JPH01148469A - Narrow gap submerged arc welding method - Google Patents
Narrow gap submerged arc welding methodInfo
- Publication number
- JPH01148469A JPH01148469A JP30802287A JP30802287A JPH01148469A JP H01148469 A JPH01148469 A JP H01148469A JP 30802287 A JP30802287 A JP 30802287A JP 30802287 A JP30802287 A JP 30802287A JP H01148469 A JPH01148469 A JP H01148469A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- narrow gap
- submerged arc
- welded
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は狭開先サブマージアーク溶接方法に関し、詳細
には、比較的に大径の輪状ないしは円筒状の被溶接物、
例えば、溶接組立型の大型クランク軸等の多パス・多1
it9接に用いて好適な狭開先サブマージアーク溶接方
法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a narrow gap submerged arc welding method, and more particularly, to a relatively large-diameter ring-shaped or cylindrical workpiece,
For example, multi-pass/multi-pass welding large crankshafts, etc.
The present invention relates to a narrow gap submerged arc welding method suitable for use in IT9 welding.
周知のように、サブマージアーク溶接は、大電流溶接が
自動溶接にて安定して行い得、かつ溶込みが深いので、
比較的に大径の加工物の狭開先溶接に適用されている。As is well known, in submerged arc welding, high current welding can be performed stably by automatic welding, and penetration is deep.
It is applied to narrow gap welding of relatively large diameter workpieces.
そして、大径の輪状ないしは厚肉円筒状の被溶接物等を
狭開先サブマージアーク溶接するには、通常、これら被
溶接物を回転させながら連続的に自動溶接する多パス・
多層溶接方法、すなわち、対の被溶接物の対向する被接
合面間に形成された開先の一方の壁と他方の壁との間に
溶極を配し、対の被溶接物を回転させて周溶接し、−回
転毎に溶極を両開先壁間でシフトさせて連続的に溶接し
、開先内に積層される多パス・多層の溶接ビードにて充
填して溶接する方法が用いられている。In order to perform narrow-gap submerged arc welding on large-diameter ring-shaped or thick-walled cylindrical objects, it is common to perform multi-pass welding, in which the objects to be welded are automatically welded continuously while rotating.
A multilayer welding method, in which a melting electrode is placed between one wall and the other wall of a groove formed between opposing surfaces of a pair of workpieces, and the workpieces are rotated. There is a method of welding by circumferentially welding, shifting the melt electrode between both groove walls with each rotation, and welding continuously by filling the groove with a multi-pass, multi-layer weld bead that is laminated inside the groove. It is used.
第2図および第3図は従来の多パス・多層溶接方法の概
念説明図であり、第2図は開先に配された溶極、すなわ
ち溶接ワイヤと、溶接ビードの積層状況を説明する開先
部の断面図で、第3図は溶極のシフトによる溶接ビード
の形成状況を説明する開先部の部分平面図である。Figures 2 and 3 are conceptual explanatory diagrams of the conventional multi-pass/multilayer welding method. FIG. 3 is a cross-sectional view of the tip, and FIG. 3 is a partial plan view of the groove portion illustrating the formation of a weld bead due to the shift of the melt electrode.
第2図および第3図において、(1)と(2)は対をな
す被溶接物で、ここでは被溶接部の近傍を示す。In FIGS. 2 and 3, (1) and (2) are a pair of objects to be welded, and here the vicinity of the welded portion is shown.
(3)は狭開先であって、該狭開先(3)は対の被溶接
吻(1)(2)の対向する被接合面間に形成されたもの
である。(4)は溶接ワイヤであって、該溶接ワイヤ(
4)は図示外の溶接機本体より連続的に供給される。(3) is a narrow gap, and the narrow gap (3) is formed between the opposing weld surfaces of the pair of welded proboscis (1) and (2). (4) is a welding wire, the welding wire (
4) is continuously supplied from the welding machine main body (not shown).
(5)は保持器であって、該保持器(5)は、溶接ワイ
ヤ(4)を保持して給電すると共に、該溶接ワイヤ(4
)の先端、すなわち溶極を図中の(P)点を中心に狭開
先(3)の両壁間でシフトさせるものである。(5) is a holder, and the holder (5) holds the welding wire (4) and supplies power to the welding wire (4).
), that is, the melt electrode, is shifted between both walls of the narrow groove (3) around point (P) in the figure.
(6)は溶接ビードであって、第2図では該溶接ビード
(6)の断面積層状態を模式的に示し、第3図ではシフ
ト部分の俯緻状態を示す、なお、ここでは2パス・多層
溶接によるものを例示した。(6) is a weld bead, and FIG. 2 schematically shows the cross-sectional layered state of the weld bead (6), and FIG. 3 shows the elevated state of the shifted part. An example using multilayer welding is shown.
狭開先(3)は、被溶接物(1)(2)を回転させなが
ら該狭開先(3)の一方の壁側を一回転周溶接し、続い
て保持器(5)にて溶接ワイヤ(4)を狭開先(3)の
他の一方の壁側にシフトさせて一回転周溶接することで
一部をオーバーラツプしながら積層させる溶接ビード(
6)にて充填される。なお、シフト部は一回転毎に周方
向の位相をずらし、その前のシフトによるビード上に完
全にラップしないよう設定される。The narrow gap (3) is made by welding one wall side of the narrow gap (3) one turn while rotating the objects to be welded (1) and (2), and then welding with the retainer (5). By shifting the wire (4) to the other wall side of the narrow gap (3) and welding it around one turn, weld beads are layered with some overlap (
6). Note that the shift portion shifts the phase in the circumferential direction every rotation, and is set so as not to completely overlap the bead caused by the previous shift.
本発明者は比較的に大型な厚肉円筒物を自動多パス・多
層溶接にて狭開先サブマージアーク溶接するについて、
溶接電流を増加させると、その増加に伴い溶着速度(g
r/m1n)、すなわち単位時間当りの開先充填量が増
加し溶接時間が短縮し得ることより、比較的に制御し易
い溶接電流を高めて溶接効率を向上させることを図った
。The present inventor has developed a method for performing narrow gap submerged arc welding on relatively large thick-walled cylindrical objects using automatic multi-pass, multi-layer welding.
When the welding current increases, the welding rate (g
r/m1n), that is, the amount of groove filling per unit time increases and the welding time can be shortened.We aimed to improve the welding efficiency by increasing the welding current, which is relatively easy to control.
しかし、溶接電流を高めて溶着速度(gr/m1n)を
上げると、その溶接時間が短縮され溶接効率は向上する
ものの、得られた製品について超音波探傷試験にて溶接
部の品質を確認すると、溶接電流をある値以上に増加さ
せたとき、その増加に伴い検出される欠陥数が増加する
ことが判明した。However, although increasing the welding current and increasing the welding speed (gr/m1n) shortens the welding time and improves the welding efficiency, when the quality of the welded part of the resulting product is confirmed by an ultrasonic flaw detection test, It has been found that when the welding current is increased beyond a certain value, the number of defects detected increases as the welding current increases.
そして、これら欠陥を調査したところ、その欠陥はシフ
ト部位、特にシフト時の溶接ビードが開先のいずれかの
壁に近接して形成され、該ビードと開先壁との間に溝状
の凹部を形成する部位(前記の第3図中のAおよびBで
示す部位)に発生しており、しかも、その大きさも溶接
電流の増加と対応していることが判明した。When these defects were investigated, it was found that the defect was caused by the shift region, especially the weld bead during the shift, being formed close to one of the walls of the groove, and a groove-like recess between the bead and the groove wall. It has been found that the welding occurs in the areas where the welding current is formed (the areas indicated by A and B in FIG. 3), and that its size also corresponds to the increase in welding current.
本発明者は、上記の調査結果より、これら欠陥は該部位
に形成された溝状の凹部が、該溝状の凹部の上に溶接ビ
ードを積層する次の溶接時の溶接熱により完全に溶解さ
れず、溶は込み不良状態の欠陥として残留するもので、
しかも、溶接電流をある値以上増加させると、その増加
に伴い欠陥数が増加するのは単位長さ当たりの溶着量(
gr/cm)の増加により溶接ビードの高さが増し、該
溶接ビードと開先壁との間に形成される溝状の凹部がよ
り深(なり溶は込不良を助長するためであるとの結論に
達した。Based on the above investigation results, the present inventor has determined that these defects are caused by the groove-like recess formed in the area being completely dissolved by the welding heat during the next welding process in which a weld bead is laminated on top of the groove-like recess. The welding is not carried out and remains as a defect due to poor welding.
Moreover, when the welding current is increased beyond a certain value, the number of defects increases due to the amount of welding per unit length (
gr/cm), the height of the weld bead increases, and the groove-like recess formed between the weld bead and the groove wall becomes deeper (which promotes poor penetration). I've come to a conclusion.
本発明は上記問題点に鑑み、定常時の溶接電流を高め、
総体的な溶着速度(gr/l1in)を増加させてもシ
フト部の欠陥発生を抑制し得、品質を維持してなお溶接
効率を高め得る狭開先サブマージアーク溶接方法の提供
を目的とするものである。In view of the above problems, the present invention increases the welding current during steady state,
The purpose of the present invention is to provide a narrow gap submerged arc welding method that can suppress the occurrence of defects in the shift part even if the overall welding speed (gr/l1in) is increased, maintain quality, and increase welding efficiency. It is.
上記の目的を達成するため本発明は以下の構成としてい
る。すなわち、本発明に係る狭開先サブマージアーク溶
接方法は、狭開先を有する対の軸状ないしは円筒状の被
溶接物を回転させ、該被溶接物の一方の開先壁と他方の
開先壁との間で溶極を一回転毎にシフトさせて連続的に
多パス・多層溶接する狭開先サブマージアーク溶接方法
において、シフト時における溶接電流を定常時より低い
ものとし、かつ、単位溶接長当りの溶着■が2.5gr
/cmを超えない値に設定することを特徴とするもので
ある。In order to achieve the above object, the present invention has the following configuration. That is, the narrow gap submerged arc welding method according to the present invention rotates a pair of axial or cylindrical workpieces having narrow grooves, and connects the groove wall of one of the workpieces to the groove wall of the other workpiece. In the narrow gap submerged arc welding method, in which the welding electrode is continuously welded in multiple passes and in multiple layers by shifting the melt electrode between each revolution and the wall, the welding current during shifting is lower than that during steady state, and unit welding Welding length per length is 2.5 gr
This feature is set to a value not exceeding /cm.
狭開先を有する輪状ないしは円筒状の被溶接物を回転さ
せ、該被溶接物の一方の開先壁と他方の開先壁との間で
溶極を一回転毎にシフトさせて連続的に多パス・多層溶
接する狭開先サブマージアーク溶接方法において、前述
のように溶接電流を高めて溶着速度(gr/+win)
を上げ、その溶接効率の向上を図るとき、溶接電流をあ
る値以上に増加させると、溶接電流の増加に伴いシフト
部位に欠陥の発生する率が増加するが、本発明において
は、シフト時における溶接電流を定常時より低いものと
し、かつ単位溶接長当りの溶着量を2.5gr/amを
超えない値に設定するものであって、シフト部のビード
高さを比較的に低く制御することで該部位における欠陥
発生を抑制し得、かつ定常部の溶接電流を高めることで
総体的な溶着速度(gr/m1n)を増加させ得る。A ring-shaped or cylindrical workpiece having a narrow groove is rotated, and the melt electrode is continuously shifted between one groove wall and the other groove wall of the workpiece every rotation. In the narrow gap submerged arc welding method that performs multi-pass, multi-layer welding, the welding current is increased to increase the welding speed (gr/+win) as described above.
In order to increase the welding efficiency by increasing the welding current, increasing the welding current beyond a certain value increases the rate of occurrence of defects at the shift site as the welding current increases. The welding current is set to be lower than that during steady state, the amount of welding per unit welding length is set to a value not exceeding 2.5g/am, and the bead height at the shift part is controlled to be relatively low. This can suppress the occurrence of defects in the region, and increase the overall welding rate (gr/m1n) by increasing the welding current in the steady region.
なお、シフト時における溶着量を2.5gr/cmを超
えない値と限定したのは、溶接電流(A)と、溶着速度
(gr/5in)を溶接速度(c+*/m1n)で除し
た単位長さ当たりの溶着量(gr/cm)と、欠陥発生
有無との関係を調べた試験結果に基くものである。The amount of welding during shifting was limited to a value not exceeding 2.5gr/cm based on the unit of welding current (A) and welding speed (gr/5in) divided by welding speed (c++/m1n). This is based on test results that investigated the relationship between the amount of welding per length (gr/cm) and the presence or absence of defects.
第1図はこの試験結果を示すグラフであり、該グラフ中
にX印でプロットしたものは超音波探傷検査にて欠陥が
検出された例を、○印でプロットしたものは超音波探傷
検査にて欠陥が検出されなかった例をそれぞれ示す。Figure 1 is a graph showing the results of this test.The graph plotted with an X indicates an example in which a defect was detected by ultrasonic flaw detection, and the one plotted with an ○ indicates an example in which a defect was detected by ultrasonic flaw detection. Examples are shown below in which no defects were detected.
第1図に示すように、種々の電流値において、その溶着
!(gr/cm)が2.5gr/cnaを超えない範囲
内では欠陥の発生を確実に抑制し得る。As shown in Figure 1, at various current values, the welding! (gr/cm) does not exceed 2.5 gr/cna, the occurrence of defects can be reliably suppressed.
なお、溶着量(gr/cm)を制御するには、通常、溶
接電流の制御ないしは溶接速度の制御をもって行われる
が、本発明においては溶接電流値をもって溶着!(gr
/cm)を設定するもので、機械的手段にて被溶接物の
回転または溶極の移動速度を調整して行う溶接速度の制
御に比較して、被溶接物および機器の慣性効果や作動タ
イムラグ等の影響を受けず、その制御を確実・容易なも
のとし得る。The amount of welding (gr/cm) is normally controlled by controlling the welding current or welding speed, but in the present invention, welding can be achieved by controlling the welding current value! (gr.
/cm), and compared to welding speed control that is performed by adjusting the rotation of the workpiece or the moving speed of the welding electrode by mechanical means, it reduces the inertia effect of the workpiece and equipment and the operation time lag. The control can be made reliable and easy without being affected by such factors.
直径680■の鍛造炭素鋼材を準備し、これに数多くの
狭開先を形成し、2パス・多層溶接によるサブマージア
ーク溶接試験に供した。A forged carbon steel material with a diameter of 680 mm was prepared, many narrow grooves were formed in it, and it was subjected to a submerged arc welding test using two-pass multilayer welding.
比較■
前記供試材の開先を3.21径の溶接ワイヤと溶融型フ
ラックスとを用い、溶接電流と溶接速度とを種々変えて
自動溶接を行った。Comparison ■ The groove of the sample material was automatically welded using a 3.21 diameter welding wire and molten flux while varying the welding current and welding speed.
なお、本比較例においては、各溶接例における溶接電流
と溶接速度は一定値とし、シフト時にも変化させず連続
自動溶接した。In addition, in this comparative example, the welding current and welding speed in each welding example were set to constant values, and continuous automatic welding was performed without changing them even during shifts.
そして、各溶接済供試材の溶接部位について、平底穴径
換算値で0.81径の欠陥検出感度にて超音波探傷検査
を行い、該検出感度での欠陥有無の調査を行った。Then, the welded portion of each welded sample material was subjected to ultrasonic flaw detection with a defect detection sensitivity of 0.81 in terms of flat bottom hole diameter, and the presence or absence of defects was investigated at this detection sensitivity.
これら超音波探傷検査結果を検討したところ、欠陥が検
出された溶接例においては、その欠陥検出部位はシフト
部と対応しており、周溶接部、すなわち定常部には認め
られず、また欠陥検出数は、溶着速度(gr/n+in
)を溶接速度(am/m1n)で除した単位長さ当たり
の溶着量(gr/cm)に比例し増加していた。After examining these ultrasonic flaw detection inspection results, we found that in the welding examples where defects were detected, the defect detection location corresponded to the shift part, and no defect was detected in the circumferential weld part, that is, the steady part, and The number is the welding speed (gr/n+in
) was increased in proportion to the amount of welding per unit length (gr/cm) divided by the welding speed (am/m1n).
また、検出された欠陥部を切断調査したところ、これら
欠陥は全てシフト部における開先のいずれかの壁に極近
接した位置にて認められた。Further, when the detected defective portions were inspected by cutting, all of these defects were found in positions extremely close to one of the walls of the groove in the shift portion.
これらの結果について、溶接電流(A)と、溶着量(g
r/cm)と、欠陥発生有無との関係に整理して、第1
図のグラフ中にプロットして例示する。Regarding these results, welding current (A) and welding amount (g
r/cm) and the presence or absence of defects, and
This is illustrated by plotting it in the graph of the figure.
第1図のグラフ中のプロットの×印は欠陥あり、O印は
欠陥なしをそれぞれ示す。An x mark on the plot in the graph of FIG. 1 indicates that there is a defect, and an O mark indicates that there is no defect.
第1図に示すように、溶着量が2.5gr/cmを超え
た溶接例では、すべて超音波探傷検査にて欠陥が検出さ
れており、反面、溶着量が2.5gr/cm以下である
溶接例では欠陥が検出されていない。As shown in Figure 1, in all welding examples where the amount of welding exceeds 2.5gr/cm, defects are detected by ultrasonic testing, while on the other hand, in cases where the amount of welding is less than 2.5gr/cm. No defects were detected in the welding example.
この結果より、これら欠陥はシフト時の溶接ビードが開
先のいずれかの壁に近接して形成され、該ビードと開先
壁との間に溝状の凹部を形成する部位と対応して発生し
ていることより、これら溝状の凹部が、その上に溶接ビ
ードを積層する次の溶接時の溶接熱により完全に溶解さ
れず、熔は込み不良状態となり欠陥として残留したもの
であり、また、これらの欠陥が単位長さ当たりの溶着量
(gr/cm)の増加に伴い数と大きさを増すのは、単
位長さ当たりの溶着量(gr/cm)を増加させると溶
接ビードの高さが増し、該溶接ビードと開先壁との間に
形成される溝状の凹部がより深くなって溶は込不良を助
長するためであり、かつまた、溶着量を2.5gr/c
m以下とするときにはシフト部の溝状の凹部は次の溶接
時に溶解されて欠陥として残留しないことが判明した。From this result, these defects occur in locations where the weld bead during shifting is formed close to one of the walls of the groove, forming a groove-like recess between the bead and the groove wall. As a result, these groove-shaped recesses were not completely melted by the welding heat during the next welding process when a weld bead was laminated on top of them, and the weld was in a poor state and remained as a defect. , the number and size of these defects increase as the amount of welding per unit length (gr/cm) increases, because the height of the weld bead increases as the amount of welding per unit length (gr/cm) increases. This is because the groove-like recess formed between the weld bead and the groove wall becomes deeper and promotes poor penetration.
It has been found that when the thickness is less than m, the groove-like recesses of the shift portion are melted during the next welding and do not remain as defects.
なお、第1図には溶接電流を350A〜600Aとする
範囲のものを例示したが、これは350A未満の範囲で
は溶接電流が低過ぎて開先壁への溶込みが不足し、また
600Aを超える範囲では溶込みが過大で割を誘因する
通常には適用されない範囲であるのでここでは省略した
。Note that Fig. 1 shows an example of a welding current in the range of 350A to 600A, but this is because if the welding current is less than 350A, the welding current is too low and penetration into the groove wall is insufficient; A range exceeding this range is not normally applied because the penetration is excessive and causes cracking, so it is omitted here.
実施■
前記比較例の結果より、連続的に多パス・多層溶接する
狭開先サブマージアーク溶接方法においては、シフト時
の溶着量を2.5gr/cm以下に抑制すると、欠陥の
発生を伴わず定常時の溶着速度を増加し得ることが判明
したので、前記の供試材を用い、シフト時の溶着量を2
.5gr/cm以下とする条件を満足する範囲で溶接試
験を行った。Implementation ■ Based on the results of the comparative example above, in the narrow gap submerged arc welding method that continuously performs multi-pass and multi-layer welding, if the amount of welding during shifting is suppressed to 2.5 gr/cm or less, no defects occur. It was found that the welding speed during steady state could be increased, so using the above sample material, the amount of welding during shifting was increased by 2.
.. A welding test was conducted within a range that satisfied the condition of 5 gr/cm or less.
第1表にこれら溶接試験の条件を示す。Table 1 shows the conditions for these welding tests.
なお、これら溶接試験でのシフト時の溶接電流(A)を
制御するについては、供試材の一回転毎に溶極をシフト
させる溶接ワイヤ保持器を作動させる機構の作動信号に
て溶接電流を所定値に制御する電気回路を設けることで
対処した。In addition, in order to control the welding current (A) during shifting in these welding tests, the welding current was controlled by an activation signal of a mechanism that operates a welding wire holder that shifts the welding electrode every rotation of the test material. The solution was to install an electric circuit that controls the value to a predetermined value.
第1表に示す条件にて溶接した各供試材について、前述
と同様に平底穴径換算値で0.hm径の欠陥検出感度に
て超音波探傷検査したところ、定常部の溶接電流(A)
を60OAまで高めたものを含み、全ての溶接試験例に
ついて欠陥は検出されなかった。For each sample material welded under the conditions shown in Table 1, the flat-bottomed hole diameter conversion value was 0. When ultrasonic flaw detection was performed with defect detection sensitivity of hm diameter, welding current (A) in the steady part
No defects were detected in all welding test examples, including those where the welding strength was increased to 60OA.
なお、上記実施例においては、溶接電圧(v)は定常部
の溶接電流に対応して溶接アークを安定させる値を選ん
で設定し、また、溶接速度(am/5in)については
、当該サブマージアーク溶接に通常適用される速度範囲
(30〜60 am/m1n)より選んで設定した。In the above example, the welding voltage (v) is selected and set at a value that stabilizes the welding arc in accordance with the welding current in the steady section, and the welding speed (am/5in) is set according to the submerged arc. The speed was selected from the speed range (30 to 60 am/m1n) normally applied to welding.
上記のように、本発明は比較的に大径の軸状ないしは円
筒状の被溶接物を高効率にて、かつ品質を損なうことな
く維持して多パス・多層溶接し得るものであって、比較
的に大型の被溶接物のサブマージアーク溶接の効率の向
上を可能とし、そのコスト低減に寄与し得る実用効果大
なるものであAs described above, the present invention enables multi-pass, multi-layer welding of relatively large-diameter axial or cylindrical workpieces with high efficiency and without sacrificing quality. It has a great practical effect, making it possible to improve the efficiency of submerged arc welding of relatively large objects to be welded, and contributing to cost reduction.
第1図は本発明の実施例の比較例の溶接電流と溶着量と
欠陥発生有無との関係を示すグラフである。
第2図および第3図は従来の多パス・多層溶接方法の概
念説明図である。
(1)(2)−一被溶接物、(3)−狭開先、(4)−
溶接ワイヤ、(5)−保持器、(6)−溶接ビード。
特許出願人 株式会社 神戸製鋼所
代 理 人 弁理士 金丸 章−
第1図
溶接電流(^)
第2図FIG. 1 is a graph showing the relationship between the welding current, the amount of welding, and the occurrence of defects in a comparative example of the embodiment of the present invention. FIGS. 2 and 3 are conceptual explanatory diagrams of a conventional multi-pass/multi-layer welding method. (1) (2) - Work to be welded, (3) - Narrow gap, (4) -
Welding wire, (5) - retainer, (6) - welding bead. Patent applicant: Kobe Steel, Ltd. Representative Patent attorney: Akira Kanemaru - Figure 1 Welding current (^) Figure 2
Claims (1)
回転させ、該被溶接物の一方の開先壁と他方の開先壁と
の間で溶極を一回転毎にシフトさせて連続的に多パス・
多層溶接する狭開先サブマージアーク溶接方法において
、シフト時における溶接電流を定常時より低いものとし
、かつ、単位溶接長当りの溶着量が2.5gr/cmを
超えない値に設定することを特徴とする狭開先サブマー
ジアーク溶接方法。A pair of shaft-like or cylindrical objects to be welded having a narrow groove are rotated, and a melt electrode is shifted between one groove wall and the other groove wall of the weld objects every rotation. Continuously multiple passes/
A narrow gap submerged arc welding method for multi-layer welding, characterized in that the welding current during shifting is lower than that during steady state, and the amount of welding per unit welding length is set to a value not exceeding 2.5 gr/cm. Narrow gap submerged arc welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30802287A JPH01148469A (en) | 1987-12-04 | 1987-12-04 | Narrow gap submerged arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30802287A JPH01148469A (en) | 1987-12-04 | 1987-12-04 | Narrow gap submerged arc welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01148469A true JPH01148469A (en) | 1989-06-09 |
Family
ID=17975945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30802287A Pending JPH01148469A (en) | 1987-12-04 | 1987-12-04 | Narrow gap submerged arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01148469A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014088110A1 (en) * | 2012-12-04 | 2014-06-12 | Jfeスチール株式会社 | Method for narrow-gap, gas-shielded arc welding |
WO2014088111A1 (en) * | 2012-12-04 | 2014-06-12 | Jfeスチール株式会社 | Narrow-gap, gas-shielded arc welded joint |
JP2016022504A (en) * | 2014-07-18 | 2016-02-08 | 株式会社神戸製鋼所 | TANDEM SUB-MERGE ARC WELDING METHOD FOR HIGH Cr GROUP CSFE STEEL |
-
1987
- 1987-12-04 JP JP30802287A patent/JPH01148469A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014088110A1 (en) * | 2012-12-04 | 2014-06-12 | Jfeスチール株式会社 | Method for narrow-gap, gas-shielded arc welding |
WO2014088111A1 (en) * | 2012-12-04 | 2014-06-12 | Jfeスチール株式会社 | Narrow-gap, gas-shielded arc welded joint |
JP2016022504A (en) * | 2014-07-18 | 2016-02-08 | 株式会社神戸製鋼所 | TANDEM SUB-MERGE ARC WELDING METHOD FOR HIGH Cr GROUP CSFE STEEL |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1103762A (en) | Method of connecting metallic parts by means of arc fusion welding | |
EP0279113B1 (en) | Manufacture of shape melted austenitic material components | |
EP3181283B1 (en) | Systems and method for automated root pass welding | |
EP2010353A2 (en) | Metal cored electrode for open root pass welding | |
US20140027422A1 (en) | Adaptable rotating arc welding method and system | |
US4647749A (en) | Apparatus and method for weld cladding cylindrical objects | |
WO2014022241A2 (en) | Root pass welding solution | |
US3139511A (en) | Fusion cladding technique and product | |
JPH01148469A (en) | Narrow gap submerged arc welding method | |
Latifi Jr | Advanced orbital pipe welding | |
US20060231540A1 (en) | Method and apparatus for short-circuit welding | |
CN1297365C (en) | Submerged arc welding method of parallel double wire or single wire adding metal powder | |
CA1222617A (en) | Method of connecting inside plated cylindrical workpieces | |
Das et al. | Experience with advanced welding techniques (RMD & P-GMAW) with seamless metal cored wire for Oil & Gas pipeline industries | |
Harris | Transfer of heat and mass to the base metal in gas metal arc welding | |
SU841852A1 (en) | Method of argon arc welding | |
Mortvedt | Evaluation of the Usability and Benefits of Twist Wire GMAW and FCAW Narrow Gap Welding: 1984-1985 | |
JPH0316224B2 (en) | ||
CN103273175B (en) | Adapter is without bismuth stainless flux-cored wire gas shielded welding progress | |
SU1143553A1 (en) | Method of welding girth joints of multilayer shells | |
CN110883404B (en) | Welding process | |
Houldcroft | Welding process developments and future trends | |
SU988489A1 (en) | Method of pulse arc welding by non-consumable electrode | |
KR940008586B1 (en) | Automatic Fulfillment Welding Method of Circular Body | |
Mvola Belinga et al. | Applications and Benefits of Adaptive Pulsed GMAW |