には、それぞれ穴ぐり部11.11’ 。
Further, in the center of the surfaces of these parallel beams 5.5' and 6.6', there are holed portions 11.11', respectively.

12、12’がその直角方向に貫通して設けられ、検出
しようとする方向の力やモーメントに対して変形しやす
いように構成される。そして、これら穴ぐり部11.1
1’ 、 12.12’に対応する平行ビーム5.5’
、6.6’の左右両側面には、長手方向にそれぞれ2個
ずつの例えばストレンゲージなどの歪み検出器20〜3
5が接着される。
12 and 12' are provided to penetrate in the direction perpendicular thereto, and are configured to be easily deformed in response to force or moment in the direction to be detected. And these hole parts 11.1
Parallel beam 5.5' corresponding to 1', 12.12'
, 6.6', two strain detectors 20 to 3, such as strain gauges, are installed in the longitudinal direction on both the left and right sides of the 6.6'.
5 is glued.

一方、第2の弾性ビーム4は、第3図に示すように、第
1の弾性ビーム3と同様な上下左右対称な4個の平行ビ
ーム13.13’ 、 14.14’で十字状に構成さ
れ、平行ビーム13.13’ 、 14.14’のそれ
ぞれの端部に設けられた取付は穴15.15’ 、16
゜16′と中間連結部材2に設けられた取付は穴17゜
17’ 、 10.10’とによって中間連結部材2に
固定結合される。
On the other hand, as shown in FIG. 3, the second elastic beam 4 is configured in a cross shape by four parallel beams 13, 13' and 14, 14' which are vertically and horizontally symmetrical, similar to the first elastic beam 3. and the mounting holes 15.15', 16 provided at each end of the parallel beams 13.13', 14.14'.
16' and the attachment provided on the intermediate connecting member 2 are fixedly connected to the intermediate connecting member 2 by means of holes 17° 17', 10, 10'.

また、これらの平行ビーム13.13’ 、 14.1
4’の側面の中央部には、それぞれ穴ぐり部18.1B
’ 。
Also, these parallel beams 13.13', 14.1
Hole portion 18.1B is provided in the center of the side surface of 4'.
'.

19、19’がその直角方向に貫通して設けられ、さら
にこれら穴ぐり部1B、 18’ 、 19.19’に
対応する平行ビーム13.13’ 、 14.14’の
上下両表面には、第1の弾性ビームと同様に長手方向に
それぞれ2個ずつの例えばストレンゲージなどの歪み検
出器36〜51が接着される。
Parallel beams 13.13' and 14.14' corresponding to the bored portions 1B, 18' and 19.19' are provided with parallel beams 19 and 19' extending through them in the right angle direction. Similarly to the first elastic beam, two strain detectors 36 to 51, such as strain gauges, are bonded in each longitudinal direction.

上記のように多分力センサを構成することによって、上
部連結部材1に作用する力やモーメントは、上部連結部
材1→第1の弾性ビーム3→中間連結部材2→第2の弾
性ビーム4→下部連結部材4aへと伝わるのである。
By configuring the multi-force sensor as described above, the force and moment acting on the upper connecting member 1 are as follows: upper connecting member 1 → first elastic beam 3 → intermediate connecting member 2 → second elastic beam 4 → lower This is transmitted to the connecting member 4a.

つぎに、作用する力やモーメントを検出する歪み検出器
による測定の回路構成について、第4図を用いて説明す
る。
Next, a circuit configuration for measurement using a strain detector that detects acting force and moment will be explained using FIG. 4.

X軸方向の力(F、);第4図(a)に示す−ように、
歪み検出器25.27.32.34でホイートストンブ
リッジ回路を構成する。
Force in the X-axis direction (F, ); as shown in Figure 4 (a),
The distortion detectors 25, 27, 32, and 34 constitute a Wheatstone bridge circuit.

y軸方向の力(Fア);第4図Φ)に示すように、歪み
検出器21.23.28.30でホイートストンブリッ
ジ回路を構成する。
As shown in the force in the y-axis direction (Fa); Fig. 4 Φ), the strain detectors 21, 23, 28, and 30 constitute a Wheatstone bridge circuit.

Z軸方向の力(F、);第4図(C)に示すように、歪
み検出器37.39.41.43.44.46.48.
50でホイートストンブリッジ回路を構成する。
Force in the Z-axis direction (F, ): As shown in FIG. 4(C), strain detectors 37.39.41.43.44.46.48.
50 constitutes a Wheatstone bridge circuit.

X軸方向のモーメント(M、)i第4図(d)に示すよ
うに、歪み検出器40.42.49.51でホイートス
トンブリッジ回路を構成する。
Moment (M, )i in the X-axis direction As shown in FIG. 4(d), a Wheatstone bridge circuit is constructed by strain detectors 40, 42, 49, and 51.

y軸方向のモーメント(My);第4図(e)に示すよ
うに、歪み検出器36.38.45.47でホイートス
トンブリッジ回路を構成する。
Moment in the y-axis direction (My): As shown in FIG. 4(e), a Wheatstone bridge circuit is formed by the distortion detectors 36, 38, 45, and 47.

Z軸方向のモーメント(M、);第4図(f)に示すよ
うに、歪み検出器20.22.24.26.29.31
゜33、35でホイートストンブリッジ回路を構成する
Moment in the Z-axis direction (M, ); as shown in Figure 4(f), strain detector 20.22.24.26.29.31
33 and 35 constitute a Wheatstone bridge circuit.

ここで、検出する方向の力やモーメントが、他の方向の
力やモーメントの干渉を受けない理由について、第4図
(C)の2軸方向に作用する力F、の場合を例に説明す
る。
Here, the reason why the force or moment in the direction to be detected is not interfered with by the force or moment in other directions will be explained using the case of force F acting in two axial directions in Fig. 4(C) as an example. .

X軸方向の力F8作用時;歪み検出器37.39と44
、46とは絶対値の等しい圧縮歪みおよび引張り歪みを
発生し、他の歪み検出器41.43.48.50は平行
ビーム16.16’の中立軸上であるから歪みを発生し
ないので、第4図(C)のホイートストンブリッジ回路
から出力は発生しない。
When force F8 is applied in the X-axis direction; strain detectors 37, 39 and 44
, 46 generate compressive and tensile strains of equal absolute value, and the other strain detectors 41, 43, 48, 50 do not generate any strain since they are on the neutral axis of the parallel beam 16, 16'. No output is generated from the Wheatstone bridge circuit in Figure 4 (C).

y軸方向の力F、作用時;X軸方向の力Fヨと直角方向
の力であるので、F、作用時と同様に第4図(C)のホ
イートストンブリッジ回路の出力としては発生しない。
When the force F in the y-axis direction is applied, it is a force in the direction perpendicular to the force F in the X-axis direction, so it is not generated as an output of the Wheatstone bridge circuit in FIG. 4(C), similarly to when F is applied.

X軸方向のモーメントM、作用時;歪み検出器41、5
1と43.49とは絶対値の等しい圧縮曲げ歪みおよび
引張り曲げ歪みを発生し、他の歪み検出器37、39.
44.46には微小な捩じり歪みを発生するが、第4図
(C)のホイートストンブリッジ回路から出力は発生し
ない。
Moment M in the X-axis direction, when acting; strain detectors 41, 5
1 and 43.49 generate compressive bending strain and tensile bending strain with equal absolute values, and the other strain detectors 37, 39.
Although a minute torsional distortion is generated at 44.46, no output is generated from the Wheatstone bridge circuit of FIG. 4(C).

y軸方向のモーメントMy作用時;X軸方向のモーメン
トM8と直角方向のモーメントであるので、M、作用時
と同様にホイートストンブリッジ回路からの出力として
は発生しない。
When the moment My in the y-axis direction is applied; since it is a moment perpendicular to the moment M8 in the X-axis direction, it is not generated as an output from the Wheatstone bridge circuit, similarly to when M is applied.

y軸方向のモーメントM、1作用時;歪み検出器はすべ
て平行ビーム13.13’ 、 14.14’の中立軸
上であるから、曲げ歪みを発生しない。
When the moment M in the y-axis direction is 1; the strain detectors are all on the neutral axes of the parallel beams 13.13' and 14.14', so no bending strain occurs.

上記の説明から明らかなように、Z軸方向に作用する力
Fヨを検出する場合は、検出しようとするZ軸方向の力
のみに感知し、他の方向の力やモーメントの影響を受け
ずに検出することができるのである。
As is clear from the above explanation, when detecting the force F acting in the Z-axis direction, only the force in the Z-axis direction to be detected is detected, and it is not affected by forces or moments in other directions. It can be detected.

このように、本発明の多分力センサを用いることにより
、他の方向の力やモーメントの干渉を受けずに検出しよ
うとする方向の力やモーメントのみを高精度で測定する
ことが可能である。
In this way, by using the multi-force sensor of the present invention, it is possible to measure only the force or moment in the desired direction with high precision without interference from forces or moments in other directions.

なお、本発明は、産業用ロボットへの適用のみに限らず
、工作機械などの工具に作用する力やモーメントの測定
にも用いることが可能であることはいうまでもない。
It goes without saying that the present invention is not limited to application to industrial robots, but can also be used to measure forces and moments acting on tools such as machine tools.

第5図は、本発明に係る多分力センサの他の実施例を示
す(a)正面図、(b)側面図である。
FIG. 5 is (a) a front view and (b) a side view showing another embodiment of the multi-force sensor according to the present invention.

第1の弾性ビーム3Aは、第6図に詳しく示すように単
一ビーム5a、5a’ 、6a、6a’で構成され、ま
た、第2の弾性ビーム4Aは、第7図に詳しく示すよう
に単一ビーム13a 、 13a ’ 。
The first elastic beam 3A is composed of single beams 5a, 5a', 6a, 6a' as shown in detail in FIG. Single beam 13a, 13a'.

14a、14a’で構成される。このように弾性ビーム
を構成すれば、第1の弾性ビーム3Aにおいては、X軸
およびy軸方向から作用する力やモーメントに対して鋭
敏に変形するが、y軸方向からの力やモーメントに対し
ては変形し難く、また第2の弾性ビーム4Aにおいては
、Z軸方向に対して鋭敏に変形するが、X軸およびy軸
方向に対しては変形し難いのである。さらに、このよう
な形状は、機械加工が容易である。なお、歪み検出器の
接着1組立は、前記した手法と同様である。
It is composed of 14a and 14a'. By configuring the elastic beam in this way, the first elastic beam 3A deforms sharply in response to forces and moments acting from the X-axis and y-axis directions, but The second elastic beam 4A deforms sharply in the Z-axis direction, but is difficult to deform in the X-axis and y-axis directions. Furthermore, such a shape is easy to machine. Note that the method of bonding and assembling the strain detector is the same as the method described above.

〈発明の効果〉 以上説明したように、本発明によれば、中間板状部材を
間に介装した2Nの十字状の弾性ビームと上部連結部材
とを一体的に構成するようにしたので、いずれの方向か
らの力やモーメントであっても正確に検出することがで
き、かつ小型化、軽量化を実現することが可能であり、
さらに機械加工費の低廉化を図ることが可能である。し
たがって、今後におけるロボットの知能化の促進に貢献
することが大いに期待される。
<Effects of the Invention> As explained above, according to the present invention, since the 2N cross-shaped elastic beam with the intermediate plate-like member interposed therebetween and the upper connecting member are integrally constructed, It can accurately detect force and moment from any direction, and can be made smaller and lighter.
Furthermore, it is possible to reduce machining costs. Therefore, it is highly expected that this will contribute to promoting the intelligence of robots in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る多分力センサの(a)正面図、
(ロ)側面図、(C)平面図、(d)A−A矢視断面図
、第2図は、第1の弾性ビームを示す(a)平面図、 
(b)側面図、第3図は、第2の弾性ビームを示す(a
)平面図、(ロ)側面図、第4図は、歪み検出器の構成
を示す回路図、第5図は、本発明に係る多分力センサの
他の実施例を示す(a)正面図、し)側面図、第6図は
、第1の弾性ビームの他の実施例を示す(a)平面図、
(ハ)側面図、第7図は、第2の弾性ビームの他の実施
例を示す(a)平面図、Q))側面図、第8図は、産業
用ロボットの一例を示す正面図である。 1・・・上部連結部材、   2・・・中間連結部材。 3・・・第1の弾性ビーム、4・・・第1の弾性ビーム
。 4a・・・下部連結部材。 5、 6.13.14・・・平行ビーム。 ?、  8. 9.10.15.16.17・・・取付
は穴。 11、12.18.19・・・穴ぐり部。 20〜51・・・歪み検出器。 特許出願人   川崎製鉄株式会社 第1図 Cσノ                  (b)(
c)                     (d
)  、。 第2図 第3図 第4図 (a)          (b)         
    (c)(’d)         (e)  
            (f)第5図 第6図 第7図 r0ノ   16a a
FIG. 1 is (a) a front view of a multi-force sensor according to the present invention;
(B) Side view, (C) Plan view, (d) A-A cross-sectional view, (a) Plan view showing the first elastic beam in FIG.
(b) Side view, Figure 3 shows the second elastic beam (a
) Plan view, (b) Side view, FIG. 4 is a circuit diagram showing the configuration of the strain detector, FIG. 5 is (a) Front view showing another embodiment of the multi-force sensor according to the present invention, 6 is a plan view showing another embodiment of the first elastic beam;
(C) Side view, FIG. 7 is a plan view showing another embodiment of the second elastic beam, Q)) Side view, and FIG. 8 is a front view showing an example of an industrial robot. be. 1... Upper connecting member, 2... Intermediate connecting member. 3... First elastic beam, 4... First elastic beam. 4a...Lower connecting member. 5, 6.13.14...Parallel beam. ? , 8. 9.10.15.16.17... Mounting is through holes. 11, 12, 18, 19...Drilling part. 20-51...Distortion detector. Patent applicant Kawasaki Steel Corporation Figure 1 Cσ (b) (
c) (d
),. Figure 2 Figure 3 Figure 4 (a) (b)
(c) ('d) (e)
(f) Figure 5 Figure 6 Figure 7 r0 no 16a a

Claims (3)

【特許請求の範囲】[Claims] (1)測定対象物である2つの剛体の間に結合され、こ
れら剛体に作用する力やモーメントを検出する多分力セ
ンサであって、前記2つの剛体と連結する上下2個の連
結部材の間に中間連結部材を介して十字状の第1と第2
の2個の弾性ビームが一体的に構成され、前記第1の弾
性ビームを形成する十字の両側面の長手方向にそれぞれ
2個の歪み検出器が取付けられるとともに、この十字の
一方の直線部分の両端部と前記上部連結部材とが結合さ
れ、さらにこの直線部分と直角をなすもう一方の直線部
分の両端部と前記中間連結部材の一方の面とが結合され
、一方、前記第2の弾性ビームを形成する十字の両表面
の長手方向にそれぞれ2個の歪み検出器が取付けられる
とともに、この第2の弾性ビームを形成する十字のそれ
ぞれの端部と前記中間連結部材の他方の面とが前記第1
の弾性ビームと位相を合わせるようにして結合されるこ
とを特徴とする多分力センサ。
(1) A multi-force sensor that is connected between two rigid bodies that are objects to be measured and that detects the force or moment acting on these rigid bodies, and that is between two upper and lower connecting members that connect the two rigid bodies. The cross-shaped first and second
Two elastic beams are integrally constructed, and two strain detectors are attached to each longitudinal direction of both sides of the cross forming the first elastic beam, and two strain detectors are attached to the longitudinal direction of each side of the cross forming the first elastic beam. Both ends of the upper connecting member are connected, and both ends of another straight line section that is perpendicular to this straight line are connected to one surface of the intermediate connecting member, while the second elastic beam Two strain detectors are installed in the longitudinal direction of both surfaces of the cross forming the second elastic beam, and each end of the cross forming the second elastic beam and the other surface of the intermediate connecting member 1st
A multi-force sensor, characterized in that it is coupled in phase with an elastic beam of.
(2)前記十字状の弾性ビームは、ビームの表面または
側面から穴ぐりされて形成された平行ビームであること
を特徴とする特許請求の範囲第1項記載の多分力センサ
(2) The multi-force sensor according to claim 1, wherein the cross-shaped elastic beam is a parallel beam formed by drilling a hole from the surface or side surface of the beam.
(3)前記十字状の弾性ビームは、力やモーメントを受
けて変形し易い方向と変形し難い方向とを有する異方性
のある矩形断面をもつ単一ビームであることを特徴とす
る特許請求の範囲第1項記載の多分力センサ。
(3) A patent claim characterized in that the cross-shaped elastic beam is a single beam having an anisotropic rectangular cross section with a direction in which it is easily deformed and a direction in which it is difficult to deform when subjected to force or moment. The multi-force sensor according to item 1.
JP62315144A 1987-12-15 1987-12-15 Multi component force sensor Pending JPH01156632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315144A JPH01156632A (en) 1987-12-15 1987-12-15 Multi component force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315144A JPH01156632A (en) 1987-12-15 1987-12-15 Multi component force sensor

Publications (1)

Publication Number Publication Date
JPH01156632A true JPH01156632A (en) 1989-06-20

Family

ID=18061941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315144A Pending JPH01156632A (en) 1987-12-15 1987-12-15 Multi component force sensor

Country Status (1)

Country Link
JP (1) JPH01156632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163405A (en) * 2005-12-16 2007-06-28 Showa Sokki:Kk Multiaxial force load cell
JP2007187596A (en) * 2006-01-16 2007-07-26 Keitekku System:Kk 3-axis force sensor
CN107462352A (en) * 2017-07-12 2017-12-12 中国航空工业集团公司西安飞行自动控制研究所 The fiber grating stick force sensor and measuring method of a kind of temperature self-compensation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163405A (en) * 2005-12-16 2007-06-28 Showa Sokki:Kk Multiaxial force load cell
JP2007187596A (en) * 2006-01-16 2007-07-26 Keitekku System:Kk 3-axis force sensor
CN107462352A (en) * 2017-07-12 2017-12-12 中国航空工业集团公司西安飞行自动控制研究所 The fiber grating stick force sensor and measuring method of a kind of temperature self-compensation

Similar Documents

Publication Publication Date Title
JP6501746B2 (en) Displacement measuring device, robot, robot arm and method of manufacturing article
US4488441A (en) Apparatus for simultaneous measurement of mutually perpendicular forces and moments
KR101293984B1 (en) Strain gauge type force-torque sensor and method for manufacturing the same
CN111094922B (en) Force sensor, torque sensor, force sensing sensor, fingertip force sensor, and method for manufacturing same
US11579696B2 (en) System, method and apparatus for accurately measuring haptic forces
Diddens et al. Design of a ring-shaped three-axis micro force/torque sensor
KR102183179B1 (en) Multi-axis force-torque sensor using straingauges
Zhang et al. A six-dimensional traction force sensor used for human-robot collaboration
TWI818989B (en) Torque sensor
Choi et al. A novel compliance compensator capable of measuring six-axis force/torque and displacement for a robotic assembly
JP2023117402A (en) Torque sensor with coupled load and fewer strain gauges
US20050120809A1 (en) Robotic force sensing device
US20210060793A1 (en) Robotic arm and robot
Romiti et al. Force and moment measurement on a robotic assembly hand
JPH01156632A (en) Multi component force sensor
JP2023534074A (en) Multi-DOF Force/Torque Sensors and Robots
CN116324361A (en) Torque Sensor Elements and Torque Sensors
JPH0640039B2 (en) Force detector
JPH01289688A (en) Flexible manipulator control device
JPH01119731A (en) Multi-axis force sensor
JPH0518049B2 (en)
KR101759102B1 (en) Improving performance wheel dynamometer on rotation
JPH0582535B2 (en)
JP2008126331A (en) Robot hand finger structure, force sensor device and robot hand
Ha et al. Elastic structure for a multi-axis forcetorque sensor