JPH0114915Y2 - - Google Patents
Info
- Publication number
- JPH0114915Y2 JPH0114915Y2 JP8707183U JP8707183U JPH0114915Y2 JP H0114915 Y2 JPH0114915 Y2 JP H0114915Y2 JP 8707183 U JP8707183 U JP 8707183U JP 8707183 U JP8707183 U JP 8707183U JP H0114915 Y2 JPH0114915 Y2 JP H0114915Y2
- Authority
- JP
- Japan
- Prior art keywords
- inspection device
- illumination system
- article
- capsule
- optical inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007689 inspection Methods 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000005286 illumination Methods 0.000 claims description 24
- 239000002775 capsule Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 13
- 230000007547 defect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【考案の詳細な説明】
〔考案の属する技術分野〕
この考案は、医薬用カプセルの如く球状端部を
有する円筒状物体の表面傷検査に使用して好適な
光学検査器に関する。[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to an optical inspection device suitable for use in inspecting surface flaws on a cylindrical object having a spherical end such as a pharmaceutical capsule.
医薬用カプセルなどの球状端部を有する円筒状
物体の表面検査は、従来は専ら目視により行なわ
れて来たが、最近は機械による自動外観検査装置
も提案されている。ところで、一般に、医薬用カ
プセルは、酸化チタンの有無により不透明カプセ
ルと透明カプセルに大別される。このカプセルに
生じている穴等の欠陥を検査する場合、特に透明
カプセルではその検出が困難であるが、本出願人
はかかる透明カプセルに生じている穴を検出しう
る検査装置を提案している。
Surface inspection of cylindrical objects with spherical ends, such as pharmaceutical capsules, has conventionally been carried out exclusively by visual inspection, but recently automatic visual inspection devices using machines have also been proposed. By the way, pharmaceutical capsules are generally classified into opaque capsules and transparent capsules depending on the presence or absence of titanium oxide. When inspecting defects such as holes that occur in capsules, it is difficult to detect them, especially in transparent capsules, but the applicant has proposed an inspection device that can detect holes that occur in such transparent capsules. .
第1図はこのような検査装置の従来例を示す構
成図、第1A図はカプセルをヘリカル(らせん
状)スキヤンしたときのフオトセンサ出力を示す
波形図、第1B図はカプセルの球状部における照
明光と反射光との関係を説明するための説明図で
ある。第1図において、11はフオトセンサ、1
2はハーフミラー、13は照明光源、14は対物
レンズであり、ハーフミラー12、照明光源13
および対物レンズ14にて構成される照明系と、
フオトセンサ11、ハーフミラー12および対物
レンズ14にて構成される受光系とでその光軸が
共有されていることから、以下、「同軸反射形光
学検査器」と呼ぶことにする。2は医薬用カプセ
ルで、図の矢印Rの如く、長手方向の軸を中心と
して回転しながら軸方向に搬送される。したがつ
て、カプセル2の表面は、ハーフミラー12およ
びレンズ14を介する光源13からの照射光によ
つてらせん状に走査(以下、ヘリカルスキヤンと
もいう。)されることになるが、照射された光は
カプセル2の表面で全反射されてレンズ14およ
びハーフミラー12を経てフオトセンサ11に与
えられるので、該フオトセンサ11からは、ヘリ
カルスキヤンに応じて所定レベルの出力が逐次取
り出される。ここで、カプセル2の円筒状部に欠
陥を示す穴等が存在すると、この穴によつて照射
光が反射されなくなるので、これにより透明カプ
セル2に生じている穴を検出することができる。
ところで、これはカプセル2の円筒状部を走査し
た場合であるが、球状部では第1B図の如く、カ
プセル2に垂直に照射した光3は、その反対方向
には反射されず、法線4に対して反対側に反射さ
れることになるため(符号5参照)、穴の有無に
かかわらず反射光は得られなくなる。つまり、第
1A図イの如く、円筒状部にある穴2aは同図ロ
のAの如くなつて検出されるが、球状部にある穴
2bは同図ロのBの如くなつて検出できないとい
う欠点がある。 Fig. 1 is a configuration diagram showing a conventional example of such an inspection device, Fig. 1A is a waveform diagram showing the photo sensor output when a capsule is scanned helically, and Fig. 1B is an illumination light at the spherical part of the capsule. FIG. 3 is an explanatory diagram for explaining the relationship between and reflected light. In FIG. 1, 11 is a photo sensor;
2 is a half mirror, 13 is an illumination light source, and 14 is an objective lens; the half mirror 12, the illumination light source 13
and an illumination system composed of an objective lens 14;
Since its optical axis is shared by a light receiving system composed of a photo sensor 11, a half mirror 12, and an objective lens 14, it will be referred to as a "coaxial reflective optical inspection device" hereinafter. Reference numeral 2 denotes a pharmaceutical capsule, which is transported in the axial direction while rotating around a longitudinal axis as indicated by arrow R in the figure. Therefore, the surface of the capsule 2 is scanned in a spiral manner (hereinafter also referred to as a helical scan) by the irradiated light from the light source 13 via the half mirror 12 and the lens 14. Since the light is totally reflected on the surface of the capsule 2 and is applied to the photo sensor 11 via the lens 14 and the half mirror 12, an output of a predetermined level is sequentially extracted from the photo sensor 11 according to the helical scan. Here, if a hole or the like indicating a defect exists in the cylindrical portion of the capsule 2, the irradiated light will not be reflected by the hole, so that the hole occurring in the transparent capsule 2 can be detected.
By the way, this is a case where the cylindrical part of the capsule 2 is scanned, but in the spherical part, as shown in FIG. Since the light is reflected to the opposite side (see reference numeral 5), no reflected light can be obtained regardless of whether there is a hole or not. In other words, the hole 2a in the cylindrical part, as shown in Figure 1A A, is detected as shown in A in Figure 1B, but the hole 2b in the spherical part, as shown in B in Figure 1B, cannot be detected. There are drawbacks.
この考案はかかる事情のもとになされたもの
で、透明カプセルの球状部にある穴でも円筒状部
にある穴と同様に検出することが可能な光学検査
器を提供することを目的とする。
This invention was made under these circumstances, and the object is to provide an optical inspection device that can detect holes in the spherical part of a transparent capsule in the same way as holes in the cylindrical part.
その要点は、2組の補助照明源を同軸反射形光
学検査器の光軸を中心として被検査物の長さ方向
前後に適宜な角度だけ傾けて設置し、被検査物の
円筒状部に生じた穴に対しては主照明が有効に働
き、また、球状部に生じた穴に対しては補助照明
が有効に働くようにした点にある。
The key point is that two sets of auxiliary illumination sources are installed at an appropriate angle in the longitudinal direction of the object to be inspected, with the optical axis of the coaxial reflective optical inspection device as the center. The main illumination works effectively for the holes formed in the spherical part, and the auxiliary lighting works effectively for the holes formed in the spherical part.
第2図はこの考案の実施例を示す構成図、第2
A図はセンサ出力波形を示す波形図、第2B図は
カプセルの球状部近傍を拡大して示す拡大図、第
2C図はセンサ出力波形の相違を説明する説明
図、第2D図は傷がある場合とない場合を比較し
て示す波形図である。
Figure 2 is a configuration diagram showing an embodiment of this invention.
Figure A is a waveform diagram showing the sensor output waveform, Figure 2B is an enlarged view showing the vicinity of the spherical part of the capsule, Figure 2C is an explanatory diagram explaining the difference in the sensor output waveform, and Figure 2D has scratches. FIG. 3 is a waveform diagram comparing and showing cases where the signal is present and cases where the signal is not present.
第2図からも明らかなように、この実施例は、
第1図に示される従来の同軸反射形光学検査器1
に対して1対の補助光源151,152を、検査器
の光軸と所定の角度をもち、かつカプセル2の長
手軸を含む垂直平面によつて切られる対物レンズ
14の各端部近傍にそれぞれ設けた点が特徴であ
る。このとき、補助光源151,152の光軸を検
査器1の光軸と単に所定の角度だけ傾けて設置す
るだけでは、同図の符号Cで示される如き照明光
のない領域が存在することになるので、これがで
きるだけ少なくなるように、補助照明源151,
152は対物レンズ14に接近して設けることと
する。なお、補助光源151,152の光軸と検査
器1の光軸とのなす角度は大略45度程度に選ばれ
るが、30〜60度の範囲で選択可能である。また、
検査器1の光軸と補助光源151,152の光軸と
の交点をカプセル2の表面上でほゞ一致させると
ともに、検査器1のピントを該交点に一致させる
ものとする。こうすることによつて、光源13だ
けでは照明できない、カプセルの球形状部を照明
し、その検査をすることが可能となるが、この点
につき第2A〜2D図を参照して、もう少し詳し
く説明する。 As is clear from FIG. 2, this embodiment
Conventional coaxial reflective optical inspection device 1 shown in Fig. 1
A pair of auxiliary light sources 15 1 and 15 2 are placed near each end of the objective lens 14 that has a predetermined angle with the optical axis of the inspection device and is cut by a vertical plane that includes the longitudinal axis of the capsule 2. It is characterized by the fact that it is provided for each. At this time, if the optical axes of the auxiliary light sources 15 1 and 15 2 are simply installed at a predetermined angle with respect to the optical axis of the inspection device 1, there will be an area where there is no illumination light, as shown by the symbol C in the figure. Therefore, in order to reduce this as much as possible, the auxiliary illumination sources 15 1 ,
15 2 is provided close to the objective lens 14. The angle between the optical axes of the auxiliary light sources 15 1 and 15 2 and the optical axis of the inspection device 1 is selected to be about 45 degrees, but can be selected within the range of 30 to 60 degrees. Also,
The intersection points of the optical axis of the inspection device 1 and the optical axes of the auxiliary light sources 15 1 and 15 2 are made to substantially coincide on the surface of the capsule 2, and the focus of the inspection device 1 is made to coincide with the intersection points. By doing so, it becomes possible to illuminate and inspect the spherical part of the capsule, which cannot be illuminated by the light source 13 alone.This point will be explained in more detail with reference to Figures 2A to 2D. do.
いま、第2B図の如く、照明光源13の照明角
度を2θM、また、一方の補助光源151の照明角度
を2θSとする。なお、θCは照明光のない領域であ
る。ここで、カプセル2の球形状部における任意
の点Pを検査器1によつて観測するものとし、そ
のとき、点Pにおける接平面が検査器1の光軸と
なす角度をθRとすると、この角度θRは、観測点P
がカプセル円筒状部からどの程度離れているかを
示す尺度となるが、これは光源13のみを使用す
る場合と、補助光源151を併用する場合とでは
異なり、前者では
θR<θM
となり、後者では
θR<(2θM+θC+θS)
の如く表わすことができ、補助光源151を併用
したときの方が観測視野(θR)が拡大することが
わかる。 Now, as shown in FIG. 2B, the illumination angle of the illumination light source 13 is assumed to be 2θ M , and the illumination angle of one of the auxiliary light sources 15 1 is assumed to be 2θ S. Note that θ C is an area without illumination light. Here, suppose that an arbitrary point P on the spherical part of the capsule 2 is observed by the inspection device 1, and at that time, if the angle between the tangential plane at the point P and the optical axis of the inspection device 1 is θ R , This angle θ R is the observation point P
is a measure of how far away from the cylindrical part of the capsule it is, but this differs between when only the light source 13 is used and when the auxiliary light source 15 1 is used together; in the former case, θ R < θ M ; The latter can be expressed as θ R <(2θ M +θ C +θ S ), and it can be seen that the observation field (θ R ) is expanded when the auxiliary light source 15 1 is also used.
このことは、照明光源13のみを用いた場合と
補助光源151のみを用いた場合のそれぞれのフ
オトセンサ出力を比較すると、第2C図イ,ロの
如くなるのに対し、これらの光源を併用すると同
ハの如くなることからも理解することができる。
ただし、これらの光源を併用しても、同図ハのD
にて示されるような特異部が生じることになる
が、上記の角度θCがθC0ならば、この凹部を殆
んど無くすことが可能となる。つまり、この特異
部Dの形状は角度θCの値によつて決まり、θC<0
のときは凹部、θC0のときは略平担、そして、
θC<0ならば凸状になるということができる。な
お、θC<0は理論上のものであり、実際には存在
しない。 This means that when comparing the photo sensor outputs when only the illumination light source 13 is used and when only the auxiliary light source 151 is used, the results are as shown in Figure 2C A and B, whereas when these light sources are used together, This can also be understood from the fact that it becomes like this.
However, even if these light sources are used together, D
However, if the above angle θ C is θ C 0, it is possible to almost eliminate this concave portion. In other words, the shape of this singular part D is determined by the value of the angle θ C , and θ C <0
When , it is concave, when θ C 0, it is almost flat, and,
If θ C <0, it can be said that the shape is convex. Note that θ C <0 is theoretical and does not actually exist.
以上のことから、この考案による検査器を用い
て、透明カプセルの球状部をスキヤンすると、第
2C図ハまたは第2D図イのDにて示す特異部が
生じることになるが、この球状部に第2D図ロで
示す如き穴2bが存在すると、その波形はD′,
Eの如くなる。つまり、D′は照明系によつて生
じる上述の如き特異部であり、Eはこの特異部に
ある穴等の欠陥によつて生じた波形であるが、
D′部、E部を走査したときの各変化速度が互い
に大きく異なることから、その区別をすることが
できるものである。ただし、特異部Dまたは
D′の変化が、円筒状部のレベルと比べて1/2以上
変化するときは、上記の速度差が検出できないこ
とから、検出不能となることがあるので、照明系
を適宜に調整することが必要である。なお、上記
では、第2図の左側の補助光源について説明した
が、その作用、効果は右側の補助光源についても
同様であり、その結果、カプセル全体をヘリカル
スキヤンした場合のフオトセンサ出力は、第2A
図の如く表わすことができ、これによつて、充分
に球形状部の欠陥を検査することが可能となる。 From the above, when the spherical part of a transparent capsule is scanned using the inspection device of this invention, a peculiar part shown by C in Figure 2C or D in Figure 2D A will occur, but this spherical part If there is a hole 2b as shown in Fig. 2D, the waveform will be D',
It becomes like E. In other words, D' is the above-mentioned singularity caused by the illumination system, and E is the waveform caused by defects such as holes in this singularity.
They can be distinguished from each other because the speeds of change when scanning the D' section and the E section are significantly different from each other. However, singular part D or
If the change in D′ changes by more than 1/2 compared to the level of the cylindrical part, the speed difference mentioned above cannot be detected, and detection may become impossible. Therefore, adjust the illumination system appropriately. is necessary. Although the above explanation has been given for the auxiliary light source on the left side of Fig. 2, the action and effect are the same for the auxiliary light source on the right side.As a result, the photo sensor output when the entire capsule is helically scanned is
It can be represented as shown in the figure, which makes it possible to sufficiently inspect the spherical portion for defects.
以上のように、この考案によれば、カプセルの
移動方向と一致する検出器の両側に、検出器の光
軸と所定の角度をもつて少なくとも1対の補助光
源を設けるようにしたので、従来の検査器では照
明し得ない、したがつて検出し得ないカプセルの
球状部の欠陥をも検出することができるため、検
出精度が向上するとともに、検査領域が拡大する
という利点が得られるものである。
As described above, according to this invention, at least one pair of auxiliary light sources are provided on both sides of the detector that coincide with the direction of movement of the capsule and are at a predetermined angle with the optical axis of the detector. Since it is possible to detect defects in the spherical part of the capsule that cannot be illuminated and therefore cannot be detected with other inspection instruments, it has the advantage of improving detection accuracy and expanding the inspection area. be.
第1図は光学検査器の従来例を示す構成図、第
1A図はカプセルをヘリカルスキヤンした場合の
フオトセンサ出力を示す波形図、第1B図はカプ
セルの球状部における照射光と反射光との関係を
説明するための説明図、第2図はこの考案の実施
例を示す構成図、第2A図はセンサ出力波形を示
す波形図、第2B図はカプセルの球状部近傍を拡
大して示す拡大図、第2C図はセンサ出力波形の
相違を説明する説明図、第2D図は傷がある場合
とない場合を比較して示す波形図である。
符号説明、1……同軸反射形光学検査器、11
……フオトセンサ、12……ハーフミラー、13
……照明光源、14……対物レンズ、151,1
52……照明用補助光源、2……カプセル(被検
査物)、2b……穴(傷)、3……入射光、4……
法線、5……反射光。
Figure 1 is a configuration diagram showing a conventional example of an optical inspection device, Figure 1A is a waveform diagram showing the photo sensor output when a capsule is helically scanned, and Figure 1B is the relationship between irradiated light and reflected light at the spherical part of the capsule. FIG. 2 is a configuration diagram showing an embodiment of this invention, FIG. 2A is a waveform diagram showing the sensor output waveform, and FIG. 2B is an enlarged view showing the vicinity of the spherical part of the capsule. , FIG. 2C is an explanatory diagram illustrating differences in sensor output waveforms, and FIG. 2D is a waveform diagram comparing cases with and without scratches. Code explanation, 1...Coaxial reflective optical inspection device, 11
...Photo sensor, 12...Half mirror, 13
...Illumination light source, 14...Objective lens, 15 1 , 1
5 2 ... Auxiliary light source for illumination, 2... Capsule (object to be inspected), 2b... Hole (flaw), 3... Incident light, 4...
Normal, 5...Reflected light.
Claims (1)
向に搬送される、両端に球形状部をもつ円筒状
物品をその長手軸を含む水平面に対して垂直方
向から所定の対物レンズを介して照明する照明
系と、該物品からの反射光を前記対物レンズを
介して受光する受光系とを備え、該照明系と受
光系とで光軸の一部を互いに共有してなる同軸
反射形光学検査器において、前記物品の長手軸
を含む垂直平面によつて切られる対物レンズの
各端部近傍に前記光軸と所定角度をもつてそれ
ぞれ少なくとも1個の補助照明系を設け、該補
助照明系にて前記物品の球形状部を照明するこ
とによりその反射光を前記受光系へ導くことを
特徴とする同軸反射形光学検査器。 2 実用新案登録請求の範囲第1項に記載の同軸
反射形光学検査器において、前記照明系と補助
照明系の各光軸の交点が前記物品の略表面で一
致し、かつ前記検査器のピントが該交点と一致
する如く構成してなることを特徴とする同軸反
射形光学検査器。[Claims for Utility Model Registration] 1. A cylindrical article having spherical portions at both ends, which is rotated around a longitudinal axis and conveyed in the longitudinal direction, is transported in a predetermined direction from a direction perpendicular to a horizontal plane including the longitudinal axis. The illumination system includes an illumination system that illuminates through an objective lens, and a light receiving system that receives reflected light from the article through the objective lens, and the illumination system and the light receiving system share a part of the optical axis with each other. In the coaxial reflective optical inspection device, at least one auxiliary illumination system is provided near each end of the objective lens cut by a vertical plane including the longitudinal axis of the article at a predetermined angle with the optical axis. . A coaxial reflective optical inspection device, characterized in that the auxiliary illumination system illuminates a spherical portion of the article and the reflected light is guided to the light receiving system. 2 Utility Model Registration Scope of Claims 1. In the coaxial reflective optical inspection device according to claim 1, the points of intersection of the optical axes of the illumination system and the auxiliary illumination system coincide at substantially the surface of the article, and the focusing point of the inspection device A coaxial reflective optical inspection device characterized in that the coaxial reflection type optical inspection device is configured such that the intersection point coincides with the intersection point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707183U JPS59194048U (en) | 1983-06-09 | 1983-06-09 | Coaxial reflective optical inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707183U JPS59194048U (en) | 1983-06-09 | 1983-06-09 | Coaxial reflective optical inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59194048U JPS59194048U (en) | 1984-12-24 |
JPH0114915Y2 true JPH0114915Y2 (en) | 1989-05-02 |
Family
ID=30216994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8707183U Granted JPS59194048U (en) | 1983-06-09 | 1983-06-09 | Coaxial reflective optical inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59194048U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5556733B2 (en) * | 2011-04-15 | 2014-07-23 | シーシーエス株式会社 | Light irradiation device |
-
1983
- 1983-06-09 JP JP8707183U patent/JPS59194048U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59194048U (en) | 1984-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4483615A (en) | Method and apparatus for detecting checks in glass tubes | |
IL100443A (en) | Inspection system for detecting surface flaws | |
JPS58219441A (en) | Apparatus for detecting defect on surface of convex object | |
KR920012892A (en) | Inspection method and device for optical parts, especially for eyes, and lighting devices for clean and transparent inspection objects | |
ES8500445A1 (en) | Optical detection of radial reflective defects | |
JPH08128959A (en) | Optical inspection method and optical inspection apparatus | |
US3834822A (en) | Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light | |
JP2016205972A (en) | Scan type glossy cylindrical-surface-shape inspection device | |
JPH04122839A (en) | Inspecting method of surface | |
JPH0114915Y2 (en) | ||
JPH0833354B2 (en) | Defect inspection equipment | |
JPS61288143A (en) | Surface inspecting device | |
HU202977B (en) | Apparatus for geometrical testing of spherical bodies, preferably steel balls | |
JPH0131958Y2 (en) | ||
JPS62113050A (en) | Bottle mouth inspection system | |
JPS63218847A (en) | Inspection of surface flaw | |
JPH07113757A (en) | Defect detection method for translucent objects | |
JPS5841459B2 (en) | BUTSUTAIRIYO BUKETSUKAN KENSAHOHO | |
JPH09133635A (en) | Inspection equipment for transparent material | |
JPS592488Y2 (en) | Shape determination device | |
JPS59163545A (en) | Capsule visual inspection device | |
JP3599932B2 (en) | Appearance inspection device | |
JP2525846B2 (en) | Surface defect inspection equipment | |
JPH03226660A (en) | Tapered surface inspection device for cylindrical objects | |
JPS62188334A (en) | Inspection apparatus |