JPH01149957A - Thin film forming apparatus and thin film forming method - Google Patents
Thin film forming apparatus and thin film forming methodInfo
- Publication number
- JPH01149957A JPH01149957A JP30751187A JP30751187A JPH01149957A JP H01149957 A JPH01149957 A JP H01149957A JP 30751187 A JP30751187 A JP 30751187A JP 30751187 A JP30751187 A JP 30751187A JP H01149957 A JPH01149957 A JP H01149957A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- substrate
- particles
- film forming
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 28
- 239000010409 thin film Substances 0.000 title claims description 15
- 238000005530 etching Methods 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 42
- 238000007740 vapor deposition Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 31
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 8
- 238000001659 ion-beam spectroscopy Methods 0.000 claims description 8
- 238000007738 vacuum evaporation Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 17
- 238000010884 ion-beam technique Methods 0.000 abstract description 15
- 238000000151 deposition Methods 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体製造装置および薄膜形成方法に係り、
特に基板上に溝あるいは孔等の段差が存在する場合に好
適な薄膜を形成できる薄膜形成装置および薄膜形成方法
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor manufacturing apparatus and a thin film forming method,
In particular, the present invention relates to a thin film forming apparatus and a thin film forming method that can form a thin film suitable for forming a thin film when a step such as a groove or a hole exists on a substrate.
従来の半導体装置の配線は、基板上に形成された絶縁膜
に所定の開孔を開け、その上に導体膜を堆積して形成さ
れる方法が多く用いられている。Conventional wiring for semiconductor devices is often formed by forming predetermined openings in an insulating film formed on a substrate and depositing a conductive film thereon.
特に開孔部内部への導体膜を埋め込む第1の方法として
特開昭61−172327に示されるようにスパッタ蒸
着を実質的に垂直方向から行ない同時に基板に対して斜
めの方向から5KVと高い加速電圧でイオンビームを照
射する方法が知られている。この方法では、孔などの段
差上端部に付着する金属などの粒子の一部を斜方向から
エツチングするため、いわゆるシャドウィング効果が生
じず、孔内部に効率的に粒子が堆積する。とされている
。又この例に於て、孔内への埋込の効率を向上させるた
めスパッタ蒸着源から飛び出す粒子は、孔の側壁に付着
せず、孔の底にのみ付着する程に指向性良く、垂直に入
射することが必要と述べられている。これを実現するた
めには、特に明記されてはいないが、ターゲット前面に
フィルタを設けて指向性を改善した特殊なスパッタ源等
を必要とする。In particular, the first method for embedding a conductive film inside the opening is to perform sputter deposition from a substantially perpendicular direction and at the same time from an oblique direction to the substrate at high acceleration of 5 KV, as shown in Japanese Patent Application Laid-Open No. 61-172327. A method of irradiating an ion beam with voltage is known. In this method, part of the metal particles adhering to the upper end of the step such as the hole is etched from an oblique direction, so that the so-called shadowing effect does not occur and the particles are efficiently deposited inside the hole. It is said that In addition, in this example, in order to improve the efficiency of embedding into the hole, the particles flying out from the sputter deposition source are so directional that they do not adhere to the side walls of the hole, but only to the bottom of the hole, and are directed vertically. It is stated that it is necessary to enter the In order to achieve this, although not specifically specified, a special sputtering source or the like is required, which has improved directivity by providing a filter in front of the target.
第2には、特開昭62−26822に示された方法が知
られている。この方法に於ても第1の方法と同様膜形成
の材料となる粒子の堆積と、エツチングとを同時又は交
互に行なう。第1の方法と同様、堆積粒子の入射方向は
ほぼ垂直で廻り込み角は10度以内とされている。10
度以内という制約は1例示されている粒子源である真空
蒸着法やイオン流によるスパッタ法(イオンビームスパ
ッタ法)においては派出される粒子が完全に平行でなく
、±10度程度の分散は避けられないことに対応してお
り、実質的には垂直であることを意味する。1の方法と
の相違点はエツチングのためのイオン流の入射はほぼ垂
直(逆スパツタ等)で良いことである。即ち第2の方法
では粒子の堆積、エツチング共にほぼ垂直に行なうこと
が特徴である。Second, a method disclosed in Japanese Patent Laid-Open No. 62-26822 is known. In this method, as in the first method, deposition of particles serving as a material for film formation and etching are performed simultaneously or alternately. As in the first method, the direction of incidence of the deposited particles is approximately vertical, and the angle of incidence is within 10 degrees. 10
One example of this restriction is that in vacuum evaporation and ion stream sputtering (ion beam sputtering), which are particle sources, the ejected particles are not completely parallel, and dispersion of about ±10 degrees is avoided. It corresponds to the fact that it is not vertical, and it means that it is substantially vertical. The difference from method 1 is that the incidence of the ion stream for etching can be almost perpendicular (reverse sputtering, etc.). That is, the second method is characterized in that both particle deposition and etching are performed substantially vertically.
これに対して第1の方法では粒子の堆積はほぼ垂直に、
エツチングは廻り込み角の大きな条件によって行なう点
が異なっている。In contrast, in the first method, particles are deposited almost vertically;
The difference is that etching is performed under conditions of a large wrap-around angle.
しかし、これらの方法を用いた半導体製造装置および薄
膜形成方法では、次に述べる問題点がある。However, semiconductor manufacturing equipment and thin film forming methods using these methods have the following problems.
第1の場合スパッタ蒸着とイオンビームによるエツチン
グを同時に基板に行なう例について述べる。一般にスパ
ッタ蒸着を安定な状態で行なうためには少なくともスパ
ッタ時のガス圧は10−1〜10−8Torrの範囲が
望ましいとされている。又イオン源から安定なイオンビ
ームを得るにはガス圧を10′″4〜10−’Torr
で使用する必要がある。そのためスパッタ蒸着とイオン
ビーム照射を同時に行なうためには、両者共に不安定な
領域で動作させることが必要となり、膜形成速度や膜質
の低下といった問題が発生する。またイオンビームスパ
ッタ源を任意に変化させる機構を備える必要がある等、
装置構造も複雑になる。第2の方法において堆積粒子を
垂直に入射させるために真空蒸着法又はイオンビームス
パッタを使っている。まず真空蒸着法を用いた場合、堆
積粒子が蒸発するための材料が溶解している部分の面積
が小さいため、大きな基板に対して堆積粒子を10度以
内の廻り込み角で入射させることは困難である。これを
避けるために蒸着源と基板との距離を大きくすると堆積
速度が低下する。従って大面積基板への適用には適さな
い。蒸着源にイオンビームスパッタ法を用いる場合、ビ
ーム源の大きさは10インチφ以上のものも重版されて
おり、堆積粒子の方向性も良くなる。一般には使用する
基板と同等以上の口径のイオンビームスパッタ源を用い
る。第2の方法に於ては逆スパツタ(スパッタエッチ)
又はイオンビーム源を用いたスパッタエッチが適すると
されている。In the first case, an example will be described in which sputter deposition and ion beam etching are simultaneously performed on the substrate. Generally, in order to perform sputter deposition in a stable state, it is desirable that the gas pressure at least during sputtering be in the range of 10-1 to 10-8 Torr. In addition, to obtain a stable ion beam from the ion source, the gas pressure should be set at 10'4 to 10'Torr.
need to be used in Therefore, in order to perform sputter deposition and ion beam irradiation simultaneously, it is necessary to operate both in an unstable region, which causes problems such as a decrease in film formation speed and film quality. In addition, it is necessary to have a mechanism to arbitrarily change the ion beam sputtering source, etc.
The device structure also becomes complicated. In the second method, vacuum evaporation or ion beam sputtering is used to make the deposited particles perpendicularly incident. First, when using the vacuum evaporation method, the area of the melted material for the deposited particles to evaporate is small, so it is difficult to make the deposited particles incident on a large substrate at a wraparound angle of less than 10 degrees. It is. To avoid this, increasing the distance between the deposition source and the substrate will reduce the deposition rate. Therefore, it is not suitable for application to large area substrates. When the ion beam sputtering method is used as the vapor deposition source, the size of the beam source is 10 inches or more, and the directionality of the deposited particles is also improved. Generally, an ion beam sputtering source with a diameter equal to or larger than that of the substrate used is used. In the second method, reverse spatter (sputter etch)
Alternatively, sputter etching using an ion beam source is said to be suitable.
エツチング法として逆スパツタを用いる場合、蒸着源に
はいずれも10−5〜10”−’Torrで安定に動作
し、逆スパツタは10−1〜10−’Torrで動作す
るため、第1の方法と同様に動作が不安定になるという
問題が生ずる。またエツチングにイオンビームスパッタ
を用いた場合、基板のほぼ鉛直線上に蒸着源とイオンビ
ーム源とを設置しなければならない。両者共にかなり大
きな体積を有する部品であり、極めて複雑な装置となる
ために実用的でない。When inverse sputtering is used as an etching method, the evaporation source operates stably at 10-5 to 10"-'Torr, and the inverse sputtering operates at 10-1 to 10-'Torr, so the first method is Similarly, the problem of unstable operation occurs.Also, when ion beam sputtering is used for etching, the evaporation source and the ion beam source must be installed almost on the vertical line of the substrate.Both require a fairly large volume. This makes it an extremely complicated device, making it impractical.
以上述べてきたように従来知られてきた方法はいずれも
膜形成のための粒子を基板の垂直方向から入射させねば
ならないことのために適用対象が限られる、又は装置が
複雑になる。さらに蒸着源とエツチング源とを同一真空
槽内に設置するために安定な動作を得ることが困難にな
ること、などについて配慮がなされていなかった。As described above, in all of the conventionally known methods, the particles for film formation must be incident on the substrate from the perpendicular direction, which limits the scope of application or complicates the apparatus. Furthermore, no consideration was given to the fact that it would be difficult to obtain stable operation because the evaporation source and the etching source were installed in the same vacuum chamber.
本発明の目的は孔等への埋込が安定に行なわれ、かつ適
用対象となる基板の面積等についての制約をも除去でき
る新たな膜形成装置と方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a new film forming apparatus and method that allows stable filling of holes and the like and eliminates restrictions on the area of the substrate to which the film is applied.
上記目的は、膜形成のための粒子の堆積およびエツチン
グを安定かつ制御性良く行なうためのそれぞれ独立した
室を有し、大気に晒すことなくそれぞれの真空室間を基
板が搬送される構成の装置を用い、堆積とエツチングを
交互に行なうことによって達成される。これに加えてエ
ツチングのための粒子のエネルギーを0.5KeV以下
とすることによって埋込特性に優れた膜形成が実現され
る。The purpose of the above is to provide an apparatus that has independent chambers for stable and well-controlled deposition and etching of particles for film formation, and that allows substrates to be transported between the vacuum chambers without exposing them to the atmosphere. This is accomplished by alternating deposition and etching. In addition, by setting the particle energy for etching to 0.5 KeV or less, a film with excellent embedding properties can be formed.
従来技術の様に堆積粒子の入射を垂直(廻り込み角51
0度)とする必要はなく、大面積基板にも適用可能であ
るが、エツチング粒子の廻り込み角が垂直でないこと(
廻り込み角>10度)が要求される。エツチング粒子の
廻り込み角は堆積粒子の廻り込み自明下で良い。As in the conventional technology, the incidence of the deposited particles is set perpendicularly (the wraparound angle is 51
It is not necessary that the etching particle angle is not perpendicular (0 degrees) and can be applied to large-area substrates.
wraparound angle > 10 degrees) is required. The turning angle of the etching particles may be within the range of the turning angle of the deposited particles.
従来技術の第1の方法に於て堆積粒子の入射が垂直であ
ることが必要であると述べられていることが解決できた
のは以下の理由による。The reason for being able to solve the problem stated in the first method of the prior art that the incidence of deposited particles must be vertical is as follows.
即ち第1又は第2の方法においてエツチング粒子のエネ
ルギーは2〜5KeVであったのに対し、本発明では0
.5KeV以下である点が異なる。That is, in the first or second method, the energy of the etching particles was 2 to 5 KeV, whereas in the present invention, the energy of the etching particles was 0 to 5 KeV.
.. The difference is that it is 5 KeV or less.
発明者らはエツチング粒子のエネルギーが高い場合には
一般に埋込特性が劣化する傾向にあり、エネルギーを下
げて0 、5 K e V以下とすることによって埋込
特性が大幅に改善され、従来の様な制御がとり除かれる
ことを見い出した。The inventors found that when the energy of etching particles is high, the embedding characteristics generally tend to deteriorate, but by lowering the energy to 0.5 K e V or less, the embedding characteristics were significantly improved, which was superior to the conventional etching characteristics. We have found that various controls can be removed.
蒸着とエツチングを交互に行なうため第1図に示すよう
に少なく共蒸着室、エツチング室が備えられており、必
要に応じて予備排気室をも備えて良い。蒸着室とエツチ
ング室とは基板を搬送する機構によって接続された構造
となっている。基板を転送する際には両室の圧力をほぼ
等しくするが、もしくは差動排気機構等を用いることに
よって圧力差を保ったまま転送することが一般に適して
いる。蒸着源としては通常のスパッタ源で良い。この場
合粒子の廻り込み角は実効的に45度以上と考えられる
。また蒸着源として真空蒸着法の蒸着源を用いる場合、
基板の垂直方向に設置する必要はなく、例えば膜厚均一
性改善のため、所定の角度をずらせて設置し、基板又は
蒸着源を回転させる等の構造であっても良い。エツチン
グ粒子の廻り込み角は10度より大きく、堆積粒子の廻
り込み角よりも小さくて良い。エツチング粒子の廻り込
み角が10度以下では孔の底部が損傷を受ける可能性が
ある。廻り込み角が堆積粒子のそれを大幅に越えると、
孔の内部に空洞を生ずることがある。エツチング粒子の
エネルギーは0.5KaV以下であれば必要な埋込特性
が得られるが、特に0.2KeV以下の場合に基板への
損傷がなく、極めて良好な埋込特性の得られることがわ
かった。In order to carry out deposition and etching alternately, a co-deposition chamber and an etching chamber are provided as shown in FIG. 1, and a preliminary evacuation chamber may also be provided if necessary. The deposition chamber and the etching chamber are connected by a mechanism for transporting the substrate. When transferring a substrate, it is generally suitable to make the pressure in both chambers almost equal, or to transfer while maintaining a pressure difference by using a differential pumping mechanism or the like. A normal sputtering source may be used as the vapor deposition source. In this case, the effective wrap-around angle of the particles is considered to be 45 degrees or more. In addition, when using a vacuum evaporation source as the evaporation source,
It is not necessary to install it in a direction perpendicular to the substrate; for example, in order to improve film thickness uniformity, it may be installed at a predetermined angle and rotate the substrate or evaporation source. The wraparound angle of the etching particles may be larger than 10 degrees and smaller than the wraparound angle of the deposited particles. If the encircling angle of the etching particles is less than 10 degrees, the bottom of the hole may be damaged. When the wrap-around angle greatly exceeds that of the deposited particles,
A cavity may be formed inside the hole. The necessary embedding characteristics can be obtained if the energy of the etching particles is 0.5 KaV or less, but it was found that when the energy of the etching particles is 0.2 KeV or less, there is no damage to the substrate and extremely good embedding characteristics can be obtained. .
又蒸着は垂直方向から行なう必要がないため真空室内部
に2個以上の蒸着源を設置しても良い。この場合基板を
回転させて膜を形成した方が均一性の良い膜が得られる
。この構成の装置を用いると例えA Q / T a
/ A Qのような層状の膜や合金(AQ−Ta)を形
成することができる。これらの積層膜や合金膜はマイグ
レーションに強い配線を得る材料として有望視されてい
る。Further, since it is not necessary to carry out vapor deposition from the vertical direction, two or more vapor deposition sources may be installed inside the vacuum chamber. In this case, a film with better uniformity can be obtained by forming the film by rotating the substrate. Using a device with this configuration, for example, A Q / Ta
/AQ-like layered films and alloys (AQ-Ta) can be formed. These laminated films and alloy films are seen as promising materials for obtaining wiring that is resistant to migration.
以下、実施例を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.
実施例1
第1図は、本発明の特徴を最もよく表わした装置の構成
図である6第2図は、蒸着とエツチングを交互に5回行
なったときの開孔部の断面模式図の一例である。予備室
1の基板受け2の上に直径1μm、アスペクト比1の孔
を形成したSi基板3を設置する。バルブ4を開は予備
室1内を真空ポンプにて残留ガス圧がI X 10−’
Torr以下となるように排気する。このときバルブ5
,6は閉じてあり、蒸着室7.エツチング室8は真空ポ
ンプを使いバルブ9,10を通してI X 10””T
orr以下に真空排気されている。予備室lがlXl0
−’Torr以下になったらバルブ4を閉め5を開は基
板3を蒸着室7内の基板ボルダ11に搬送する。基板ホ
ルダ11は内部ヒータ12によって所定の温度(例えば
200℃)に保持されている。バルブ5を閉め蒸着室7
内がI X 10−6Torr以下となるまで排気する
。その後、Arガスをバルブ13を開けて導入しガス圧
が5m丁orrとなるようにバルブ9,13を調整する
。スイッチ14を例えば高周波電源15側につなぎ電力
3 、8 W/+J印加してターゲツト材のAQ17の
スパッタを行なう。Example 1 Fig. 1 is a configuration diagram of an apparatus that best represents the features of the present invention.6 Fig. 2 is an example of a schematic cross-sectional view of an opening when vapor deposition and etching are performed alternately five times. It is. A Si substrate 3 with a hole of 1 μm in diameter and an aspect ratio of 1 is placed on the substrate holder 2 in the preliminary chamber 1 . Valve 4 is opened using a vacuum pump inside preliminary chamber 1 until the residual gas pressure reaches I x 10-'
Exhaust the air so that the pressure is below Torr. At this time valve 5
, 6 are closed, and the deposition chambers 7., 6 are closed. The etching chamber 8 is opened using a vacuum pump through valves 9 and 10.
It is evacuated to below orr. Preparatory room l is lXl0
-'Torr or less, the valve 4 is closed, the valve 5 is opened, and the substrate 3 is transferred to the substrate boulder 11 in the deposition chamber 7. The substrate holder 11 is maintained at a predetermined temperature (for example, 200° C.) by an internal heater 12. Close the valve 5 and open the deposition chamber 7.
Evacuation is performed until the internal pressure becomes less than I x 10-6 Torr. After that, Ar gas is introduced by opening the valve 13, and the valves 9 and 13 are adjusted so that the gas pressure becomes 5 mt orr. For example, the switch 14 is connected to the high frequency power source 15 side and a power of 3.8 W/+J is applied to sputter target material AQ17.
本実施例ではさらにスパッタ前にシャッタ18を閉じて
おき、放電を行なう工程を加えた。この工程はターゲッ
ト表面の不純物、吸着ガスを除去する効果を有する。そ
の後、ジャツブ18を開く。In this example, a step was added in which the shutter 18 was closed before sputtering and discharge was performed. This step has the effect of removing impurities and adsorbed gas on the target surface. After that, open Jatsubu 18.
なお、AQの膜厚分布を良くするため基板ホルダ11は
モーター19によって20rpm程度に回転させても良
い。膜厚を所定の膜厚、例えば0.4μm形成した。こ
のときの試料の断面図を第2図(b)に示す。本実施例
では基板上の絶縁膜1.0μmに1.0μmの穴を開口
した試料を用いた。Note that the substrate holder 11 may be rotated at about 20 rpm by the motor 19 in order to improve the AQ film thickness distribution. The film was formed to have a predetermined thickness, for example, 0.4 μm. A cross-sectional view of the sample at this time is shown in FIG. 2(b). In this example, a sample was used in which a 1.0 μm hole was opened in a 1.0 μm insulating film on a substrate.
次に10−BTorr以下の圧力になるまで蒸着室7を
排気する。その後、バルブ6を開はエツチング基板ホル
ダー20に基板3を装看後、バルブ6を閉じる。イオン
ビームの入射方向に対してエツチング基板は角度θが1
0〜90度まで変えられる。Next, the deposition chamber 7 is evacuated until the pressure reaches 10-BTor or less. Thereafter, the valve 6 is opened and the substrate 3 is placed in the etching substrate holder 20, and then the valve 6 is closed. The etching substrate has an angle θ of 1 with respect to the direction of incidence of the ion beam.
Can be changed from 0 to 90 degrees.
ここではθ=30度とした。この基板20をモーター2
2にて15rpmにて回転する。イオン源23の加速電
圧を500v、電流を100mAとして基板にイオンビ
ームを照射するにのときのエツチング室8の真空度を0
、2 m Torrとした、膜厚を0.2μmエツチ
ングして終了後、1O−8Torr以下の圧力まで排気
する。このときの試料の断面図を第2図(Q)に示す。Here, θ=30 degrees. This board 20 is connected to the motor 2
2, rotates at 15 rpm. The acceleration voltage of the ion source 23 is set to 500 V, the current is set to 100 mA, and the degree of vacuum in the etching chamber 8 is set to 0 when the substrate is irradiated with the ion beam.
, 2 m Torr, and after etching the film to a thickness of 0.2 μm, the pressure was evacuated to 1 O-8 Torr or less. A cross-sectional view of the sample at this time is shown in FIG. 2 (Q).
バルブ6を開いて基板3を基板ホルダ13に搬送し、同
様に蒸着とエツチングを計容5回繰り返す。このとき第
2図(Q)から(i)の構造へと推移してゆき、孔は埋
まり、1μm厚の膜が形成された。この装置と方法を用
いることにより、スパッタ蒸着とイオンビームエツチン
グの動作時の真空度(条件)に違いがあっても安定かつ
制御性良く蒸着とエツチングを交互に行なえる。エツチ
ング室8のエツチング基板ホルダ20の角度0が変えら
れるため、蒸着材料の種類が変った場合でもホルダに装
着した基板3の表面へのイオンビームの廻り込み角を最
適化することができる。さらに蒸着とエツチングを行な
う際に基板を大気に晒すことなく行なえるため多重に形
成した薄い膜の層の間に酸化膜等が形成されることなく
良質の膜が形成できる。The valve 6 is opened, the substrate 3 is transferred to the substrate holder 13, and the vapor deposition and etching are repeated five times in the same manner. At this time, the structure progressed from FIG. 2(Q) to FIG. 2(i), the pores were filled, and a 1 μm thick film was formed. By using this apparatus and method, even if there is a difference in the degree of vacuum (conditions) during operation of sputter deposition and ion beam etching, deposition and etching can be performed alternately stably and with good controllability. Since the angle 0 of the etching substrate holder 20 in the etching chamber 8 can be changed, even when the type of vapor deposition material changes, the angle of the ion beam going around the surface of the substrate 3 mounted on the holder can be optimized. Furthermore, since vapor deposition and etching can be carried out without exposing the substrate to the atmosphere, a high-quality film can be formed without forming an oxide film or the like between multiple thin film layers.
実施例2
前記実施例において蒸着室7にAflとTaの各ターゲ
ットを設けた。2個のカソードを設置(第2のターゲッ
トは図示せず)し、まずAQカソードを放電させて膜を
0.3μm蒸着し、0.15μmイオンビームエツチン
グを行なう。このとき第2図(b)の構造となる。次に
Taのカソード(図示せず)を用いて0.3μm膜を蒸
着し、同様に0.15μmイオンビームエツチングを行
なう。以上の工程を所定の回数繰り返す、AQの蒸着・
エツチングを各4回(第3図120’ 、121’ 。Example 2 In the above example, the vapor deposition chamber 7 was provided with Afl and Ta targets. Two cathodes are installed (the second target is not shown), and the AQ cathode is first discharged to deposit a film of 0.3 .mu.m, followed by 0.15 .mu.m ion beam etching. At this time, the structure shown in FIG. 2(b) is obtained. Next, a 0.3 μm film is deposited using a Ta cathode (not shown), and 0.15 μm ion beam etching is performed in the same manner. Repeat the above steps a predetermined number of times to deposit AQ.
Etching was performed four times each (FIG. 3, 120', 121').
124’ 、125’ )、Taの蒸着・エツチングを
各2回(第3図122“、123’)行なったときの開
口部の断面図を第3図に示す。124', 125') and Ta vapor deposition and etching twice (FIG. 3, 122'', 123') are shown in FIG. 3.
この装置を用いることによって実施例1の効果はもとよ
り基板上、開孔部内に材料の違う膜を安定かつ制御性よ
く層状に形成することができる。By using this apparatus, not only can the effects of Example 1 be obtained, but also films of different materials can be formed in layers on the substrate and in the openings with good controllability.
蒸着室とエツチング室を別々にしたことによりスパッタ
蒸着とエツチング時のガス圧(条件)に違いがあっても
安定に蒸着・エツチングを行なうことができ、この2つ
の処理を所定の条件にて交互に行なうことでアスペクト
比1以上の開孔部に導電膜を埋め込むことができる。又
複数個の蒸着源を用いることにより開孔部内に層状に膜
を形成することができる。開孔部内を積層構造、例えば
マイグレーションに強いといわれるA Q / T a
/AQ構造とすることができるので信頼性の高い接続
部を得ることができる。By separating the deposition chamber and etching chamber, stable deposition and etching can be performed even if there are differences in gas pressure (conditions) during sputter deposition and etching, and these two processes can be performed alternately under predetermined conditions. By performing this step, the conductive film can be embedded in the opening having an aspect ratio of 1 or more. Furthermore, by using a plurality of vapor deposition sources, a layered film can be formed within the opening. The inside of the opening has a laminated structure, such as A Q / T a, which is said to be resistant to migration.
/AQ structure, a highly reliable connection can be obtained.
なお、実施例ではAQもしくはAQと′1゛aの組合せ
について述べたが、金属材料の選択には特に制限はなく
、AQ、Ti、W、Mo、Cr、Zr。In addition, although AQ or the combination of AQ and '1'a was described in the embodiment, there is no particular restriction on the selection of metal materials, and examples include AQ, Ti, W, Mo, Cr, and Zr.
Hf、Go、Cr、Cu等の他の材料もしくはそれらの
合金、もしくはそれらの金属又は合金のSiもしくはN
との化合物などであっても良い。Other materials such as Hf, Go, Cr, Cu or alloys thereof, or Si or N of these metals or alloys
It may also be a compound with.
蒸着源としてはスパッタ源について述べたが他のイオン
ビームスパッタや加熱蒸着源等であっても良い。Although a sputter source has been described as the vapor deposition source, other ion beam sputtering sources, heated vapor deposition sources, etc. may also be used.
第1図、第2図および第3図は本発明の詳細な説明する
ための図である。
1・・・予備室、2・・・基板受け、3・・・基板、4
,5゜6.9,10,13.24・・・バルブ、7・・
・蒸着室、8・・・エツチング室、11・・・基板ホル
ダ、12・・・ヒーター、14・・・切替スイッチ、1
5・・・高周波電源、16・・・DC電源、17・・・
ターゲツト材、18・・・シャッタ、19.22・・・
モーター、20・・・エツチング基板ホルダ、21・・
・冷却水、23・・・イオン源、゛ 100・・・基板
、101・・・絶縁膜、102・・・第1回蒸着アルミ
ニウム、102′・・・エツチングされたアルミニウム
、102’ 、103’ 、104’ 。
106′・・・残したアルミニウム、103・・・第2
回蒸着アルミニウム、104・・・第3回蒸着アルミニ
ウム、120’ 、121’ 、124′、125’・
・・残したアルミニウム、122′、123′・・・り
第 1 目
(g)
第 2 の
(d−)
(e、)
<f)
第2 図
り)
(代〕
第 3 口FIG. 1, FIG. 2, and FIG. 3 are diagrams for explaining the present invention in detail. 1... Preparation room, 2... Board holder, 3... Board, 4
,5゜6.9,10,13.24... valve, 7...
- Vapor deposition chamber, 8... Etching chamber, 11... Substrate holder, 12... Heater, 14... Changeover switch, 1
5...High frequency power supply, 16...DC power supply, 17...
Target material, 18...Shutter, 19.22...
Motor, 20...Etching board holder, 21...
- Cooling water, 23... Ion source, ゛ 100... Substrate, 101... Insulating film, 102... First evaporated aluminum, 102'... Etched aluminum, 102', 103' , 104'. 106'... Remaining aluminum, 103... Second
Double evaporation aluminum, 104... Third evaporation aluminum, 120', 121', 124', 125'.
... Remaining aluminum, 122', 123'... 1st hole (g) 2nd (d-) (e,) <f) 2nd drawing) (generation) 3rd hole
Claims (1)
を発生させる源をもつ薄膜形成室とエッチング機構を持
つエッチング室を有し、基板への蒸着とエッチングを交
互に行なうことができる機能を有することを特徴とする
薄膜形成装置。 2、上記粒子を発生させる源がスパッタ蒸着源、加熱に
よる真空蒸着源、もしくはイオンビームスパッタ源のい
ずれかであることを特徴とする特許請求の範囲第1項記
載の薄膜形成装置。 3、基板表面に蒸着されるべき粒子流およびエッチング
のためのイオンもしくは粒子の基板上への入射角が共に
±10度より大きく、堆積する粒子流の入射角範囲がエ
ッチング粒子の廻り込み角以上とすることを特徴とする
薄膜形成方法。 4、薄膜を形成するための基板表面をエッチングするた
めのイオンもしくは粒子のエネルギーを500eV以下
とする特許請求の範囲第3項に記載の薄膜形成方法。[Scope of Claims] 1. A thin film forming chamber having a source for generating particles or ions of at least one type of film forming material and an etching chamber having an etching mechanism, and alternately performs vapor deposition and etching on a substrate. 1. A thin film forming apparatus characterized by having a function capable of. 2. The thin film forming apparatus according to claim 1, wherein the source for generating the particles is any one of a sputter evaporation source, a heating vacuum evaporation source, or an ion beam sputtering source. 3. The incident angle of the particle stream to be deposited on the substrate surface and the ions or particles for etching onto the substrate are both greater than ±10 degrees, and the incident angle range of the particle stream to be deposited is equal to or greater than the encircling angle of the etching particles. A thin film forming method characterized by: 4. The thin film forming method according to claim 3, wherein the energy of the ions or particles for etching the surface of the substrate for forming the thin film is 500 eV or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30751187A JPH01149957A (en) | 1987-12-07 | 1987-12-07 | Thin film forming apparatus and thin film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30751187A JPH01149957A (en) | 1987-12-07 | 1987-12-07 | Thin film forming apparatus and thin film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01149957A true JPH01149957A (en) | 1989-06-13 |
Family
ID=17969955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30751187A Pending JPH01149957A (en) | 1987-12-07 | 1987-12-07 | Thin film forming apparatus and thin film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01149957A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153474A (en) * | 1996-03-04 | 2000-11-28 | International Business Machines Corporation | Method of controllably forming a LOCOS oxide layer over a portion of a vertically extending sidewall of a trench extending into a semiconductor substrate |
KR20070111165A (en) * | 2006-05-17 | 2007-11-21 | 동부일렉트로닉스 주식회사 | Copper diffusion barrier removal method |
JP2008208398A (en) * | 2007-02-23 | 2008-09-11 | Ulvac Japan Ltd | Film-forming method and apparatus therefor |
WO2011049248A1 (en) | 2009-10-23 | 2011-04-28 | 東レ・ダウコーニング株式会社 | Novel co-modified organopolysiloxane |
WO2011081218A1 (en) | 2009-12-28 | 2011-07-07 | Dow Corning Toray Co., Ltd. | Phenyl-containing organopolysiloxane composition, raw cosmetic material, and glossy cosmetic material |
JP2019501489A (en) * | 2015-12-08 | 2019-01-17 | ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド | Apparatus and technique for filling a cavity using a tilted ion beam |
-
1987
- 1987-12-07 JP JP30751187A patent/JPH01149957A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153474A (en) * | 1996-03-04 | 2000-11-28 | International Business Machines Corporation | Method of controllably forming a LOCOS oxide layer over a portion of a vertically extending sidewall of a trench extending into a semiconductor substrate |
KR20070111165A (en) * | 2006-05-17 | 2007-11-21 | 동부일렉트로닉스 주식회사 | Copper diffusion barrier removal method |
JP2008208398A (en) * | 2007-02-23 | 2008-09-11 | Ulvac Japan Ltd | Film-forming method and apparatus therefor |
WO2011049248A1 (en) | 2009-10-23 | 2011-04-28 | 東レ・ダウコーニング株式会社 | Novel co-modified organopolysiloxane |
WO2011081218A1 (en) | 2009-12-28 | 2011-07-07 | Dow Corning Toray Co., Ltd. | Phenyl-containing organopolysiloxane composition, raw cosmetic material, and glossy cosmetic material |
JP2019501489A (en) * | 2015-12-08 | 2019-01-17 | ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド | Apparatus and technique for filling a cavity using a tilted ion beam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9347127B2 (en) | Film deposition assisted by angular selective etch on a surface | |
JP2845856B2 (en) | Method for manufacturing organic electroluminescence device | |
JP5249328B2 (en) | Thin film deposition method | |
US5738917A (en) | Process for in-situ deposition of a Ti/TiN/Ti aluminum underlayer | |
EP0859070B1 (en) | Coating of inside of vacuum chambers | |
KR20010089783A (en) | Method of depositing a copper seed layer which promotes improved feature surface coverage | |
JP4344019B2 (en) | Ionized sputtering method | |
JPH11200035A (en) | Sputtering-chemical vapor deposition composite device | |
US6451179B1 (en) | Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma | |
JP3836184B2 (en) | Method for manufacturing magnesium oxide film | |
JP5159165B2 (en) | Recess filling method | |
JPH01149957A (en) | Thin film forming apparatus and thin film forming method | |
US20150144492A1 (en) | Electrophoresis gel cassette with at least one removable section | |
US20040083969A1 (en) | Film forming apparatus, substrate for forming oxide thin film, and production method thereof | |
JPH0610125A (en) | Formation of thin film | |
JPS63137159A (en) | Formation of thin crystalline metallic film | |
JP2007197840A (en) | Ionized sputtering equipment | |
JP4167749B2 (en) | Sputtering method and sputtering apparatus | |
WO2009107485A1 (en) | Method and apparatus for manufacturing magnetoresistance effect element | |
US11384423B2 (en) | Sputtering apparatus and sputtering method | |
JP3727693B2 (en) | TiN film manufacturing method | |
JPH06168891A (en) | Semiconductor fabricating system | |
CN102449741A (en) | Film coating surface treatment method and film coating surface treatment device | |
JPH07292474A (en) | Production of thin film | |
JPH0794413A (en) | Method of wiring integrated circuit, method of wiring integrated circuit for filling hole or groove, and multi-chamber substrate treating device |