[go: up one dir, main page]

JPH0115584B2 - - Google Patents

Info

Publication number
JPH0115584B2
JPH0115584B2 JP56119910A JP11991081A JPH0115584B2 JP H0115584 B2 JPH0115584 B2 JP H0115584B2 JP 56119910 A JP56119910 A JP 56119910A JP 11991081 A JP11991081 A JP 11991081A JP H0115584 B2 JPH0115584 B2 JP H0115584B2
Authority
JP
Japan
Prior art keywords
content
corrosion resistance
powder
wear resistance
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56119910A
Other languages
Japanese (ja)
Other versions
JPS5822359A (en
Inventor
Masayuki Iijima
Hidetoshi Akutsu
Kazuyuki Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP11991081A priority Critical patent/JPS5822359A/en
Publication of JPS5822359A publication Critical patent/JPS5822359A/en
Publication of JPH0115584B2 publication Critical patent/JPH0115584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐摩耗性、なじみ性、お
よび耐食性を有する燃料供給ポンプの構造部材用
Fe基焼結合金に関するものである。 従来、一般に燃料供給ポンプとして、例えばダ
イヤフラムポンプやベーン型フイードポンプなど
が知られ、かつこれらの燃料供給ポンプの構造部
材であるハウジングやロータ、さらに前記ロータ
の外周面にそつて所定間隔に嵌着されたローラや
ブレードなどが熱処理した軸受鋼にて製造されて
いることも良く知られるところである。 ところで、近年、石油事情の悪化から、低質ガ
ソリンやアルコール含有ガソリン、さらにアルコ
ールなどが燃料として使用されるようになり、こ
れに伴つて、これら燃料の供給に前記の燃料供給
ポンプが使用されるようになつたが、この場合前
記の軸受鋼製構造部材においては、相互になじみ
性が悪く、かつ耐摩耗性も悪く、さらにアルコー
ル中に含有する水分、あるいは低質ガソリンのPH
低下による酸性化に原因の腐食が発生するもので
あつた。 そこで、本発明者等は、上述のような観点か
ら、低質ガソリンやアルコール含有ガソリン、さ
らにアルコールなどの燃料の供給に用いても、す
ぐれた耐摩耗性、なじみ性、および耐食性を示す
燃料供給ポンプの構造部材を得べく研究を行なつ
た結果、 燃料供給ポンプの構造部材を、 C:0.5〜3.5%、Cr:5〜35%、 Mn:0.05〜3%、 PおよびBのうちの1種または2種(ただし2
種の場合は合量で、以下同じ):0.03〜3%、
Mo:0.5〜10%、 NiおよびCoのうちの1種または2種:0.5〜10
%、 TiおよびZrのうちの1種または2種:0.05〜10
%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有するFe基焼結合金で構成
すると、この結果の構造部材は、上記組成によつ
て、基本的にFe基合金素地中に炭化物が分散析
出し、かつCrが素地中に固溶した組織をもつよ
うになるので、耐摩耗性、なじみ性、および耐食
性のすぐれたものになるという知見を得るに至つ
たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には、素地に固溶して、これを強化する
と共に、Cr、さらに必要に応じて含有させた
Mo,W,Nb,Ta,Ti、およびZrと結合して炭
化物を形成して耐摩耗性を向上させる作用がある
が、その含有量が0.5%未満では前記作用に所望
の効果が得られず、一方3.5%を越えて含有させ
ると炭化物の析出量が多くなりすぎて脆化するよ
うになると共に、相手部材を損傷するようになる
ことから、その含有量を0.5〜3.5%と定めた。 (b) Cr Cr成分には、素地に固溶して耐食性を向上さ
せると共に、これを強化し、さらにCと結合して
高硬度を有するCr炭化物を形成し、もつて耐摩
耗性を向上させる作用があるが、その含有量が5
%未満では前記作用に所望の効果が得られず、一
方35%を越えて含有させると、素地が脆化し、か
えつて耐摩耗性の劣化をきたすようになることか
ら、その含有量を5〜35%と決めた。 (c) PおよびB これらの成分には、素地に固溶して、これを強
化し、もつて耐摩耗性の向上をはかるばかりでな
く、さらに焼結時にFeと反応し液相を発生して
焼結を活性化し、もつて焼結体の緻密化および炭
化物の安定化をはかつて耐食性を向上させる作用
があるが、その含有量が0.03%未満では前記作用
に所望の効果が得られず、一方3%を越えて含有
させると、再び耐食性が劣化するようになると共
に、脆化も著しくなることから、その含有量を
0.03〜3%と定めた。 (d) Mn Mn成分には、素地に固溶して、靭性を向上さ
せると共に、なじみ性および耐食性をも向上させ
る作用があるが、その含有量が0.05%未満では前
記作用に所望の効果が得られず、一方3%を越え
て含有させると、結晶粒が粗大化するようになつ
て強度の低下、並びに耐食性の劣化をもたらすよ
うになることから、その含有量を0.05〜3%と定
めた。 (e) Mo これらの成分には、素地に固溶し、これを強化
するほか、Cと結合して炭化物を形成し、耐摩耗
性を向上させる作用があるが、その含有量が0.5
%未満では、前記作用に所望の改善効果が得られ
ず、一方10%を越えて含有させると、相手部材の
損傷が大きくなることから、その含有量を0.5〜
10%と定めた。 (f) NiおよびCo これらの成分には、一段と素地を強化し、かつ
相手材とのなじみ性を一層改善するほか、使用燃
料に対する耐食性をより向上させる作用がある
が、その含有量が0.5%未満では前記特性に所望
の改善効果が得られず、一方10%を越えて含有さ
せてもより一層の改善効果は現われず、経済性を
考慮し、その含有量を0.5〜10%と定めた。 (g) TおよびZr これらの成分は、Cと強い親和力をもつため、
これと結合して高硬度を有する炭化物を形成する
ほか、Crをはじめとする炭化物形成成分ととも
に複炭化物を形成して、分散相たる炭化物と結合
相たる素地との結合を一段と強固にし、もつて耐
摩耗性をより一層向上させ、さらに低質燃料に対
する耐食性を一段と改善する作用をもつが、その
含有量が0.05%未満では前記特性に所望の改善効
果がみられず、一方10%を越えて含有させると相
手部材の損傷が大きくなることから、その含有量
を0.05〜10%と定めた。 なお、この発明のFe基焼結合金においては、
85%以上の理論密度比をもつことが望ましく、こ
れは、85%未満の理論密度比では劣化ガソリンや
アルコールなどの燃料の供給に用いた場合、耐食
性およびなじみ性の劣化がみられるようになると
いう理由からである。 つぎに、この発明のFe基焼結合金を実施例に
より比較例と対比しながら説明する。 実施例 原料粉末として、いずれも水噴射法により形成
した粒度:−100meshのFe粉末、同Fe―Cr合金
(Cr:38%含有)粉末、同Fe―Cr―Zr合金
(Cr:21%、Zr:11%含有)粉末、同Fe―Cr合金
(Cr:66%含有)粉末、同Fe―Mn合金(Mn:75
%含有)粉末、同Fe―P合金(P:27%含有)
粉末、同Fe―B合金(B:20%含有)粉末、同
Fe―Ti合金(Ti:72%含有)粉末、同Fe―Zr合
金(Zr:70%含有)粉末を用意し、さらに粒
度:−100meshのりん片状黒鉛粉末、それぞれ平
均粒径:3μmを有するMo粉末、Ni粉末、および
Co粉末を用意し、これら原料粉末を第1表に示
される配合組成に配合し、潤滑剤として0.7%の
ステアリン酸亜鉛を加えて混合し、この混合粉末
を5ton/cm2の圧力にて圧粉体に成形し、ついで前
記圧粉体を、真空中、温度:1100〜1220℃の所定
温度に60分間保持の条件で焼結し、焼結後950〜
1000℃の温度から焼入れした後、温度:500〜540
℃の温度に60分間保持の条件で焼戻し処理を行な
うことによつて、実質的に配合組成と同一の最終
成分組成をもつた本発明焼結合金1〜21および比
較焼結合金1〜15をそれぞれ製造した。 なお、比較焼結合金1〜15は、いずれも構成成
分のうちのいずれかの成分含有量(第1表には※
印を付して表示)がこの発明の範囲から外れた組
成をもつものである。 ついで、この結果得られた本発明焼結材料1〜
21および比較焼結材料1〜15について、理論密度
比および硬さ(ビツカース硬さ)を測定すると共
に、耐摩耗試験および耐食試験を行なつた。 耐摩耗試験は、上記の各焼結合金から、直径:
28mmφ×長さ:5mmの寸法を有し、かつ外周面に
そつて軸線方向に平行に一定間隔ごとに形成した
6本の溝を有するモータ式燃料ポンプのロータを
作成し、このロータを硬さHRC:54を有する
JIS・SUS430製のハウジング内に組込んだ状態
で、H2O:2.0%、アルコール:12%含有のガソ
リン中に浸漬し、面圧:4Kg/cm2、回転数:
3000r.p.m.の条件で1000時間運転し、運
This invention provides structural members for fuel supply pumps with excellent wear resistance, conformability, and corrosion resistance.
This relates to Fe-based sintered alloys. Conventionally, fuel supply pumps, such as diaphragm pumps and vane-type feed pumps, are generally known, and these fuel supply pumps have housings and rotors that are structural members, and furthermore, housings and rotors that are fitted at predetermined intervals along the outer circumferential surface of the rotor. It is also well known that rollers, blades, etc. are manufactured from heat-treated bearing steel. By the way, in recent years, due to the deterioration of the oil situation, low-quality gasoline, alcohol-containing gasoline, and even alcohol have come to be used as fuel, and with this, the above-mentioned fuel supply pump has come to be used to supply these fuels. However, in this case, the above-mentioned bearing steel structural members have poor mutual compatibility and poor wear resistance, and furthermore, the moisture contained in alcohol or the pH of low-quality gasoline
Corrosion occurred due to acidification caused by the drop. Therefore, from the above-mentioned viewpoint, the present inventors have developed a fuel supply pump that exhibits excellent wear resistance, conformability, and corrosion resistance even when used for supplying fuels such as low-quality gasoline, alcohol-containing gasoline, and even alcohol. As a result of conducting research to obtain structural members for the fuel supply pump, we found that the structural members for the fuel supply pump were C: 0.5 to 3.5%, Cr: 5 to 35%, Mn: 0.05 to 3%, and one of P and B. or 2 types (but 2 types)
In the case of seeds, the total amount (same below): 0.03-3%,
Mo: 0.5-10%, one or two of Ni and Co: 0.5-10
%, one or two of Ti and Zr: 0.05-10
%, with the remainder consisting of Fe and unavoidable impurities (weight %), the resulting structural member is basically an Fe-based alloy due to the above composition. It was discovered that carbide is dispersed and precipitated in the matrix, and Cr is dissolved in the matrix, resulting in a structure with excellent wear resistance, conformability, and corrosion resistance. . This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component is solid-dissolved in the base material to strengthen it, and further contains Cr as necessary.
It has the effect of combining with Mo, W, Nb, Ta, Ti, and Zr to form carbides and improving wear resistance, but if the content is less than 0.5%, the desired effect cannot be obtained. On the other hand, if the content exceeds 3.5%, the amount of carbide precipitated becomes too large, resulting in embrittlement and damage to the mating member, so the content was set at 0.5 to 3.5%. (b) Cr The Cr component is dissolved in the base material to improve corrosion resistance, strengthen it, and further combine with C to form Cr carbide with high hardness, thereby improving wear resistance. It has an effect, but its content is 5
If the content is less than 35%, the desired effect cannot be obtained, while if the content exceeds 35%, the base material becomes brittle and the wear resistance deteriorates. I decided on 35%. (c) P and B These components not only solidly dissolve in the base material and strengthen it, thereby improving wear resistance, but also react with Fe during sintering to generate a liquid phase. Activating sintering, densifying the sintered body and stabilizing carbides used to have the effect of improving corrosion resistance, but if the content is less than 0.03%, the desired effect cannot be obtained. On the other hand, if the content exceeds 3%, the corrosion resistance will deteriorate again and embrittlement will become significant.
It was set at 0.03-3%. (d) Mn The Mn component dissolves in the base material and has the effect of improving toughness as well as conformability and corrosion resistance, but if its content is less than 0.05%, the desired effect is not achieved. On the other hand, if the content exceeds 3%, the crystal grains will become coarser, resulting in a decrease in strength and deterioration in corrosion resistance. Therefore, the content is set at 0.05 to 3%. Ta. (e) Mo These components have the effect of forming a solid solution in the base material and strengthening it, as well as combining with C to form carbide and improving wear resistance, but the content is 0.5
If the content is less than 10%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 10%, the damage to the mating member will increase.
It was set at 10%. (f) Ni and Co These components have the effect of further strengthening the substrate, further improving compatibility with the mating material, and further improving corrosion resistance against the fuel used, but their content is 0.5%. If the content is less than 10%, the desired improvement effect on the properties cannot be obtained, and on the other hand, if the content exceeds 10%, no further improvement effect will be obtained.Considering economic efficiency, the content was set at 0.5 to 10%. . (g) T and Zr These components have a strong affinity with C, so
In addition to forming a carbide with high hardness by combining with this, it also forms a double carbide with carbide-forming components such as Cr, which further strengthens the bond between the carbide as a dispersed phase and the matrix as a binder phase. It has the effect of further improving wear resistance and further improving corrosion resistance against low-quality fuel, but if the content is less than 0.05%, the desired improvement effect on the above properties is not seen, while if the content exceeds 10% Since this would cause significant damage to the mating member, the content was set at 0.05 to 10%. In addition, in the Fe-based sintered alloy of this invention,
It is desirable to have a theoretical density ratio of 85% or more, because if the theoretical density ratio is less than 85%, corrosion resistance and conformability will deteriorate when used to supply fuels such as degraded gasoline or alcohol. This is for the reason. Next, the Fe-based sintered alloy of the present invention will be explained using examples and comparing with comparative examples. Examples Fe powder with a particle size of -100mesh, Fe-Cr alloy (containing 38% Cr) powder, and Fe-Cr-Zr alloy (containing Cr: 21%, Zr : 11% content) powder, the same Fe-Cr alloy (Cr: 66% content) powder, the same Fe-Mn alloy (Mn: 75%
% content) powder, the same Fe-P alloy (P: 27% content)
Powder, Fe-B alloy (containing 20% B) powder,
Fe--Ti alloy (containing 72% Ti) powder and Fe--Zr alloy (containing 70% Zr) powder were prepared, as well as flaky graphite powder with a particle size of -100 mesh, each with an average particle size of 3 μm. Mo powder, Ni powder, and
Prepare Co powder, blend these raw powders into the composition shown in Table 1, add 0.7% zinc stearate as a lubricant and mix, and press this mixed powder at a pressure of 5 ton/cm 2. The green compact is then sintered in a vacuum at a predetermined temperature of 1100 to 1220°C for 60 minutes, and after sintering the compact is sintered at a temperature of 950°C to
After quenching from the temperature of 1000℃, temperature: 500~540
Sintered alloys 1 to 21 of the present invention and comparative sintered alloys 1 to 15 having substantially the same final component composition as the blended composition were obtained by tempering at a temperature of 60 minutes at a temperature of manufactured respectively. Comparative sintered alloys 1 to 15 all have the content of one of the constituent components (Table 1 shows *
(indicated with a mark) have a composition outside the scope of this invention. Next, the resulting sintered materials of the present invention 1-
The theoretical density ratio and hardness (Vickers hardness) were measured for Comparative Sintered Materials No. 21 and Comparative Sintered Materials 1 to 15, and a wear resistance test and a corrosion resistance test were conducted. Wear resistance tests were conducted on each of the above sintered alloys, with diameters:
A rotor for a motor-type fuel pump with dimensions of 28 mmφ x length: 5 mm and six grooves formed at regular intervals along the outer circumferential surface parallel to the axial direction was created, and this rotor was hardened. H R C: Has 54
It was assembled into a housing made of JIS/SUS430 and immersed in gasoline containing 2.0% H 2 O and 12% alcohol, surface pressure: 4Kg/cm 2 , rotation speed:
Operated for 1000 hours at 3000r.pm.

【表】【table】

【表】 転後、前記ロータおよびハウジング(相手部材)
のそれぞれの摺動面における平均摩耗深さを測定
することにより行なつた。 また、耐食試験は、それぞれ10%H2O含有の
アルコール中に300時間浸漬、および劣化ガソリ
ン中に150時間浸漬の条件で行ない、前者のアル
コール浸漬試験では、錆発生状況を観察し、錆発
生が全くない場合を〇印、錆発生がわずかにある
場合を△印、錆発生が著しい場合を×印で評価
し、さらに後者のガソリン浸漬試験では変色状況
を観察し、変色なしを〇印、わずかに変色ありを
△印、変色が著しい場合を×印で評価した。これ
らの結果を第1表に合せて示した。 第1表に示される結果から、構成成分のうちの
いずれかの成分含有量がこの発明の範囲から外れ
ても、比較焼結合金1〜15に見られるように耐摩
耗性、なじみ性、および耐食性のうちの少なくと
も1つの特性が劣つたものになるのに対して、本
発明焼結材料1〜21は、いずれもすぐれた耐摩耗
性、なじみ性、および耐食性を具備していること
が明らかである。 上述のように、この発明の焼結合金は、すぐれ
た耐摩耗性、なじみ性、および耐食性を有してい
るので、通常のガソリンや軽油などの燃料は勿論
のこと、劣化ガソリンやH2O含有ガソリン、さ
らにアルコール含有ガソリンやアルコールなどの
燃料の供給ポンプの構造部材の製造に用いた場合
にもきわめて長期に亘つてすぐれた性能を発揮す
るなど工業上有用な特性を有するのである。
[Table] After rotation, the rotor and housing (mating member)
This was done by measuring the average wear depth on each sliding surface. In addition, the corrosion resistance test was conducted under the conditions of immersion in alcohol containing 10% H 2 O for 300 hours and immersion in degraded gasoline for 150 hours. If there is no rust, mark it with ○, if there is a slight amount of rust, mark it with △, if there is significant rust, mark with ×.Furthermore, in the latter gasoline immersion test, the state of discoloration was observed, and if there was no discoloration, mark ○, Slight discoloration was evaluated with a △ mark, and cases with significant discoloration were evaluated with an x mark. These results are also shown in Table 1. From the results shown in Table 1, even if the content of any of the constituent components falls outside the range of the present invention, the wear resistance, conformability, and It is clear that the sintered materials 1 to 21 of the present invention all have excellent wear resistance, conformability, and corrosion resistance, whereas at least one property of corrosion resistance is inferior. It is. As mentioned above, the sintered alloy of the present invention has excellent wear resistance, conformability, and corrosion resistance, so it can be used not only for fuels such as ordinary gasoline and diesel oil, but also for degraded gasoline and H 2 O. It has industrially useful properties such as exhibiting excellent performance over an extremely long period of time when used in the manufacture of structural members for fuel supply pumps for fuels such as alcohol-containing gasoline and alcohol-containing gasoline.

Claims (1)

【特許請求の範囲】 1 C:0.5〜3.5%、Cr:5〜35%、 Mn:0.05〜3%、 PおよびBのうちの1種または2種(合量
で):0.03〜3%、 Mo:0.5〜10%、 NiおよびCoのうちの1種または2種(合量
で):0.5〜10%、 TiおよびZrのうちの1種または2種(合量
で):0.05〜10%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有することを特徴とする燃料
供給ポンプの構造部材用Fe基焼結合金。
[Claims] 1 C: 0.5 to 3.5%, Cr: 5 to 35%, Mn: 0.05 to 3%, one or two of P and B (total amount): 0.03 to 3%, Mo: 0.5 to 10%, one or two of Ni and Co (total amount): 0.5 to 10%, one or two of Ti and Zr (total amount): 0.05 to 10% An Fe-based sintered alloy for a structural member of a fuel supply pump, comprising: , and the remainder consisting of Fe and unavoidable impurities (at least % by weight).
JP11991081A 1981-07-30 1981-07-30 Fe-based sintered alloy for structural members of fuel supply pumps Granted JPS5822359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11991081A JPS5822359A (en) 1981-07-30 1981-07-30 Fe-based sintered alloy for structural members of fuel supply pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11991081A JPS5822359A (en) 1981-07-30 1981-07-30 Fe-based sintered alloy for structural members of fuel supply pumps

Publications (2)

Publication Number Publication Date
JPS5822359A JPS5822359A (en) 1983-02-09
JPH0115584B2 true JPH0115584B2 (en) 1989-03-17

Family

ID=14773217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11991081A Granted JPS5822359A (en) 1981-07-30 1981-07-30 Fe-based sintered alloy for structural members of fuel supply pumps

Country Status (1)

Country Link
JP (1) JPS5822359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174936A (en) * 2011-03-09 2011-09-07 松下·万宝(广州)压缩机有限公司 Slide block for rotary type compressor and manufacturing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126963A (en) * 1982-01-22 1983-07-28 Nachi Fujikoshi Corp Powdered high speed steel
JPS5985847A (en) * 1982-11-08 1984-05-17 Mitsubishi Metal Corp Fe-based sintered material for sliding parts of internal combustion engines
JPS5996250A (en) * 1982-11-26 1984-06-02 Nissan Motor Co Ltd Wear resistant sintered alloy
JPS59104454A (en) * 1982-12-02 1984-06-16 Nissan Motor Co Ltd Anti-wear sintered alloy
SE450469B (en) * 1985-02-19 1987-06-29 Asea Stal Ab KIT ON PREPARATION OF A FORM CARBON OF A HIGH CHROME IRON ALLOY
JP2506333B2 (en) * 1986-03-12 1996-06-12 日産自動車株式会社 Abrasion resistant iron-based sintered alloy
JPS62271913A (en) * 1986-04-11 1987-11-26 Nippon Piston Ring Co Ltd Builtup cam shaft
JP2571567B2 (en) * 1987-02-20 1997-01-16 日産自動車株式会社 High temperature wear resistant iron-based sintered alloy
JP3897812B2 (en) * 1994-05-17 2007-03-28 カーエスベー・アクチエンゲゼルシャフト Chill casting with high corrosion resistance and wear resistance
KR20020074936A (en) * 2001-03-22 2002-10-04 코리아지에이취(주) Abrasion alloy for against slurry
JP4849770B2 (en) * 2003-02-13 2012-01-11 三菱製鋼株式会社 Alloy steel powder for metal injection molding with improved sinterability
CN103602922B (en) * 2013-10-10 2016-01-20 铜陵新创流体科技有限公司 A kind of powder metallurgical ferrous alloy and preparation method thereof
CN103602897B (en) * 2013-10-10 2016-04-13 铜陵新创流体科技有限公司 A kind of Powder metallurgy hydraulic pump side plate and preparation method thereof
CN103602898B (en) * 2013-10-10 2016-01-20 铜陵新创流体科技有限公司 A kind of powder metallurgy automobile shifter of transmission bearing and preparation method thereof
CA3003905C (en) * 2015-11-02 2022-06-14 The Nanosteel Company, Inc. Layered construction of in-situ metal matrix composites

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113403A (en) * 1974-02-15 1975-09-05
JPS5230207A (en) * 1975-09-03 1977-03-07 Hitachi Ltd High carbon-high chromium base tool steel for cold working and a metho d for production of same
JPS55145157A (en) * 1979-04-27 1980-11-12 Toyota Motor Corp Wear resistant sintered iron alloy
JPS6033181A (en) * 1983-07-30 1985-02-20 株式会社昭和製作所 Oil locking device for front fork

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113403A (en) * 1974-02-15 1975-09-05
JPS5230207A (en) * 1975-09-03 1977-03-07 Hitachi Ltd High carbon-high chromium base tool steel for cold working and a metho d for production of same
JPS55145157A (en) * 1979-04-27 1980-11-12 Toyota Motor Corp Wear resistant sintered iron alloy
JPS6033181A (en) * 1983-07-30 1985-02-20 株式会社昭和製作所 Oil locking device for front fork

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174936A (en) * 2011-03-09 2011-09-07 松下·万宝(广州)压缩机有限公司 Slide block for rotary type compressor and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5822359A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
JPH0115584B2 (en)
US7763363B2 (en) Bearing for motorized fuel pump
US20070258668A1 (en) A bearing made of sintered cu alloy for recirculation exhaust gas flow rate control valve of egr type internal combustion engine or the like exhibiting high strength and excellent abrasion resistance under high temperature environment
JPH0115582B2 (en)
JP3945979B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor fuel pump
JPH06346184A (en) Vane material and its production
JPS5816055A (en) Materials for structural members of fuel supply equipment
US5895516A (en) Bearing alloy for high-temperature application
JPH0379428B2 (en)
JPH0116905B2 (en)
JPS6315985B2 (en)
JPH0115583B2 (en)
JPH0115581B2 (en)
JP2812137B2 (en) Valve guide member made of Fe-based sintered alloy with excellent wear resistance
JP3182794B2 (en) Vane materials and vanes
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPS5822305A (en) Fe-based sintered impregnated material with excellent corrosion resistance and wear resistance
JP2812138B2 (en) Valve guide member made of Fe-based sintered alloy with excellent wear resistance
JPH041061B2 (en)
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JPH0115585B2 (en)
JPH0559163B2 (en)
JPH06158217A (en) Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPH041055B2 (en)
JPS63266047A (en) Carbide-dispersed Fe-based sintered alloy with excellent wear resistance