[go: up one dir, main page]

JPH01148718A - Method of manufacturing quartz crucible - Google Patents

Method of manufacturing quartz crucible

Info

Publication number
JPH01148718A
JPH01148718A JP30462487A JP30462487A JPH01148718A JP H01148718 A JPH01148718 A JP H01148718A JP 30462487 A JP30462487 A JP 30462487A JP 30462487 A JP30462487 A JP 30462487A JP H01148718 A JPH01148718 A JP H01148718A
Authority
JP
Japan
Prior art keywords
silicon dioxide
quartz crucible
dioxide powder
quartz
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30462487A
Other languages
Japanese (ja)
Other versions
JPH0422861B2 (en
Inventor
Hiroshi Uchikawa
啓 内川
Atsushi Iwasaki
淳 岩崎
Toshito Fukuoka
福岡 敏人
Mitsuo Matsumura
光男 松村
Hiroshi Matsui
宏 松井
Yasuhiko Sato
恭彦 佐藤
Masaaki Aoyama
青山 雅明
Hidekazu Shinomiya
篠宮 英一
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP30462487A priority Critical patent/JPH01148718A/en
Priority to US07/278,591 priority patent/US4935046A/en
Priority to EP19880120166 priority patent/EP0319031B1/en
Priority to DE3888797T priority patent/DE3888797T2/en
Publication of JPH01148718A publication Critical patent/JPH01148718A/en
Priority to US07/376,136 priority patent/US4956208A/en
Publication of JPH0422861B2 publication Critical patent/JPH0422861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばシリコン単結晶等の単結晶引き上げ用
の石英ルツボの製造方法及びこの方法により製造された
石英ルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a quartz crucible for pulling a single crystal, such as a silicon single crystal, and a quartz crucible manufactured by this method.

〔従来の技術〕[Conventional technology]

従来、シリコン半導体単結晶の製造は、容器中で多結晶
シリコンを溶融し、高純度の単結晶シリコン(種結晶)
先端を浸して、回転させながら引き上げ、種結晶と同じ
方位を持つ単結晶を成長させる、いわゆるチョクラルス
キー法が広く行われている。
Conventionally, silicon semiconductor single crystals are manufactured by melting polycrystalline silicon in a container and producing high-purity single crystal silicon (seed crystal).
The so-called Czochralski method, in which the tip is immersed and pulled up while rotating to grow a single crystal with the same orientation as the seed crystal, is widely used.

この単結晶引き上げに使用される容器としては、通常、
石英ルツボか使用されているが、これについては製法上
の理由による外観上の違いから、透明石英ルツボと、生
地内に微小な気泡を多量に含有している為不透明もしく
は半透明な外観を有する石英ルツボがある(以下、半透
明石英ルツボと呼ぶ)。
The containers used for this single crystal pulling are usually
A quartz crucible is used, but because of the difference in appearance due to the manufacturing method, it is different from a transparent quartz crucible, which has an opaque or translucent appearance due to the large amount of microbubbles contained within the fabric. There is a quartz crucible (hereinafter referred to as a translucent quartz crucible).

半透明石英ルツボは、粉体を原料として使用する事によ
り透明石英ルツボよりも高強度な物が容易に製造でき、
また大口径の鞠か比較的低コストで製造できること、更
に含有する(放小気泡により透明石英ルツボよりも均一
な熱分布が得られることから、工業的に広く利用されて
いる。
Translucent quartz crucibles can be manufactured with higher strength than transparent quartz crucibles by using powder as raw material.
In addition, large-diameter crucibles can be manufactured at relatively low cost, and the small bubbles contained in crucibles provide a more uniform heat distribution than transparent quartz crucibles, so they are widely used industrially.

しかし、従来から製造されている半透明石英ルツボでは
単結晶の製造時に、しはしは単結晶化が不安定になって
欠陥か生じて、単結晶の収率が低下するという問題かあ
る。
However, when producing a single crystal using conventionally produced translucent quartz crucibles, there is a problem in that single crystallization becomes unstable and defects occur, reducing the yield of single crystals.

引き上げ時の単結晶化か不安定になる原因としては、引
き上げ設備・条件の池にも種々の要因が考えられ、それ
ら他の要因としては、高温時に於けるシリコン融液と石
英ガラスの反応により、内表面か侵食されて表面か荒れ
たり、更に侵食が進んで内部の微小気泡が露出すること
、即ち、シリコン融液の液面に当たる部分のルツボの表
面か荒れていることによって、原料の減少による液面の
降下かスムースに行われず、液面が振動すること、およ
び上記石英ガラスの表面荒れによって生じた微hFdな
突起は、石英〃ラスの結晶化反応の核となってクリスト
バライトの斑点を石英ルツボの表面に生じ、この結晶か
引上工程の進行とともに、石英ルツボから離脱し、シリ
コン融液中に落下する現象か起こり、結晶成長を阻害す
ることがあけられる。さらに、石英ルツボ内表面近傍に
おいて、金属不純物か局所的に、例えば微小気泡表面に
濃縮され、これが引上時に高温加熱によって石英ガラス
のクリストバライトへの結晶化が促進され、石英ルツボ
内表面に露出しなりリストパライトの斑点となる。また
同じような議論から石英ルツボの表面も、その当初にお
いて微細な突起や傷があるのは好ましくない。
There are various factors that can cause unstable single crystallization during pulling, including the pulling equipment and conditions, and other factors include the reaction between silicon melt and quartz glass at high temperatures. , the inner surface is eroded and the surface becomes rough, or the erosion progresses further and the internal microbubbles are exposed, that is, the surface of the crucible in the part that comes into contact with the silicon melt surface is rough, resulting in a decrease in raw materials. The liquid level does not fall smoothly due to the vibration, and the slight hFd protrusions caused by the surface roughness of the quartz glass become the core of the crystallization reaction of the quartz glass, causing spots of cristobalite. A phenomenon occurs in which crystals are formed on the surface of the quartz crucible, and as the pulling process progresses, they detach from the quartz crucible and fall into the silicon melt, inhibiting crystal growth. Furthermore, near the inner surface of the quartz crucible, metal impurities are locally concentrated, for example, on the surface of microbubbles, and when pulled up, the high temperature heating promotes the crystallization of quartz glass into cristobalite, which is exposed on the inner surface of the quartz crucible. It becomes a spot of listoparite. Also, based on a similar argument, it is undesirable for the surface of a quartz crucible to have minute protrusions or scratches at the beginning.

石英ルツボの製造方法については従来幾つかの発明が為
されている。例えは、特開昭59−213697号には
ルツボを内面から長時間加熱、若しくは透明石英管を溶
接して円筒部の一部を透明管と為し、少なくとも原料融
液と接する部分を1胴以上の厚さの透明石英ガラス層と
する石英ルツボの製造方法が記載されている。また、米
国特許4,528,163号には、天然石英粒子で外側
を形成し、内側を合成石英粒子でライニングし、このラ
イニング層の表面に平滑な薄い非晶質層を形成した石英
ルツボの製造方法が記載されている。
Several inventions have been made regarding methods for manufacturing quartz crucibles. For example, in JP-A-59-213697, a part of the cylindrical part is made into a transparent tube by heating the crucible from the inside for a long time or by welding a transparent quartz tube, and at least the part in contact with the raw material melt is made into a single cylinder. A method for manufacturing a quartz crucible with a transparent quartz glass layer having the above thickness is described. Furthermore, US Pat. No. 4,528,163 discloses a quartz crucible in which the outside is formed of natural quartz particles, the inside is lined with synthetic quartz particles, and a smooth thin amorphous layer is formed on the surface of this lining layer. The manufacturing method is described.

更に、米国特許4,416,680号および4.632
,686号には石英ルツボ中の気泡を減少させる方法と
して、外側を減圧にして溶融する石英ルツボの製造方法
か記載されている。
Additionally, U.S. Pat. Nos. 4,416,680 and 4.632
, No. 686 describes a method for manufacturing a quartz crucible in which the outside is melted under reduced pressure as a method for reducing air bubbles in the crucible.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

ところが、これら先行文献には、ルツボ内面の表面状態
に要求される無気泡性、平滑性、均−性等の特性の技術
的課題を同時に解決する石英ルツボの製造方法及びそれ
らの特性を同時に具備する石英ルツボに関し、何ら開示
がなされていない。
However, these prior documents describe a method for manufacturing a quartz crucible that simultaneously solves the technical problems of characteristics such as bubble-free property, smoothness, and uniformity required for the surface condition of the inner surface of the crucible, and a method that simultaneously provides those characteristics. There is no disclosure whatsoever regarding the quartz crucible.

すなわち、特開昭59−213697号には、ルツボ内
面の表面状態に要求される特性のうち、原料融液と接す
る部分の侵食防止について半透明石英ガラス層の内面を
更に加熱して透明層を得る方法と透明管を溶融して透明
なリング状の部分を挟み込むことか示されている。とこ
ろが、前者の方法は石英ガラス層の内部の未溶融部分を
更に溶融して、場合によっては気泡として形成された残
溜ガスを加熱膨張により破裂させて、内部の気泡を開放
していく方法であるが、この方法では気泡は完全に除か
れず、又、透明石英ガラス層に多量の気泡の痕跡か残る
為、半導体引き上げにおいて特に減圧にさらされた場合
に再び膨張を起こし、単結晶化が不安定になって欠陥を
生じ収率が低下する。また、後者の透明管を溶融する方
法は、作業が煩雑でその継目がルツボ内面を完全な滑ら
かな面にするのを阻害したり、又溶融の歪み除去のため
のアニールが必要となり、ルツボの生産性が悪くなる。
Specifically, Japanese Patent Application Laid-Open No. 59-213697 discloses that, among the characteristics required for the surface condition of the inner surface of the crucible, the inner surface of the translucent quartz glass layer is further heated to prevent corrosion of the portion in contact with the raw material melt. It shows how to obtain it by melting a transparent tube and sandwiching a transparent ring-shaped part. However, the former method involves further melting the unmelted portion inside the quartz glass layer and, in some cases, causing residual gas that has formed as bubbles to rupture by heating and expanding, thereby opening the bubbles inside. However, this method does not completely remove air bubbles, and leaves traces of a large amount of air bubbles in the transparent quartz glass layer, which causes expansion again when exposed to reduced pressure during semiconductor pulling, leading to single crystal formation. It becomes unstable and causes defects, which reduces the yield. In addition, the latter method of melting a transparent tube is complicated, and the joints prevent the inner surface of the crucible from becoming a perfectly smooth surface, and annealing is required to remove distortion during melting, making the crucible Productivity deteriorates.

また、米国特許4,528,163号においても、ルツ
ボの内外層を同時に溶融し、内側部に合成石英を使用し
たことによるルツボ内面の特性の向上はみられるか、そ
の内側部に多数の気泡、空隙が残存することが避けられ
ず、単結晶引き上げ時に溶融物が気泡、空隙の孔に捕捉
され、引き上げ操作が著しく妨げられる。
Also, in U.S. Patent No. 4,528,163, are there any improvements in the characteristics of the crucible inner surface by melting the inner and outer layers of the crucible at the same time and using synthetic quartz on the inner surface? , it is inevitable that voids remain, and during single crystal pulling, the melt is trapped in the bubbles and pores of the voids, significantly hindering the pulling operation.

更に、米国特許4,416,680号および4.632
.686号には石英ルツボ中の気泡を真空引きして減少
させることが記載されているが、気泡が外側の比教的低
温の石英層を通過する゛に際し著しい抵抗かあり、ルツ
ボ内面までの気泡の除去は充分になし得ない。
Additionally, U.S. Pat. Nos. 4,416,680 and 4.632
.. No. 686 describes that air bubbles in a quartz crucible can be reduced by evacuation, but when the air bubbles pass through the outer quartz layer at a relatively low temperature, there is significant resistance, and the air bubbles reach the inner surface of the crucible. cannot be completely removed.

この他単結晶引き上げにおいて、その引き上げか安定に
行われることと共に、単結晶の中に混入する酸素の正確
な制御か要求されるが、従来法によって作られる石英ル
ツボは引き上は中に内表層の均質性か不十分なこと、ま
た気泡が多いなどの理由で荒れるので、石英ルツボ表面
からの内部のシリコン溶融体への溶解か不安定なため、
かかる要求を満足することか困難である。
In addition, when pulling a single crystal, it is necessary to perform the pulling stably and to accurately control the amount of oxygen mixed into the single crystal. The quartz crucible surface becomes rough due to insufficient homogeneity and many bubbles, and the dissolution from the surface of the quartz crucible to the internal silicon melt is unstable.
It is difficult to satisfy such demands.

本発明は、羊結晶引き上げにおいてその内表面が滑らか
で凹凸か少なく均質なこと、さらに重要なことであるか
実質的に無気泡であるため、溶融シリコン中へのその表
面の溶解速度か安定し、表面の荒れその他の理由による
石英ルツボ内面のクリストバライトの発生原因となるこ
とがなく、さらに石英ルツボ表面が平滑に保持されるの
で、単結晶引上がきわめて安定して行われるような石英
ルツボ及び当該石英ルツボをきわめて容易に製造するこ
とか可能な石英ルツボの製造方法を提供することを目的
とする。
The present invention is advantageous in that the inner surface of the crystal is smooth and homogeneous with few irregularities, and more importantly, it is substantially bubble-free, so that the dissolution rate of the surface into the molten silicon is stable. A quartz crucible and a quartz crucible that do not cause the generation of cristobalite on the inner surface of the quartz crucible due to surface roughness or other reasons, and furthermore, the surface of the quartz crucible is kept smooth, so that single crystal pulling can be performed extremely stably. It is an object of the present invention to provide a method for manufacturing a quartz crucible that allows the quartz crucible to be manufactured extremely easily.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は結晶性および非結晶性の二酸化ケイ素粉
末のうち少なくとも1種の二酸化ケイ素粉末を加熱処理
して形成した半透明の石英ルツボを回転式の型内に嵌合
し、前記型を回転しながら前記石英ルツボ内に加熱源を
挿入して石英ルツボ内に高温ガス雰囲気を作り、この高
温ガス雰囲気中に結晶性および非結晶性の二酸化ケイ素
粉末のうち少なくとも1種の二酸化ケイ素粉末を少量ず
つ通過させて二酸化ケイ素粉末の少なくとも一部を溶融
せしめ、この溶融粉末を前記石英ルツボ内表面上に飛散
せしめて付着させ、実質的に無気泡の透明石英ガラス層
を前記石英ルツボ内表面上に一体融合的に所定の厚さに
形成するようにしな。
Therefore, in the present invention, a translucent quartz crucible formed by heat treating at least one kind of silicon dioxide powder among crystalline and non-crystalline silicon dioxide powder is fitted into a rotary mold, and the mold is rotated. Meanwhile, a heating source is inserted into the quartz crucible to create a high-temperature gas atmosphere in the quartz crucible, and a small amount of at least one kind of silicon dioxide powder among crystalline and amorphous silicon dioxide powder is added to the high-temperature gas atmosphere. at least a portion of the silicon dioxide powder is melted, and the molten powder is scattered and deposited on the inner surface of the quartz crucible to form a substantially bubble-free transparent quartz glass layer on the inner surface of the quartz crucible. Be sure to form it integrally to a predetermined thickness.

また、回転式の型を回転しながら前記型内に結晶性およ
び非結晶性の二酸化ケイ素粉末のうち少なくとも1種の
二酸化ケイ素粉末で構成された未溶融の石英ルツボ用予
備成形体を形成し、当該予備成形体内に加熱源を挿入し
て予備成形体内に高温ガス雰囲気を作り当該予備成形体
を内部より高温加熱して溶融ガラス化すると同時に、こ
の高温ガス雰囲気中に結晶性および非結晶性の二酸化ケ
イ素粉末のうち少なくとも1種の二酸化ケイ素粉末を少
量ずつ通過させて二酸化ケイ素粉末の少なくとも一部を
溶融せしめ、この溶融粉末を前記予備成形体内表面上に
飛散せしめて付着させ、実質的に無気泡の透明石英ガラ
ス層を前記予備成形体内表面上に一体融合的に所定の厚
さに形成するようにした。
Further, while rotating a rotary mold, an unmelted quartz crucible preform made of at least one kind of silicon dioxide powder among crystalline and amorphous silicon dioxide powder is formed in the mold, A heating source is inserted into the preform to create a high-temperature gas atmosphere inside the preform, and the preform is heated from the inside to melt and vitrify. At least one type of silicon dioxide powder among the silicon dioxide powders is passed through the silicon dioxide powder little by little to melt at least a portion of the silicon dioxide powder, and the molten powder is scattered and deposited on the surface of the preform, so that it is substantially free of silicon dioxide powder. A transparent quartz glass layer of bubbles was integrally formed on the inner surface of the preform to a predetermined thickness.

〔作用〕[Effect]

回転式の型内に基体として透明又は少なくとも外fil
ljの一部か半透明層を有する石英ルツボの成形体を嵌
合し、或いは該回転体の遠心力と重力を利用して結晶性
及び非結晶性の二酸化ケイ素粉末の少なくとも一種から
構成される未/′8融の石英ルツボ用予備成形体を形成
し、この内部に例えば炭素型、極間のアーク放電により
高温ガス雰囲気を創出し、あらかじめ嵌合された石英ル
ツボの表面または未溶融の石英ルツボ予備成形体の内部
まで溶融するよう充分に加熱し、同時に高温ガスの流動
によって系外に飛敗せぬよう、また加熱雰囲気内を落下
しルツボ表面に到達するよう適当な粒径サイズの結晶性
及び非結晶性二酸化ケイ素粉末の少なくとも一種からな
る二酸化ケイ素粉末を少量づつ連続的に上部から供給し
、高温ガス雰囲気の特に高温部を必ず通過させて、少な
くとも該粉末粒子の一部を溶融し、この溶融粉末を基体
の溶融表面に飛着させ、該飛着溶融粉末を基体表面に溶
着し、その上に飛着溶融粉末層か更に積層される以前に
、上記高温ガス雰囲気による伝導熱及び高温熱源の輻射
エネルギーによって溶融か進み、基体表面と一体的に融
合し、且つほぼ完全に無気泡の薄層を形成する。回転す
る型と共に基体表面は回転し、飛着溶融粒子により融@
叶加される層は、少なくとも基体の側面の厚さ方向の一
定幅上で積層され、基体表面のかかる付加融着層を一定
の厚さに成長させる。飛着溶融粒子により融着付加され
る層は充分に溶融され、かつ薄層であるが故に溶融層が
冷却固化の際に如何なる微少な気泡も残存することを許
されない。このように実質的に無気泡の透明石英ガラス
層が基体と一体融合に成長されるので、かかる溶融層は
基体との接着は極めて良好である。この溶融付加層は以
上の説明から理解出来るように均質であり、また気泡か
ないので溶融ガラス層中の不純物が部分的に異常に析出
することかなく、これを実際の単結晶引き上げ工程で内
部にシリコン溶融体を保持した場合表面がシリコン溶融
体に浸食されるときに、その浸食面は従来法の半透明石
英ルツボに対してより平滑であり、これによってシソコ
ン溶融体表面の振動か著しく軽減され、単結晶化率の向
上即ち生産性の向上に役立つ。また融着された透明石英
ガラス層が均質であることからシリコン融体への石英ガ
ラス表面の溶解速度を安定化せしめ、引き上げ単結晶中
の酸素4度を制御するときにシリコン溶融体中の酸素の
濃度制御を容易にする。更に大きな利点は、引き上げ工
程中の石英ルツボのシリコン溶融体接触面上のクリスト
バライトの形成とその相転移に伴なう同クリストバライ
トの剥離による単結晶の乱れ発生か著しく低減される。
Transparent or at least outer fil as a substrate in a rotary mold
A molded body of a quartz crucible having a translucent layer is fitted into a part of lj, or by using the centrifugal force and gravity of the rotating body, it is made of at least one of crystalline and amorphous silicon dioxide powder. A preform for an unmelted quartz crucible is formed, and a high-temperature gas atmosphere is created inside this by arc discharge between the electrodes, and the surface of the quartz crucible fitted in advance or the unmelted quartz is heated. The crystals are heated sufficiently to melt the inside of the crucible preform, and at the same time, the crystals are of an appropriate particle size so that they do not fly out of the system due to the flow of high-temperature gas, and so that they fall in the heated atmosphere and reach the crucible surface. Silicon dioxide powder consisting of at least one type of silicon dioxide powder and amorphous silicon dioxide powder is continuously fed in small amounts from the top, and is passed through a particularly high-temperature part of a high-temperature gas atmosphere to melt at least a part of the powder particles. , the molten powder is allowed to fly onto the molten surface of the substrate, the fused molten powder is welded to the surface of the substrate, and before a layer of the fused molten powder is further laminated thereon, conduction heat and The melt progresses due to the radiant energy of the high-temperature heat source, and is integrally fused with the substrate surface, forming a thin layer that is almost completely bubble-free. The base surface rotates with the rotating mold, and is melted by flying molten particles.
The added layers are laminated over at least a constant width in the thickness direction of the side surface of the substrate, and the additional fused layer on the surface of the substrate is grown to a constant thickness. Since the layer fused and added by the flying molten particles is sufficiently molten and thin, no minute air bubbles are allowed to remain when the molten layer is cooled and solidified. Since the substantially bubble-free transparent quartz glass layer is grown integrally with the substrate in this manner, the adhesion of such a fused layer to the substrate is extremely good. As can be understood from the above explanation, this molten additional layer is homogeneous and there are no bubbles, so impurities in the molten glass layer do not precipitate abnormally in some areas, and are removed internally during the actual single crystal pulling process. When holding a silicon melt, when the surface is eroded by the silicon melt, the eroded surface is smoother than that of the conventional translucent quartz crucible, and this significantly reduces the vibration of the silicon melt surface. , which is useful for improving the single crystallization rate, that is, improving productivity. In addition, since the fused transparent quartz glass layer is homogeneous, it stabilizes the dissolution rate of the quartz glass surface in the silicon melt, and when controlling the oxygen concentration in the pulled single crystal, it is possible to stabilize the dissolution rate of the quartz glass surface in the silicon melt. facilitate concentration control. An even greater advantage is that the formation of cristobalite on the silicon melt contact surface of the quartz crucible during the pulling process and the occurrence of single crystal disturbances due to exfoliation of the cristobalite accompanying its phase transition are significantly reduced.

かかるクリストバライトの形成は、石英ルツボ表面の凹
凸及び表面近傍の不純物、不完全溶融のなめ結晶の規則
性を僅かに残した部分が、クリストバライト形成の核と
なり、ルツボ表面とシリコン溶融体との界面の高濃度の
二酸化ケイ素雰囲気がルツボ表面方向にクリストバライ
ト結晶を選択的に成長する原因となることが考えられる
。クリストバライトはシリコン溶融体と接触する高温(
約1450°C)においてβ型で形成され、シリコン溶
融面か下がって引き上げ室内のガス雰囲気に暴露されて
冷却するとα型となり剥離の原因となる。
The formation of such cristobalite is caused by the irregularities on the surface of the quartz crucible, impurities near the surface, and the part where the regularity of incompletely melted slick crystals remains, which becomes the nucleus for the formation of cristobalite, and the interface between the crucible surface and the silicon melt becomes the nucleus of cristobalite formation. It is thought that the high concentration silicon dioxide atmosphere causes cristobalite crystals to selectively grow toward the crucible surface. Cristobalite is exposed to high temperatures (
When the silicon molten surface lowers and is exposed to the gas atmosphere in the pulling chamber and is cooled, it becomes an α-type, which causes peeling.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。第1図におい
て、支持回転軸2を有する回転式の型1のキャビティ内
には予め加熱形成された半透明のの石英ルツボの成形体
3が嵌合されている。この型1の回転中に加熱源5か成
形体3内に挿入される。また成形体3の開口部にリング
状の開ロア5を残すように閉塞板71が設けられ、こう
して成形体3内が半密閉状態とされる。同時に、加熱源
5により高温ガス雰囲気8が形成され、この高温ガス雰
囲気8中を一定量の結晶性または非結晶性の高純度の二
酸化ケイ素粉末6が通過される。前記二酸化ケイ素粉末
6は結晶性のものと非結晶性のものとか混じったもので
もよく、少なくともその一部か7g融された状態で内表
面に付着され、こうして透明石英ガラスN4が一体融合
的に設層される。
Examples of the present invention will be described below. In FIG. 1, a translucent quartz crucible molded body 3 which has been heated and formed in advance is fitted into a cavity of a rotary mold 1 having a support rotation shaft 2. As shown in FIG. While the mold 1 is rotating, the heating source 5 is inserted into the molded body 3. Further, a closing plate 71 is provided so as to leave the ring-shaped open lower portion 5 at the opening of the molded body 3, and thus the inside of the molded body 3 is brought into a semi-sealed state. At the same time, a hot gas atmosphere 8 is created by the heating source 5, and a certain amount of crystalline or amorphous high purity silicon dioxide powder 6 is passed through this hot gas atmosphere 8. The silicon dioxide powder 6 may be a mixture of crystalline and non-crystalline powders, and at least a part of it (7 g) is melted and adhered to the inner surface, so that the transparent quartz glass N4 is integrally fused. Layered.

前記二酸化ケイ素粉末6は、通常、撹拌プロペラ91を
有する供給タンク9から定量フィーダー92で供給量を
制御されながら、ノズル93により高温ガス雰囲気8中
に少しずつ放出される。
The silicon dioxide powder 6 is normally discharged little by little from a supply tank 9 having a stirring propeller 91 into the high-temperature gas atmosphere 8 through a nozzle 93 while the supply amount is controlled by a quantitative feeder 92 .

前記型1は水冷機構を有していてもよく、また、型1の
キャビティーの形状、大きさは、作製しようとする石英
ルツボの形状・大きさに適合させる。
The mold 1 may have a water cooling mechanism, and the shape and size of the cavity of the mold 1 are adapted to the shape and size of the quartz crucible to be manufactured.

型1の材質は耐熱性、機械的強度および加工性かあれば
よく、金属あるいはカーボン等の材質でよい。
The material of the mold 1 only needs to have heat resistance, mechanical strength, and workability, and may be metal, carbon, or the like.

図示例では、型1のキャビティー内に予め二酸化ケイ素
粉末を加熱成形して形成した半透明の石英ルツボの成形
体3を嵌合しその内面に二酸化ケイ素粉末を付着させる
ようにしているが、加熱処理済の成形体3を使用する代
わりに、型1を回転させながら、そのキャビティー内に
結晶性または非結晶性の二酸化ケイ素粉末(結晶性のも
のと非結晶性のものとが混じっていてもよい)を供給し
て遠心力により型1のキャビティー内壁面に石英ルツボ
用の予備成形体を形成し透明層用の二酸化ケイ素粉末6
を供給しつつ予備成形体と同時に加熱してルツボを形成
するようにしてもよい。このように予備成形体と二酸化
ケイ素粉末を同時に加熱すれば、不透明石英ガラス層の
形成と透明石英ガラス層の設層を同一の型で行うことが
でき有利である。
In the illustrated example, a translucent quartz crucible molded body 3 formed by heating and molding silicon dioxide powder is fitted into the cavity of the mold 1, and the silicon dioxide powder is adhered to the inner surface of the molded body 3. Instead of using a heat-treated molded body 3, crystalline or non-crystalline silicon dioxide powder (a mixture of crystalline and non-crystalline powder) is added to the cavity while rotating the mold 1. A preformed body for a quartz crucible is formed on the inner wall surface of the cavity of the mold 1 by centrifugal force, and silicon dioxide powder 6 for the transparent layer is supplied.
The crucible may be formed by heating the preform while simultaneously supplying the preform. If the preform and the silicon dioxide powder are heated simultaneously in this way, it is advantageous that the formation of the opaque quartz glass layer and the application of the transparent quartz glass layer can be carried out in the same mold.

なお、予備成形体を形成する場合、型1の回転速度が大
きすぎると、供給された二酸化ケイ素粉末がキャビティ
の側壁方向に移動し、底部への粉末の堆積が″)トさく
なりすぎる場合かあるので回転速度の調節が必要である
。更に、予備成形体の粉末の堆積厚か型1の内面の場所
によっては不均一となる場合かあるので、成形板を用い
て堆積厚を均一とし、余剰分を型1の上部より排除する
ことにより、肉厚の安定した石英ルツボを作製すること
ができる。
In addition, when forming a preform, if the rotation speed of the mold 1 is too high, the supplied silicon dioxide powder will move toward the side wall of the cavity, and the deposition of powder on the bottom may become too thin. Therefore, it is necessary to adjust the rotation speed.Furthermore, since the deposited thickness of the powder in the preform may be uneven depending on the location on the inner surface of the mold 1, a molding plate is used to make the deposited thickness uniform. By removing the excess from the upper part of the mold 1, a quartz crucible with a stable wall thickness can be manufactured.

また、型1の回転速度は、少なくとも一部が溶融した二
酸化ケイ素粉末6の粒子か成形体3の内表面から落下し
ない範囲で、加熱′a5からの加熱エネルギーの供給量
との関係で定めればよく、通常50〜300 r、D、
lIl、程度である。
Furthermore, the rotational speed of the mold 1 is determined in relation to the amount of heating energy supplied from the heating 'a5, within a range in which particles of the silicon dioxide powder 6, which are at least partially melted, do not fall from the inner surface of the compact 3. Usually 50 to 300 r, D,
It is about lIl.

本発明の石英ルツボの製造方法は、通常の空気雰囲気中
でも充分その効果を奏することかできるが、異物の混入
を防ぐなめ、例えばクラス1.000程度の清浄度の雰
囲気であることが好ましい。
Although the method for manufacturing a quartz crucible of the present invention can be sufficiently effective in a normal air atmosphere, it is preferable to use an atmosphere with a cleanliness level of, for example, class 1.000 to prevent contamination of foreign matter.

前記加熱源5としては、アーク放電、高周波プラズマ放
電等を使用することができるが、2本の炭素電極51.
52で構成されるアーク放電か好ましい。この場合、外
部電源10から直流あるいは交流の高電圧電流を炭素量
tif151,52に供給してアーク放電を発生させる
。そして、このようなアーク放電あるいは高周波プラズ
マ放電により供給される加熱エネルギーは充分に大きい
ことが要求される。
As the heating source 5, arc discharge, high frequency plasma discharge, etc. can be used, but two carbon electrodes 51.
52 is preferred. In this case, a DC or AC high voltage current is supplied from the external power supply 10 to the carbon quantities tif 151, 52 to generate arc discharge. The heating energy supplied by such arc discharge or high frequency plasma discharge is required to be sufficiently large.

炭素電極によるアーク放電を用いる場合、例えば成形体
3の底部中央部に加熱を集中して先すその表面を溶融す
る。次いでアーク放電によって生じた高温ガス雰囲気8
中に、二酸化ケイ素粉末6を通過させる。二酸化ケイ素
粉末6の粒子か所定の肉厚で成形体3に付着するように
その供給量を調節した後、徐々に炭素電極51.52の
先端放電部分を成形体3の内表面に沿って垂直方向に移
動させる。
When arc discharge using a carbon electrode is used, for example, heating is concentrated at the center of the bottom of the molded body 3 to first melt the surface of the hem. Next, a high temperature gas atmosphere generated by arc discharge 8
Silicon dioxide powder 6 is passed through it. After adjusting the supply amount so that the particles of silicon dioxide powder 6 adhere to the molded body 3 with a predetermined thickness, gradually move the tip discharge portions of the carbon electrodes 51 and 52 perpendicularly along the inner surface of the molded body 3. move in the direction.

なお、二酸化ケイ素粉末6の供給量および炭素電極54
.52の移動速度を調節して、成形体3の特定の場所で
透明石英ガラス層4の設層厚みを制御することも可能で
ある。
Note that the amount of silicon dioxide powder 6 supplied and the carbon electrode 54
.. It is also possible to control the thickness of the transparent quartz glass layer 4 at a specific location on the molded body 3 by adjusting the moving speed of the transparent quartz glass layer 4 .

前記加熱源5をルツボの内壁のある位置に接近させた場
合に溶融状態で成形体3の内表面に付着した二酸化ケイ
素粉末6の粉体は加熱源から離れた位置で直ちに固化し
易いか、上述のように、加熱エネルギーの供給量と型1
の回転速度を調節することにより、石英ルツボ表面を溶
融状態で保持しつつ、次の二酸化ケイ素粉末6の粒子を
付着することかできる。
When the heat source 5 is brought close to a certain position on the inner wall of the crucible, does the silicon dioxide powder 6 that adheres to the inner surface of the molded body 3 in a molten state easily solidify immediately at a position away from the heat source? As mentioned above, the amount of heating energy supplied and the type 1
By adjusting the rotational speed of the quartz crucible, the next particles of silicon dioxide powder 6 can be attached while keeping the surface of the quartz crucible in a molten state.

また、成形体の内表面に融着した透明石英ガラス層は、
型1の回転数が遅すぎた場合、成形体表面か局部的に高
温になり、成形体内部の溶融か進むと同時に表面層か過
度に流動性を増し、流下したり、成形体か変形すること
らあり得るので、加熱源5の熱量と型1の回転は上述の
ように適当に制御されなければならないのは当然である
In addition, the transparent quartz glass layer fused to the inner surface of the molded body is
If the rotation speed of mold 1 is too slow, the surface of the molded object will become locally high temperature, and as the inside of the molded object melts, the surface layer will become excessively fluid, causing it to flow down or deform. Therefore, it is natural that the amount of heat of the heating source 5 and the rotation of the mold 1 must be appropriately controlled as described above.

また、透明石英ガラス層は一度で所定厚に設層してもよ
いが、炭素量&51.52を、成形体3の内表面の下方
から上方へ、あるいは上方から下方へ一方向で繰り返し
移動させ、あるいは上方および下方間を往復移動させて
所定の厚さの透明石英ガラス層4を設層してもよい。
The transparent quartz glass layer may be formed to a predetermined thickness at once, but the carbon content &51.52 may be repeatedly moved in one direction from below to above or from above to below the inner surface of the molded body 3. Alternatively, the transparent quartz glass layer 4 of a predetermined thickness may be deposited by reciprocating between the upper and lower sides.

なお、前述のように、加熱処理済の成形体3の代りに二
酸化ケイ素粉末からなる予備成形体を使用する場合は、
アーク放電により予備成形体をほぼ完全に溶融しつつ上
記の操作を行うこととなる。
In addition, as mentioned above, when using a preformed body made of silicon dioxide powder instead of the heat-treated molded body 3,
The above operation is performed while the preform is almost completely melted by arc discharge.

また、アーク放電は、炭素電極51.52の先端放電部
分から四方にふくらむように形成されるため、アーク放
電による高温ガス雰囲気8中を通過した二酸化ケイ素粉
末6の粒子は、成形体3の内表面の広範囲に向って飛散
する。
Further, since the arc discharge is formed so as to bulge in all directions from the tip discharge portion of the carbon electrodes 51 and 52, the particles of the silicon dioxide powder 6 that have passed through the high temperature gas atmosphere 8 due to the arc discharge are inside the molded body 3. Spreads over a wide area of the surface.

さらに、本発明では閉塞板71を設けであることにより
、石英ルツボ基体3内が半密閉状態となり、発生した高
温ガスは撹乱しつつルツボの内表面に沿って上昇し、リ
ング状の開ロア5を通って石英ルツボ外へ排出される(
第1図の矢印)。このため、高温ガス雰囲気8中を通過
した二酸化ケイ素粉末6の粒子はこの上昇撹乱気流によ
りルツボの側面方向に均一に分散し、上記のアーク放電
の飛散効果と相まって、成形体3の内表面にきわめて均
一に付着する。更に、成形体内を半密閉状態にしてアー
ク放電させれば瞬間的な膨張がおこり、内部温度の高温
化が容易であり、また石英ルツボ表面の全体にわたって
の温度均一化か進み、溶融状態又は半溶融状態の二酸化
ケイ素粒子が成形体内表面に密着し、これが透明層内の
実質的無気泡化に大きな影響を与えるとともに成形体と
二酸化ケイ素粒子との一体融合化とその均質化が増長さ
れ、さらにエネルギーの節約が可能となり、低コスト化
に役立つ。
Furthermore, in the present invention, by providing the closing plate 71, the inside of the quartz crucible base 3 becomes a semi-sealed state, and the generated high-temperature gas is disturbed and rises along the inner surface of the crucible, and the ring-shaped open lower 5 through the quartz crucible (
(arrow in Figure 1). Therefore, the particles of silicon dioxide powder 6 that have passed through the high-temperature gas atmosphere 8 are uniformly dispersed in the lateral direction of the crucible due to this upward turbulent airflow, and together with the above-mentioned scattering effect of the arc discharge, the particles of silicon dioxide powder 6 are distributed on the inner surface of the compact 3. Adheres extremely evenly. Furthermore, if the molded body is semi-sealed and arc discharged, instantaneous expansion will occur and the internal temperature will easily increase, and the temperature will become more uniform over the entire surface of the quartz crucible, resulting in a molten or semi-molten state. The silicon dioxide particles in the molten state adhere to the surface of the molded body, which has a great effect on making the transparent layer substantially bubble-free, and also increases the integral fusion of the molded body and the silicon dioxide particles and their homogenization. This makes it possible to save energy and helps reduce costs.

なお、前記閉塞板71か成形体3の上部開口部を閉塞す
る割合は、加熱源5の条件、成形体3の大きさ等から決
定すればよいが、通常は上部開口部の20〜95%を閉
塞することか好ましい。
Note that the ratio at which the closing plate 71 closes the upper opening of the molded body 3 may be determined based on the conditions of the heating source 5, the size of the molded body 3, etc., but is usually 20 to 95% of the upper opening. It is preferable to occlude the

また、上記のリング状の開ロア5は成形体3の上部開口
部よりも寸法が大きい前記閉塞板71を成形体3の上部
開口部の上方に間隙をおいて設置することにより形成さ
れてらよい。
Further, the ring-shaped opening lower 5 may be formed by installing the closing plate 71, which is larger in size than the upper opening of the molded body 3, with a gap above the upper opening of the molded body 3. .

また、本発明では、第2図に示されるように、炭素電極
を支持回転軸2の軸方向に対し成形体3の側面方向にそ
の先端を傾けてもよい。
Further, in the present invention, as shown in FIG. 2, the tip of the carbon electrode may be inclined toward the side surface of the molded body 3 with respect to the axial direction of the support rotation shaft 2.

このように傾けることにより、成形#3の内表面の溶融
領域を所定の幅に正確に制御することか可能となる。こ
の場合、二酸化ケイ素粉末6を放出するノズル93も同
時に同方向に傾けることにより、高温ガス雰囲気8を通
過した二酸化ケイ素粉末6の粒子の放出される主方向を
、上記溶融領域に適確に合わせることができ、二酸化ケ
イ素粉末6の粒子と成形体3の内表面との融合がより完
全となり、透明石英ガラス層かより均一なものとなる。
By tilting in this way, it is possible to accurately control the melted area on the inner surface of mold #3 to a predetermined width. In this case, the nozzle 93 that discharges the silicon dioxide powder 6 is also tilted in the same direction at the same time, so that the main direction in which the particles of the silicon dioxide powder 6 that have passed through the high-temperature gas atmosphere 8 are discharged is accurately aligned with the above-mentioned melting region. This results in more complete fusion of the particles of silicon dioxide powder 6 with the inner surface of the molded body 3, resulting in a more uniform transparent quartz glass layer.

本発明では、二酸化ケイ素粉末6の大きさは通常30〜
1,000μm程度か好ましい。大きさが30μm未満
である場合、高温ガス雰囲気8の上昇撹乱気流等によっ
て、充分に加熱することなく飛散するという不都合が生
じる。逆に、大きさが1,000μmより大きいと、加
熱エネルギーかその中心部に充分伝達される前に成形体
3の内表面に付着し、更に加熱を受けても溶融せす、透
明石英ガラス層が不均一になるという不都合か生じる。
In the present invention, the size of the silicon dioxide powder 6 is usually 30~
It is preferably about 1,000 μm. If the size is less than 30 μm, there will be a problem that the particles will be scattered due to upward turbulence of the high-temperature gas atmosphere 8 without being sufficiently heated. On the other hand, if the size is larger than 1,000 μm, the transparent quartz glass layer will adhere to the inner surface of the molded body 3 before the heating energy is sufficiently transmitted to its center, and will not melt even after further heating. This may cause the inconvenience of unevenness.

また、二酸化ケイ素粉末6の供給量は、前述のように、
加熱源5の放出する加熱エネルギー、加熱源5の移動速
度および型1の回転速度等により定められるが、通常5
〜300t/分程度が好ましい。
In addition, the supply amount of silicon dioxide powder 6 is as described above.
It is determined by the heating energy emitted by the heating source 5, the moving speed of the heating source 5, the rotational speed of the mold 1, etc., but usually 5.
~300 t/min is preferable.

なお、二酸化ケイ素粉末6の大きさ、および、供給量が
上述の好ましい範囲であっても、前述のように、更に加
熱源としてのアーク放電または高周波プラズマ放電の加
熱エネルギーも充分に大きいことが必要である。
Note that even if the size and supply amount of the silicon dioxide powder 6 are within the above-mentioned preferred range, as mentioned above, it is necessary that the heating energy of the arc discharge or high-frequency plasma discharge as a heating source is sufficiently large. It is.

前記二酸化ケイ素粉末6は、結晶性でも非結晶性でもい
ずれであってもよいか、設層される透明石英ガラス層中
の不純物の存在を少なくするため、高純度の材料である
ことを要する。このように、高純度の透明内1ITII
層を形成すれば、石英ガラス加熱処理済成形体あるいは
予備成形体の材料である二酸化ケイ素粉末については、
それが高純度であることを要求しなくてもよいことにな
り、石英ルツボの製造コストの低減か可能となる。
The silicon dioxide powder 6 may be either crystalline or amorphous, and is required to be a highly pure material in order to reduce the presence of impurities in the transparent quartz glass layer to be formed. In this way, high purity transparent inner 1ITII
If a layer is formed, silicon dioxide powder, which is the material for the quartz glass heat-treated molded body or preformed body,
There is no need to require it to be highly pure, which makes it possible to reduce the manufacturing cost of quartz crucibles.

本発明では、上記の操作により二酸化ケイ素粉末の粒子
を少量づつ溶融させながら付着させて透明石英ガラス層
を設層するため、個々の二酸化ケイ素粉末の粒子間に気
泡か組み込まれることかほとんとなく、また、不純物か
きわめて少なくなる。
In the present invention, the transparent quartz glass layer is formed by melting and adhering silicon dioxide powder particles little by little through the above-described operation, so there is almost no chance of air bubbles being incorporated between individual silicon dioxide powder particles. Also, impurities are extremely reduced.

さらに、水酸基も少なくすることができif#熱性が増
す。
Furthermore, the number of hydroxyl groups can be reduced, and if# thermal properties are increased.

透明石英ガラス層の二酸化ケイ素か天然石英水晶粉から
作られる場合には、本来水酸基か少ないので、本発明に
よる内面の透明石英ガラス層の水酸基はこれを超えるこ
とはないか、かかる二酸化ケイ素は高温ガス雰囲気を通
過し、同粉末は微粒子の状態で超高温にさらされるので
、脱離による水酸基の減少或いはその他不純物の揮散除
去が行われる。
When the transparent quartz glass layer is made from silicon dioxide or natural quartz crystal powder, the number of hydroxyl groups is originally small. Passing through a gas atmosphere, the powder is exposed to extremely high temperatures in the form of fine particles, so that hydroxyl groups are reduced by elimination or other impurities are removed by volatilization.

さらに、透明石英ガラス層の設層厚みを、二酸化ケイ素
粉末の供給量、型の回転速度を調節することにより、容
易かつ正確に制御でき、十分に厚い透明層をも形成でき
る。
Furthermore, the thickness of the transparent quartz glass layer can be easily and accurately controlled by adjusting the supply amount of silicon dioxide powder and the rotation speed of the mold, and a sufficiently thick transparent layer can also be formed.

さらに本発明では、第1図および第2図に示すような炭
素電極2本の組み合せのほかに、炭素電極を3本以上組
み合わせることも可能である。又、これらの電極を適当
に動かすことも可能である。
Furthermore, in the present invention, in addition to the combination of two carbon electrodes as shown in FIGS. 1 and 2, it is also possible to combine three or more carbon electrodes. It is also possible to move these electrodes appropriately.

なお、加熱源として、この池に酸水素炎が考えられるか
、この場合には高周波放電あるいはアーク放電と比較し
て熱源温度が低いので、後述の二酸化ケイ素粉末6の粒
子サイズ及び供給速度を低く抑え、また、加熱源5の移
動速度も低く抑えることか必要となる。この結果、水酸
基が透明石英ガラス層中に500p、p、ff1.程度
存在することとなり耐熱性が悪くなり好ましくない。
In addition, as a heating source, an oxyhydrogen flame may be considered in this pond, or in this case, the heat source temperature is lower than that of high-frequency discharge or arc discharge, so the particle size and supply rate of silicon dioxide powder 6 described below may be reduced. In addition, it is necessary to suppress the moving speed of the heating source 5 to a low level. As a result, hydroxyl groups of 500 p, p, ff1. This is not preferable since the heat resistance deteriorates.

また、本発明では、第3図に示されるように、型1の天
地を逆にし、開口部を下方に向は下方方向から加熱源5
およびノズル93を成形体3内に挿入して、前述と同様
の操作を行い透明石英ガラス層4を設層してもよい。こ
の場合、成形体3を型」のキャビティ内に嵌合し、型1
に対して取りはずし自在の支持部材11で成形体3を支
持し、この支持部材11を介して駆動ローラ12により
型1を回転させるものであってもよい。
In addition, in the present invention, as shown in FIG.
Then, the nozzle 93 may be inserted into the molded body 3 and the same operation as described above may be performed to form the transparent quartz glass layer 4. In this case, the molded body 3 is fitted into the cavity of the mold, and
The molded body 3 may be supported by a support member 11 which can be freely removed from the mold, and the mold 1 may be rotated by a driving roller 12 via the support member 11.

本発明は上述のように、高温ガス雰囲気中を通過した二
酸化ケイ素粉末の粒子を成形体の内表面に少量ずつ付着
させるものであり、粒子間に気泡を組み込むことかなく
、きわめて均一な透明石英ガラス層を設層することがで
きる。
As described above, the present invention allows particles of silicon dioxide powder that have passed through a high-temperature gas atmosphere to adhere little by little to the inner surface of a molded body, thereby forming extremely uniform transparent quartz without incorporating air bubbles between the particles. A glass layer can be applied.

この透明石英ガラス層は、均一であるという特性ととも
に、実質的に無気泡であるということにより、単結晶の
引き上げ時に、従来法による石英ルツボにみられる気泡
の膨張による破裂がほとんどない。したがって、石英ル
ツボの表面層からの石英の溶出量すなわち、酸素のシリ
コン溶融体中への供給量を正確に制御できる。一般に、
ルツボの表面は、溶融体であるシリコンと接触してシリ
コンと化学作用によりその一部が溶融し、シリコン中に
ケイ素及び酸素が溶質として供給される。
This transparent quartz glass layer has the property of being uniform and is substantially free of bubbles, so that when a single crystal is pulled, there is almost no rupture due to the expansion of bubbles, which is observed in conventional quartz crucibles. Therefore, the amount of quartz eluted from the surface layer of the quartz crucible, that is, the amount of oxygen supplied into the silicon melt can be accurately controlled. in general,
The surface of the crucible comes into contact with silicon, which is a molten body, and a part of it melts due to chemical action with the silicon, supplying silicon and oxygen as solutes into the silicon.

このとき、本発明方法によるルツボの表面は高純度であ
り、しかIJ無気泡なのでケイ素の溶1iiLfflは
安定し、単一結晶引き上げ工程において溶融体に混入す
る酸素濃度制御が容易となり、集積回路素子用基板とし
てのシリコン基板中の酸素濃度を高めて、機械的強度を
高めたり、或いはイントリンシックゲッター効果を目的
とする制御の精度を高めることが出来る。また、ルツボ
の内側層に気泡を含むと、気泡は通常その大きさ及び分
布の点て均一性を欠き、気泡の密集するところはルツボ
内表面か溶出し易くルツボ表面の凹凸によるシリコン溶
融体表面の振動が引き上は単結晶の乱れに大きく影響す
るか、本発明によればかかる影響はない。
At this time, the surface of the crucible according to the method of the present invention is of high purity and there are no bubbles in the IJ, so the silicon melt 1iiLffl is stable, and it is easy to control the oxygen concentration mixed into the melt in the single crystal pulling process, and the integrated circuit element By increasing the oxygen concentration in the silicon substrate used as the substrate, it is possible to increase the mechanical strength or improve the precision of control aimed at the intrinsic getter effect. Furthermore, if the inner layer of the crucible contains air bubbles, the air bubbles usually lack uniformity in size and distribution, and the areas where the air bubbles are concentrated tend to elute from the inner surface of the crucible. The pulling up of vibrations greatly affects the disorder of the single crystal, but according to the present invention, there is no such effect.

更に、ルツボ内面に気泡が存在すると、その気泡表面に
石英ガラス中の金属不純物が濃縮されたとき又は気泡か
石英ルツボ表面の融解で溶液中に好ましくない凹凸部か
露出したときに高温でクリストバライトの結晶核となる
おそれかあるが、本発明によればかかるおそれもない。
Furthermore, if air bubbles are present on the inner surface of the crucible, the metal impurities in the quartz glass may be concentrated on the surface of the air bubbles, or when undesirable irregularities in the solution are exposed due to the air bubbles or the melting of the quartz crucible surface, the cristobalite may be formed at high temperatures. Although there is a possibility that it may become a crystal nucleus, there is no such possibility according to the present invention.

このクリストバライトの形成は表面の金属汚れがその一
因と考えられているが、このクリストバライトは先ずβ
型で形成され、次いでルツボが冷却されたときにα型に
転換して表面から剥離してシリコン単結晶化を乱すが、
本発明によればかかる高純度の透明石英ガラス層の形成
故にクリストバライトの発生が有効に防止できるのは容
易に理解出来る。
The formation of this cristobalite is thought to be caused by metal contamination on the surface, but this cristobalite is first formed by β
Formed in the mold, then when the crucible cools, it converts to the α form and peels off from the surface, disrupting silicon single crystallization.
It is easy to understand that according to the present invention, the generation of cristobalite can be effectively prevented due to the formation of such a highly pure transparent quartz glass layer.

この透明石英ガラス層4における実質的に無気泡である
という基準は、従来の石英ルツボの製造方法による通常
の半導体用透明石英ガラスに比べてその含有する気泡が
極めて少ないということである0通常の半導体用石英ガ
ラスは、肉眼で観察しうる程度の大きさの100μm〜
1 rnrn程度の気泡、及び光を当てて気泡による散
乱によって観察が可能な程度の微小な気泡を大量に含ん
でいる。
The criterion for the transparent quartz glass layer 4 to be substantially bubble-free is that it contains extremely few bubbles compared to ordinary transparent quartz glass for semiconductors manufactured by conventional quartz crucible manufacturing methods. Quartz glass for semiconductors has a size of 100 μm or more that can be observed with the naked eye.
It contains a large amount of bubbles of about 1 rnrn and minute bubbles that can be observed by light scattering by the bubbles.

本発明における無気泡の具体的な例としては、6個の未
使用の石英ルツボを倍率30倍の顕(、”rk、鏡の視
野的8++Jの範囲で、各ルツボにつき内壁部4ケ所、
底部1ケ所の計5ケ所で総計30ケ所観察したところ、
直径20μm以上の各泡か2〜3ケ所でわずかに見られ
る程度である。その1例として、前記30ケ所の測定点
で直径20μm以上の気泡が2個見られたのは1ケ所、
1個見られたのは2ケ所であり、気泡の存在密度は0.
13個/8ml1I(Icdに換算すると約1.6個/
、ff1)であり、柘めて均質性の高い層か可能となる
As a specific example of bubble-free conditions in the present invention, six unused quartz crucibles were placed under a microscope at a magnification of 30 times ("rk, with a mirror field of view of 8++ J, and four locations on the inner wall of each crucible were observed.
We observed a total of 30 locations, including 5 locations, including 1 location on the bottom.
Each bubble with a diameter of 20 μm or more was only slightly visible in 2 to 3 locations. As an example, out of the 30 measurement points mentioned above, there was only one spot where two bubbles with a diameter of 20 μm or more were observed.
There were two locations where one bubble was seen, and the density of bubbles was 0.
13 pieces/8ml1I (approximately 1.6 pieces/in terms of Icd)
, ff1), which makes it possible to create a layer with high homogeneity.

したかって、従来の石英ルツボでは、特に減圧下でのシ
リコン単結晶引き上げにおいて気泡の膨張破裂によりル
ツボ内表面に凹凸が生じ、この凹凸によるシリコン溶融
体表面の振動が引き上げ単結晶の乱れに大きく影響する
が、本発明によればかかる影響はない。
Therefore, in conventional quartz crucibles, when pulling a silicon single crystal under reduced pressure, the inner surface of the crucible becomes uneven due to the expansion and bursting of bubbles, and the vibrations on the surface of the silicon melt due to these unevenness have a large effect on the disorder of the pulled single crystal. However, according to the present invention, there is no such influence.

通常、このような透明石英ガラス層の厚さは少なくとも
0.3n+m以上、実際には0.8〜1nun以上であ
ることか好ましい。
Usually, the thickness of such a transparent quartz glass layer is preferably at least 0.3 n+m, and in fact preferably 0.8 to 1 nun or more.

(実験例) 次に本発明の実験例について説明する。(Experiment example) Next, an experimental example of the present invention will be explained.

実験例1 本発明の方法により、直径1.4インチの石英ルツボ(
本発明試料)を作製した。
Experimental Example 1 A quartz crucible with a diameter of 1.4 inches (
A sample of the present invention) was prepared.

また、従来の方法により、直径14インチの石英ルツボ
(比較試料)を作製した。
In addition, a 14-inch diameter quartz crucible (comparative sample) was prepared using a conventional method.

上記の試料について、本発明に係る透明石英ガラス層の
効果を調べるため、単結晶引き上げによるルツボ内表面
の表面■さの変化を測定した。すなわち、本発明試料お
よび比較試料を使用して110時間の単結晶成長を行っ
た後のルツボの内表面の粗さを測定しな。
Regarding the above sample, in order to examine the effect of the transparent quartz glass layer according to the present invention, changes in the surface thickness of the inner surface of the crucible due to single crystal pulling were measured. That is, the roughness of the inner surface of the crucible was measured after 110 hours of single crystal growth using the inventive sample and the comparative sample.

測定は触針式表面粗さ計〈小板研究所社製)で行った。The measurement was performed using a stylus type surface roughness meter (manufactured by Koita Research Institute).

第4図には、単結晶成長を行った後の本発明試料の表面
粗さ、第5図には、単結晶成長を行った後の比較試料の
表面粗さの測定結果を示す。
FIG. 4 shows the measurement results of the surface roughness of the sample of the present invention after single crystal growth, and FIG. 5 shows the measurement results of the surface roughness of the comparative sample after single crystal growth.

各図から明らかなように、本発明の石英ルツボは使用後
においても最大粗さ33.7μmとかなり平滑な内表面
を維持しているが、従来のルツボではその粗さが本発明
試料の約2.5倍になり、これによって本発明のルツボ
においてはシリコンの溶融面の乱れが生じにくくなるこ
とが判る。
As is clear from each figure, the quartz crucible of the present invention maintains a fairly smooth inner surface with a maximum roughness of 33.7 μm even after use, whereas the roughness of the conventional crucible is approximately that of the sample of the present invention. It becomes 2.5 times as large, which means that in the crucible of the present invention, the molten surface of silicon is less likely to be disturbed.

また、結晶成長終了後のルツボ内表面の点火透の状態を
第6A図および第6B図に示す。
Further, FIGS. 6A and 6B show the state of ignition on the inner surface of the crucible after the completion of crystal growth.

第6A図は本発明試料の内表面、第6B図は比較試料の
内表面を示すものである。これによれば、本発明のルツ
ボの内表面には、クリストバライトの発生か従来のもの
に比較して著しく少なくなることか判る。
FIG. 6A shows the inner surface of the sample of the present invention, and FIG. 6B shows the inner surface of the comparative sample. According to this, it can be seen that the occurrence of cristobalite on the inner surface of the crucible of the present invention is significantly less than that of the conventional crucible.

すなわち、本発明の石英ルツボの内面は極めて均質であ
り、結晶化反応の核となる突起等が少ないため、クリス
トバライトによる点失透の発生が少ない。
That is, the inner surface of the quartz crucible of the present invention is extremely homogeneous and has few protrusions that serve as nuclei for crystallization reactions, so that point devitrification due to cristobalite is less likely to occur.

実験例2 実験例1と同様に製造した本発明試料および比較試料を
曲用した場合のシリコン単結晶製造の成績を示す。
Experimental Example 2 The results of silicon single crystal production when using the present invention sample and comparative sample produced in the same manner as Experimental Example 1 are shown.

製造条件は、アルゴン雰囲気下で減圧(10mb)で、
引上げ速度が約0.5IiIn/分、ルツボ回転が1 
Or、Lm、 (種結晶と逆回転)で直径100mm、
長さ90c11]の単結晶を製造しな(1バツチの操業
時間は約40時間)。
The manufacturing conditions were under reduced pressure (10 mb) under an argon atmosphere,
Pulling speed is approximately 0.5IiIn/min, crucible rotation is 1
Or, Lm, (reverse rotation with seed crystal) with a diameter of 100 mm,
A single crystal with a length of 90 c11] was produced (the operating time for one batch was about 40 hours).

製造した単結晶インゴットについてその単結晶育成成功
率を求めた。その結果を表1に示す。
The single crystal growth success rate of the manufactured single crystal ingot was determined. The results are shown in Table 1.

ここで、(li−結晶育成成功率は単結晶インゴットの
全引き上t−y数(表中で「繰り返し回数」と表示)の
中で、単結晶育成不成功(引き上かったインゴットに−
・部!1結晶していない部分を含むもの)のインゴット
を除いたインゴットの数のパーセント表示で示した。
Here, (li-crystal growth success rate is the total number of pulling up ty of single crystal ingots (indicated as "number of repetitions" in the table), failure rate of single crystal growth (li-crystal growth success rate)
・Part! It is expressed as a percentage of the number of ingots excluding those containing non-crystallized portions.

表1 単結晶育成成功率 表1より、本発明°による石英ルツボは、常に安定した
単結晶製造をもならずことか明らかである。
Table 1 Single crystal growth success rate From Table 1, it is clear that the quartz crucible according to the present invention does not always produce stable single crystals.

これに対し、比較試料で単結晶育成成功率か低いのは、
石英ルツボの表面の凹凸および生成したクリストバライ
トの剥離か原因と考えられる。
On the other hand, the success rate of single crystal growth in the comparative samples is low.
This is thought to be caused by the unevenness of the surface of the quartz crucible and the peeling of the generated cristobalite.

次に、上記のシリコン単結晶の引き上げに用いた、本発
明により製造した石英ルツボおよび従来の方法により製
造した石英ルツボの透明石英ガラス層中の直径20μm
以上の気泡数を表2に示し、また、直胴部と底部の縦断
面の状態を第7図および第8図に示す。
Next, a diameter of 20 μm in the transparent quartz glass layer of the quartz crucible manufactured according to the present invention and the quartz crucible manufactured by the conventional method used for pulling the silicon single crystal described above was
The number of bubbles mentioned above is shown in Table 2, and the state of the vertical cross section of the straight body part and the bottom part is shown in FIGS. 7 and 8.

表2 単結晶引き上げ後の石英ルツボの物性*上記の気
泡数は6個の石英ルツボを倍率30倍の顕微鏡の視野的
8−の範囲で、1個のルツボにつき内壁部4ケ所、底部
1ケ所の計5ケ所で総計30ケ所にて測定した。
Table 2 Physical properties of quartz crucible after single crystal pulling Measurements were taken at a total of 30 locations, including 5 locations.

ここで注意を要するのは、石英ルツボは約1450℃の
高温で長時間、しかも減圧状態で加熱されているなめ、
たとえその使用前に無気泡とみなされても、この個々の
気泡か石英ガラスの軟化のために膨張し、観察か容易に
なることである。すなわち、石英ルツボ製造時に石英ガ
ラス−層に溶封されている気泡は、大気圧下の雰囲気ガ
ス(石英ルツボ製造か空気中で行われる場合には空気)
で充填されており、高温度減圧下では当然ながら膨張す
る。しかしながら、表2および第7A図、第7B図に示
されるように本発明による石英ルツボは、使用後におい
てもその内表面に明瞭な無気泡の透明石英ガラス層を有
している。一方、従来法による石英ルツボは、シリコン
単結晶の引き上げ前には内表面にある程度無気泡の薄い
透明石英ガラス層を有しているか、シリコン単結晶の引
き上げ時に気泡か膨張し、これらが相互に融合して■大
化し、このため、シリコン単結晶の引き上げ後の石英ル
ツボ内表面に明瞭な気泡の密集状7gかみられる(表2
および第8A図、第8B図)。
What you need to be careful about here is that quartz crucibles are heated at a high temperature of about 1450°C for a long time and under reduced pressure.
Even if it is considered bubble-free before its use, the individual bubbles will expand due to the softening of the quartz glass and will be easier to observe. In other words, the bubbles that are melted and sealed in the quartz glass layer during quartz crucible manufacturing are caused by atmospheric gas at atmospheric pressure (or air if quartz crucible manufacturing is performed in air).
Naturally, it expands under high temperature and reduced pressure. However, as shown in Table 2 and FIGS. 7A and 7B, the quartz crucible according to the present invention has a clearly bubble-free transparent quartz glass layer on its inner surface even after use. On the other hand, quartz crucibles made using the conventional method either have a thin transparent quartz glass layer on the inner surface that is bubble-free to some extent before pulling the silicon single crystal, or bubbles expand during the pulling of the silicon single crystal, and these bubbles interact with each other. As a result, 7g of clearly dense bubbles can be seen on the inner surface of the quartz crucible after pulling the silicon single crystal (Table 2).
and Figures 8A and 8B).

〔発明の効果〕〔Effect of the invention〕

本発明は、高温ガス雰囲気中を通過した二酸化ケイ素粉
末の粒子をルツボ内表面に付着させ、かつ高温ガス雰囲
気により石英ルツボと当該粒子を完全に溶融密着させる
ようにしなので、実質的に無気泡の水酸基の少ないほぼ
純粋成分の透明石英ガラス層をルツボ内表面に一体融合
的に厚さ調節可能に設層することかできる。
In the present invention, particles of silicon dioxide powder that have passed through a high-temperature gas atmosphere are attached to the inner surface of the crucible, and the high-temperature gas atmosphere completely melts and adheres the particles to the quartz crucible, so that the particles are substantially bubble-free. A transparent quartz glass layer of almost pure components with few hydroxyl groups can be integrally provided on the inner surface of the crucible so that its thickness can be adjusted.

このため、単結晶の引き上は時にルツボの内表面の凹凸
の発生、あるいはクリストバライトの発生がほとんどな
く、安定した単結晶の引き上げが可能となる。
Therefore, when pulling a single crystal, there is almost no occurrence of irregularities on the inner surface of the crucible or the generation of cristobalite, and stable single crystal pulling is possible.

また、本発明は、その作業性がきわめて良好であり、従
来法に比べ特性の優れた石英ルツボを容易に製造できる
とともに、透明石英ガラス層の設層厚み等の制御も正確
になし得るものである。
In addition, the present invention has extremely good workability, and it is possible to easily manufacture a quartz crucible with superior characteristics compared to conventional methods, and it is also possible to precisely control the thickness of the transparent quartz glass layer. be.

さらに、本発明においては、透明層中に不純物、空気の
混入がないので上記の種々の効果を得るために材料に要
求される純度は、透明石英ガラス層設層用の二酸化ケイ
素粉末のみ高純度とすればよく、石英ルツボの製造コス
トの低減が可能となる。
Furthermore, in the present invention, since there are no impurities or air mixed in the transparent layer, the purity required for the material in order to obtain the various effects described above is only high purity silicon dioxide powder for forming the transparent quartz glass layer. Therefore, it is possible to reduce the manufacturing cost of the quartz crucible.

またさらに、単結晶引き上げ時のシリコン融液中への石
英溶解量が一定となりその制御か容易で高純度のシリコ
ン単結晶の引き上げか可能となる。
Furthermore, the amount of quartz dissolved in the silicon melt during pulling of the single crystal becomes constant, and it is easy to control it, making it possible to pull a high-purity silicon single crystal.

また、本発明の石英ルツボは、単結晶の引き上げ時にル
ツボの内表面の凹凸の発生、あるいはクリストバライト
の発生がほとんどなく、安定した引き上げが可能となる
ものである。
Further, the quartz crucible of the present invention hardly causes any unevenness on the inner surface of the crucible or the generation of cristobalite during pulling of a single crystal, and thus enables stable pulling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための製造装置
の縦断面図、第2図は、本発明の一実施例における炭素
電極を説明するための製造装置の横断面図、第3図は、
本発明の他の実施例を説明するための製造装置の縦断面
図、第4図は、本発明による石英ルツボの単結晶成長後
の内表面の租さを示すグラフ、第5図は、従来法による
石英ルツボの単結晶成長後の内表面の粗さを示すグラフ
、第6A図および第6B図は単結晶成長後のルツボ内表
面の点失透の状態を示す図面であり、第6A図は本発明
のルツボの内表面を、第6B図は従来のルツボの内表面
をそれぞれ示し、第7A図および第7B図は本発明のル
ツボの壁の縦断面の状態を示す図面、第8A図および第
8B図は従来のルツボの壁の縦断面の状態を示す図面で
ある。 1・・・型、2・・・支持回転軸、3・・・成形体、4
・・・透明石英ガラス1a、5・・・加熱源、51,5
2゜53・・・炭素電極、6・・・二酸化ケイ素粉末、
71・・・閉塞板、75・・・開口、8・・・高温ガス
雰囲気、9・・・供給タンク、91・・・撹拌プロペラ
、92・・・定量フィーダー、93・・・ノズル、10
・・・外部電源、11・・・支持部材、12・・・駆動
ローラ。 出頭人代理人  石  川  泰  男第  1  図 第  2  図 U 第3図 1mm 測定長〔mm〕 最大粗さ: 33.7μm 第  4  図 本発明による石英ルツボの単結晶成長後の内表面粗さm
m 測定長(: mm ) 最大粗さ二85μlη 第  5  図 従来法による石英ルツボの単結晶成長後の内表面粗さ第
  6A  ll] 本発明による石英ルツボの[Ii結晶成長後の内表面第
6B図 従来法による石英ルツボのI11結晶成長後の内表面第
7A図 本発明による石英ルツボの縦断面(直t+1ii1部)
外側 第7B図 本発明による石英ルツボの縦断面(底部)第  8A 
図 従来法による石英ルツボの7t!升面(直胴部)内4i
jl 外側 第8B図
FIG. 1 is a longitudinal cross-sectional view of a manufacturing apparatus for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a manufacturing apparatus for explaining a carbon electrode according to an embodiment of the present invention. Figure 3 is
FIG. 4 is a graph showing the roughness of the inner surface of the quartz crucible after single crystal growth in the quartz crucible according to the present invention, and FIG. 6A and 6B are graphs showing the roughness of the inner surface of a quartz crucible after single crystal growth by the method, and FIGS. 6A and 6B are drawings showing the state of point devitrification on the inner surface of the crucible after single crystal growth. 6B shows the inner surface of the crucible of the present invention, FIG. 6B shows the inner surface of the conventional crucible, FIGS. 7A and 7B are drawings showing the longitudinal cross-section of the wall of the crucible of the present invention, and FIG. 8A and FIG. 8B is a drawing showing a longitudinal section of a wall of a conventional crucible. DESCRIPTION OF SYMBOLS 1... Mold, 2... Support rotating shaft, 3... Molded object, 4
...Transparent quartz glass 1a, 5...Heating source, 51,5
2゜53...carbon electrode, 6...silicon dioxide powder,
71... Closure plate, 75... Opening, 8... High temperature gas atmosphere, 9... Supply tank, 91... Stirring propeller, 92... Quantitative feeder, 93... Nozzle, 10
. . . External power supply, 11 . . . Support member, 12 . . . Drive roller. Representative Yasushi Ishikawa Figure 1 Figure 2 Figure U Figure 3 1mm Measurement length [mm] Maximum roughness: 33.7μm Figure 4 Inner surface roughness m of the quartz crucible according to the present invention after single crystal growth
m Measurement length (: mm) Maximum roughness 285μlη Fig. 5 Inner surface roughness after single crystal growth of a quartz crucible according to the conventional method No. 6A ll] [Ii Inner surface roughness after crystal growth of a quartz crucible according to the present invention No. 6B Figure 7A: Inner surface of quartz crucible after I11 crystal growth according to conventional method
Outside Figure 7B Vertical section (bottom) of the quartz crucible according to the present invention No. 8A
Figure: 7 tons of quartz crucible made by conventional method! 4i inside square side (straight body part)
jl Outside Figure 8B

Claims (1)

【特許請求の範囲】 1、結晶性および非結晶性の二酸化ケイ素粉末のうち少
なくとも1種の二酸化ケイ素粉末を加熱処理して形成し
た半透明の石英ルツボを回転式の型内に嵌合し、前記型
を回転しながら前記石英ルツボ内に加熱源を挿入して石
英ルツボ内に高温ガス雰囲気を作り、この高温ガス雰囲
気中に結晶性および非結晶性の二酸化ケイ素粉末のうち
少なくとも1種の二酸化ケイ素粉末を少量ずつ通過させ
て二酸化ケイ素粉末の少なくとも一部を溶融せしめ、こ
の溶融粉末を前記石英ルツボ内表面上に飛散せしめて付
着させ、実質的に無気泡の透明石英ガラス層を前記石英
ルツボ内表面上に一体融合的に所定の厚さに形成するこ
とを特徴とする石英ルツボの製造方法。 2、前記石英ルツボの開口部を部分的に閉塞してその周
辺部をリング状に開口し、前記高温ガス雰囲気の高温ガ
スを前記石英ルツボ内表面に沿って移動せしめることを
特徴とする特許請求の範囲第1項記載の石英ルツボの製
造方法。 3、加熱源として炭素電極間のアーク放電を用いること
を特徴とする特許請求の範囲第1項又は第2項記載の石
英ルツボの製造方法。 4、炭素電極の数が3本であることを特徴とする特許請
求の範囲第3項記載の石英ルツボの製造方法。 5、前記二酸化ケイ素粉末の粒子の大きさが30〜1,
000μm、供給速度が5〜300g/分であることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
1項に記載の石英ルツボの製造方法。 6、回転式の型を回転しながら前記型内に結晶性および
非結晶性の二酸化ケイ素粉末のうち少なくとも1種の二
酸化ケイ素粉末で構成された未溶融の石英ルツボ用予備
成形体を形成し、当該予備成形体内に加熱源を挿入して
予備成形体内に高温ガス雰囲気を作り当該予備成形体を
内部より高温加熱して溶融ガラス化すると同時に、この
高温ガス雰囲気中に結晶性および非結晶性の二酸化ケイ
素粉末のうち少なくとも1種の二酸化ケイ素粉末を少量
ずつ通過させて二酸化ケイ素粉末の少なくとも一部を溶
融せしめ、この溶融粉末を前記予備成形体内表面上に飛
散せしめて付着させ、実質的に無気泡の透明石英ガラス
層を前記予備成形体内表面上に一体融合的に所定の厚さ
に形成することを特徴とする石英ルツボの製造方法。 7、前記予備成形体の開口部を部分的に閉塞してその周
辺部をリング状に開口し、前記高温ガス雰囲気の高温ガ
スを前記予備成形体内表面に沿って移動せしめることを
特徴とする特許請求の範囲第6項記載の石英ルツボの製
造方法。 8、加熱源として炭素電極間のアーク放電を用いること
を特徴とする特許請求の範囲第6項又は第7項記載の石
英ルツボの製造方法。 9、炭素電極の数が3本であることを特徴とする特許請
求の範囲第8項記載の石英ルツボの製造方法。 10、前記二酸化ケイ素粉末の粒子の大きさが30〜1
,000μm、供給速度が5〜300g/分であること
を特徴とする特許請求の範囲第6項乃至第9項のいずれ
か1項に記載の石英ルツボの製造方法。 11、結晶性および非結晶性の二酸化ケイ素粉末のうち
少なくとも1種の二酸化ケイ素粉末を加熱処理して形成
した半透明の石英ルツボを回転式の型内に嵌合し、前記
型を回転しながら前記石英ルツボ内に加熱源を挿入して
石英ルツボ内に高温ガス雰囲気を作り、この高温ガス雰
囲気中に結晶性および非結晶性の二酸化ケイ素粉末のう
ち少なくとも1種の二酸化ケイ素粉末を少量ずつ通過さ
せて二酸化ケイ素粉末の少なくとも一部を溶融せしめ、
この溶融粉末を前記石英ルツボ内表面上に飛散せしめて
付着させ、実質的に無気泡の透明石英ガラス層を所定の
厚さで前記石英ルツボ内表面上に一体融合的に有するこ
とを特徴とする石英ルツボ。 12、回転式の型を回転しながら前記型内に結晶性およ
び非結晶性の二酸化ケイ素粉末のうち少なくとも1種の
二酸化ケイ素粉末で構成された未溶融の石英ルツボ用予
備成形体を形成し、当該予備成形体内に加熱源を挿入し
て予備成形体内に高温ガス雰囲気を作り当該予備成形体
を内部より高温加熱して溶融ガラス化すると同時に、こ
の高温ガス雰囲気中に結晶性および非結晶性の二酸化ケ
イ素粉末のうち少なくとも1種の二酸化ケイ素粉末を少
量ずつ通過させて二酸化ケイ素粉末の少なくとも一部を
溶融せしめ、この溶融粉末を前記予備成形体内表面上に
飛散せしめて付着させ、実質的に無気泡の透明石英ガラ
ス層を所定の厚さで前記予備成形体内表面上に一体融合
的に有することを特徴とする石英ルツボ。
[Claims] 1. A translucent quartz crucible formed by heat-treating at least one kind of silicon dioxide powder among crystalline and amorphous silicon dioxide powder is fitted into a rotary mold, A heating source is inserted into the quartz crucible while rotating the mold to create a high-temperature gas atmosphere in the quartz crucible, and at least one kind of dioxide from crystalline and non-crystalline silicon dioxide powder is added to the high-temperature gas atmosphere. Silicon powder is passed little by little to melt at least a portion of the silicon dioxide powder, and the molten powder is scattered and deposited on the inner surface of the quartz crucible, thereby forming a substantially bubble-free transparent quartz glass layer over the quartz crucible. A method for manufacturing a quartz crucible, characterized by forming the crucible integrally on the inner surface to a predetermined thickness. 2. A patent claim characterized in that the opening of the quartz crucible is partially closed and a peripheral portion thereof is opened in a ring shape, so that the high temperature gas in the high temperature gas atmosphere is moved along the inner surface of the quartz crucible. A method for manufacturing a quartz crucible according to item 1. 3. The method for manufacturing a quartz crucible according to claim 1 or 2, characterized in that arc discharge between carbon electrodes is used as the heating source. 4. The method for manufacturing a quartz crucible according to claim 3, wherein the number of carbon electrodes is three. 5. The particle size of the silicon dioxide powder is 30 to 1,
The method for manufacturing a quartz crucible according to any one of claims 1 to 4, characterized in that the quartz crucible has a diameter of 0.000 μm and a feeding rate of 5 to 300 g/min. 6. Forming an unmolten quartz crucible preform made of at least one type of silicon dioxide powder among crystalline and amorphous silicon dioxide powders in the rotary mold while rotating the rotary mold; A heating source is inserted into the preform to create a high-temperature gas atmosphere inside the preform, and the preform is heated from the inside to melt and vitrify. At least one type of silicon dioxide powder among the silicon dioxide powders is passed through the silicon dioxide powder little by little to melt at least a portion of the silicon dioxide powder, and the molten powder is scattered and deposited on the surface of the preform, so that it is substantially free of silicon dioxide powder. A method for manufacturing a quartz crucible, comprising forming a transparent quartz glass layer of bubbles to a predetermined thickness on the inner surface of the preformed body in an integral manner. 7. A patent characterized in that the opening of the preform is partially closed and the peripheral part thereof is opened in a ring shape, so that the high-temperature gas in the high-temperature gas atmosphere is moved along the surface of the preform. A method for manufacturing a quartz crucible according to claim 6. 8. A method for manufacturing a quartz crucible according to claim 6 or 7, characterized in that arc discharge between carbon electrodes is used as the heating source. 9. The method for manufacturing a quartz crucible according to claim 8, wherein the number of carbon electrodes is three. 10. The particle size of the silicon dioxide powder is 30-1
. , 000 μm, and the feeding rate is 5 to 300 g/min. 11. A translucent quartz crucible formed by heat treating at least one type of silicon dioxide powder among crystalline and non-crystalline silicon dioxide powders is fitted into a rotary mold, and while the mold is rotated, A heating source is inserted into the quartz crucible to create a high-temperature gas atmosphere in the quartz crucible, and at least one type of silicon dioxide powder among crystalline and amorphous silicon dioxide powder is passed little by little into the high-temperature gas atmosphere. melting at least a portion of the silicon dioxide powder;
The molten powder is scattered and adhered onto the inner surface of the quartz crucible, and a substantially bubble-free transparent quartz glass layer is integrally formed on the inner surface of the quartz crucible with a predetermined thickness. quartz crucible. 12. Forming an unmolten quartz crucible preform made of at least one kind of silicon dioxide powder among crystalline and amorphous silicon dioxide powders in the rotary mold while rotating the rotary mold; A heating source is inserted into the preform to create a high-temperature gas atmosphere inside the preform, and the preform is heated from the inside to melt and vitrify. At least one type of silicon dioxide powder among the silicon dioxide powders is passed through the silicon dioxide powder little by little to melt at least a portion of the silicon dioxide powder, and the molten powder is scattered and deposited on the surface of the preform, so that it is substantially free of silicon dioxide powder. A quartz crucible characterized in that a transparent quartz glass layer of bubbles is integrally formed on the inner surface of the preformed body at a predetermined thickness.
JP30462487A 1987-12-03 1987-12-03 Method of manufacturing quartz crucible Granted JPH01148718A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30462487A JPH01148718A (en) 1987-12-03 1987-12-03 Method of manufacturing quartz crucible
US07/278,591 US4935046A (en) 1987-12-03 1988-12-01 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
EP19880120166 EP0319031B1 (en) 1987-12-03 1988-12-02 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
DE3888797T DE3888797T2 (en) 1987-12-03 1988-12-02 Process for the production of a quartz glass vessel for semiconductor single crystal growth.
US07/376,136 US4956208A (en) 1987-12-03 1989-07-06 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30462487A JPH01148718A (en) 1987-12-03 1987-12-03 Method of manufacturing quartz crucible

Publications (2)

Publication Number Publication Date
JPH01148718A true JPH01148718A (en) 1989-06-12
JPH0422861B2 JPH0422861B2 (en) 1992-04-20

Family

ID=17935266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30462487A Granted JPH01148718A (en) 1987-12-03 1987-12-03 Method of manufacturing quartz crucible

Country Status (1)

Country Link
JP (1) JPH01148718A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046198A (en) * 1990-04-25 1992-01-10 Nkk Corp Crucible for production of silicon single crystal and method for making partition in crucible
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling silicon single crystal and manufacturing method thereof
JPH0826759A (en) * 1994-07-19 1996-01-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible, manufacturing method and manufacturing apparatus thereof
WO1999061685A1 (en) * 1998-05-25 1999-12-02 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling silicon monocrystal and method of manufacturing the same
WO2000006811A1 (en) * 1998-07-31 2000-02-10 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal and process for producing the same
EP1094039A1 (en) * 1999-04-06 2001-04-25 Nanwa Quartz, Inc. Method for manufacturing quartz glass crucible
JP2001233629A (en) * 1999-04-06 2001-08-28 Nanwa Kuorutsu:Kk Method of producing quartz glass crucible
EP1344751A2 (en) * 2002-03-14 2003-09-17 Japan Super Quartz Corporation Quartz glass crucible and process and apparatus for producing it by arc fusion
JP2008081373A (en) * 2006-09-28 2008-04-10 Covalent Materials Corp Silica glass crucible and method for producing silica glass crucible
WO2009069773A1 (en) * 2007-11-30 2009-06-04 Japan Super Quartz Corporation Method and apparatus for manufacturing quartz glass crucible
US7587912B2 (en) 2003-02-28 2009-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass crucible for use in pulling silicon single crystal and quartz glass crucible produced by said method
EP2113491A1 (en) 2008-04-30 2009-11-04 Japan Super Quartz Corporation Crucible lift device and method for taking-out crucible
EP2182099A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Silica glass crucible having multilayered structure
WO2011019012A1 (en) * 2009-08-12 2011-02-17 ジャパンスーパークォーツ株式会社 Production device for silica glass crucible and production method for silica glass crucible
US7905112B2 (en) 2002-08-15 2011-03-15 Japan Super Quartz Corporation Reforming process of quartz glass crucible
CN102336527A (en) * 2011-09-15 2012-02-01 江苏华尔光电材料股份有限公司 Device and method for coating quartz crucible barium hydroxide
WO2020145378A1 (en) * 2019-01-11 2020-07-16 株式会社Sumco Device and method for producing silica glass crucible

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482567B2 (en) * 1998-05-25 2010-06-16 信越石英株式会社 Method for producing quartz glass crucible for pulling silicon single crystal
CN102224113B (en) 2009-04-28 2013-11-13 信越石英株式会社 Silica vessel and process for producing same
JP4903288B2 (en) 2009-05-26 2012-03-28 信越石英株式会社 Silica container and method for producing the same
JP4922355B2 (en) 2009-07-15 2012-04-25 信越石英株式会社 Silica container and method for producing the same
JP4951040B2 (en) 2009-08-05 2012-06-13 信越石英株式会社 Silica container and method for producing the same
JP4969632B2 (en) 2009-10-14 2012-07-04 信越石英株式会社 Silica powder and silica container and method for producing them
JP5250097B2 (en) 2011-12-12 2013-07-31 信越石英株式会社 Silica container for pulling single crystal silicon and manufacturing method thereof
EP2703526A4 (en) 2012-03-23 2014-12-31 Shinetsu Quartz Prod SILICON CONTAINER FOR SINGLE CRYSTALLINE SILICON DRAWING AND METHOD FOR MANUFACTURING THE SAME
JP5595615B2 (en) 2012-05-16 2014-09-24 信越石英株式会社 Silica container for pulling single crystal silicon and manufacturing method thereof
KR101645663B1 (en) 2013-04-08 2016-08-04 신에쯔 세끼에이 가부시키가이샤 Silica vessel for pulling up single crystal silicon and process for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsules for molding resin dentures and crowns
US4416680A (en) * 1980-04-15 1983-11-22 Heraeus Quarzschmelze Gmbh Method of making quartz glass crucibles, and apparatus carrying out the method
JPS5934659A (en) * 1982-08-20 1984-02-25 Toshiba Corp Solid-state image pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416680A (en) * 1980-04-15 1983-11-22 Heraeus Quarzschmelze Gmbh Method of making quartz glass crucibles, and apparatus carrying out the method
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsules for molding resin dentures and crowns
JPS5934659A (en) * 1982-08-20 1984-02-25 Toshiba Corp Solid-state image pickup device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046198A (en) * 1990-04-25 1992-01-10 Nkk Corp Crucible for production of silicon single crystal and method for making partition in crucible
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling silicon single crystal and manufacturing method thereof
JPH0826759A (en) * 1994-07-19 1996-01-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible, manufacturing method and manufacturing apparatus thereof
WO1999061685A1 (en) * 1998-05-25 1999-12-02 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling silicon monocrystal and method of manufacturing the same
WO2000006811A1 (en) * 1998-07-31 2000-02-10 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal and process for producing the same
US6280522B1 (en) 1998-07-31 2001-08-28 Shin-Etsu Quartz Products Co. Ltd. Quartz glass crucible for pulling silicon single crystal and production process for such crucible
EP1094039A1 (en) * 1999-04-06 2001-04-25 Nanwa Quartz, Inc. Method for manufacturing quartz glass crucible
JP2001233629A (en) * 1999-04-06 2001-08-28 Nanwa Kuorutsu:Kk Method of producing quartz glass crucible
EP1094039A4 (en) * 1999-04-06 2009-01-28 Nanwa Quartz Inc Method for manufacturing quartz glass crucible
EP1344751A2 (en) * 2002-03-14 2003-09-17 Japan Super Quartz Corporation Quartz glass crucible and process and apparatus for producing it by arc fusion
US7905112B2 (en) 2002-08-15 2011-03-15 Japan Super Quartz Corporation Reforming process of quartz glass crucible
US7587912B2 (en) 2003-02-28 2009-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass crucible for use in pulling silicon single crystal and quartz glass crucible produced by said method
JP2008081373A (en) * 2006-09-28 2008-04-10 Covalent Materials Corp Silica glass crucible and method for producing silica glass crucible
US8196430B2 (en) 2007-11-30 2012-06-12 Japan Super Quartz Corporation Method and apparatus for manufacturing vitreous silica crucible
WO2009069773A1 (en) * 2007-11-30 2009-06-04 Japan Super Quartz Corporation Method and apparatus for manufacturing quartz glass crucible
JP5541777B2 (en) * 2007-11-30 2014-07-09 株式会社Sumco Method and apparatus for producing quartz glass crucible
EP2113491A1 (en) 2008-04-30 2009-11-04 Japan Super Quartz Corporation Crucible lift device and method for taking-out crucible
US8141389B2 (en) 2008-04-30 2012-03-27 Japan Super Quartz Corporation Crucible lift device and method for taking-out crucible
EP2182099A1 (en) 2008-10-31 2010-05-05 Japan Super Quartz Corporation Silica glass crucible having multilayered structure
WO2011019012A1 (en) * 2009-08-12 2011-02-17 ジャパンスーパークォーツ株式会社 Production device for silica glass crucible and production method for silica glass crucible
KR101331181B1 (en) * 2009-08-12 2013-11-20 쟈판 스파 쿼츠 가부시키가이샤 Production device for silica glass crucible and production method for silica glass crucible
US8739573B2 (en) 2009-08-12 2014-06-03 Japan Super Quartz Corporation Apparatus and method for manufacturing vitreous silica crucible
JP5713903B2 (en) * 2009-08-12 2015-05-07 株式会社Sumco Silica glass crucible manufacturing apparatus and silica glass crucible manufacturing method
CN102336527A (en) * 2011-09-15 2012-02-01 江苏华尔光电材料股份有限公司 Device and method for coating quartz crucible barium hydroxide
WO2020145378A1 (en) * 2019-01-11 2020-07-16 株式会社Sumco Device and method for producing silica glass crucible
US12091346B2 (en) 2019-01-11 2024-09-17 Sumco Corporation Apparatus and method for manufacturing silica glass crucible

Also Published As

Publication number Publication date
JPH0422861B2 (en) 1992-04-20

Similar Documents

Publication Publication Date Title
JPH01148718A (en) Method of manufacturing quartz crucible
US4935046A (en) Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
JP3764776B2 (en) Quartz glass crucible for pulling single crystal and manufacturing method thereof
US7118789B2 (en) Silica glass crucible
JP2933404B2 (en) Quartz glass crucible for pulling silicon single crystal and its manufacturing method
JP2811290B2 (en) Quartz glass crucible for pulling silicon single crystal
EP1094039B1 (en) Method for manufacturing quartz glass crucible
JPH01148782A (en) Quartz crucible for pulling single crystals
US6143073A (en) Methods and apparatus for minimizing white point defects in quartz glass crucibles
US20100139549A1 (en) Quartz Glass Crucible for Pulling Silicon Single Crystal and Method of Manufacturing Quartz Glass Crucible for Pulling Silicon Single Crystal
WO2000006811A1 (en) Quartz glass crucible for pulling up silicon single crystal and process for producing the same
EP1024118A2 (en) Large diameter quartz glass crucible for pulling up single crystalline silicon
JP2011111389A (en) Fusion process for producing sheet glass
JP2001233629A (en) Method of producing quartz glass crucible
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
JPH0692779A (en) Quartz crucible for pulling up single crystal
JPH01148783A (en) Quartz crucible for pulling up single crystal
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4138959B2 (en) Large diameter quartz glass crucible for pulling silicon single crystal and method for producing the same
TWI784314B (en) Manufacturing method of single crystal silicon
JP2002068841A (en) High purity carbon electrode for arc melting
JP4140868B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
KR960006262B1 (en) Silicon single crystal manufacturing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 16