JPH01148193A - Production of 5-aminolevulic acid - Google Patents
Production of 5-aminolevulic acidInfo
- Publication number
- JPH01148193A JPH01148193A JP30694087A JP30694087A JPH01148193A JP H01148193 A JPH01148193 A JP H01148193A JP 30694087 A JP30694087 A JP 30694087A JP 30694087 A JP30694087 A JP 30694087A JP H01148193 A JPH01148193 A JP H01148193A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- ala
- culture
- methanosarcina
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、メタノサルシナ属に属する微生物の培養によ
る、5−アミノレブリン酸(以下、5−ALAと略記す
る)の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing 5-aminolevulinic acid (hereinafter abbreviated as 5-ALA) by culturing a microorganism belonging to the genus Methanosarcina.
5−ALAは、植物ホルモンの一種で、農薬として注目
されている化合物であり、また、クロロフィル、ビタミ
ンB12.フィコビリン、ファクタ’ 430等のテト
ラビロール化合物の前駆体としても知られている。5-ALA is a type of plant hormone and a compound that is attracting attention as an agricultural chemical.It is also a compound that is attracting attention as a pesticide. It is also known as a precursor of tetravirol compounds such as phycobilin and Factor' 430.
(従来技術)
従来、微生物を用いて5−ALAを製造する方法として
、メタノバクテリウム サーモオートド074カム(M
ethanobacterium thermoaut
otr。(Prior Art) Conventionally, as a method for producing 5-ALA using microorganisms, Methanobacterium thermoautod074cam (M
ethanobacterium thermoout
otr.
phtcum)を用いる方法が知られている(アーカイ
ブズ オブ ミクロバイオロジー(A rch、 M
icr。phtcum) is known (Archives of Microbiology (Arch, M.
icr.
biol、)、 135 、237〜240.(198
3))、 また、5−ALAの生成に関する代謝経路に
ついても種々の検討がされており、動物、酵母。biol, ), 135, 237-240. (198
3)) Various studies have also been conducted on the metabolic pathways related to the production of 5-ALA, including animals and yeast.
光合成細菌を含む細菌などではサクシニル−C。Succinyl-C in bacteria including photosynthetic bacteria.
Aとグリシンから合成されるシェミン経路、高等植物、
緑藻などではコハク酸からα−ケトグルタル酸を経由す
るC−5経路が知られている。C−5経路の中間体とし
てはグルタミン酸あるいは4゜5−ジオキシ吉草酸が想
定されているが、酵素学的な証明は未だなされていない
。Shemin pathway synthesized from A and glycine, higher plants,
In green algae, the C-5 pathway from succinic acid to α-ketoglutaric acid is known. Glutamic acid or 4.5-dioxyvaleric acid is assumed to be an intermediate in the C-5 pathway, but enzymatic proof has not yet been provided.
(発明が解決しようとする問題点)
メタノバクテリウム サーモオートトロフィカムの培養
によって5−ALAを製造する方法は、炭素源およびエ
ネルギー源として炭酸ガス、水素を用いる必要があり、
更に5−ALAを蓄積させるためには5−ALAの脱水
酵素である5−ALAデヒドラターゼを阻害するレブリ
ン酸を高濃度に添加しなくてはならず、経済的に有利な
方法でない。(Problems to be Solved by the Invention) The method for producing 5-ALA by culturing Methanobacterium thermoautotrophicum requires the use of carbon dioxide gas and hydrogen as a carbon source and an energy source.
In order to further accumulate 5-ALA, it is necessary to add a high concentration of levulinic acid, which inhibits 5-ALA dehydratase, which is a 5-ALA dehydratase, and this is not an economically advantageous method.
(問題を解決するための手段)
本発明者らは、5−ALAを生産する能力を有する微生
物を得ることを目的に自然界および公知の保存菌株につ
いて鋭意研究した結果、メタノサルシナ属に属する微生
物が5−ALAを培地中に多量に蓄積することを見出だ
し、本発明に至った。(Means for Solving the Problem) The present inventors conducted intensive research on natural and known preserved bacterial strains with the aim of obtaining microorganisms capable of producing 5-ALA. - It was discovered that ALA accumulates in large amounts in the culture medium, leading to the present invention.
すなわち、本発明は、メタノサルシナ属に属し、5−ア
ミノレブリン酸を生産する能力を有する微生物を培養し
、5−アミノレブリン酸を生成させ、これを採取するこ
とを特徴とする5−アミノレブリン酸の製造法である。That is, the present invention provides a method for producing 5-aminolevulinic acid, which comprises culturing a microorganism belonging to the genus Methanosarcina and having the ability to produce 5-aminolevulinic acid, producing 5-aminolevulinic acid, and collecting the same. It is.
本発明に使用される微生物は、メタノサルシナ属に属し
、5−ALAを生産する能力を有する微生物であれば、
野生株、変異株、 IMIIIIM合あるいは遺伝子組
み換えその他の遺伝的手法によって得られる株のいずれ
のものでもよい、その−例として、D S M (D
eutsche S amalung van M i
kroorganismen’)より入手可能なメタノ
サルシナ バーケリ(M ethanosarcina
barkeri ) D S M 804を挙げるこ
とができる0本菌の菌学的性質は、BerQe’l’S
1lantlal of determinativ
e baCt4)riol。The microorganism used in the present invention belongs to the genus Methanosarcina and has the ability to produce 5-ALA.
The strain may be a wild strain, a mutant strain, a strain obtained by IMIIIM hybridization, genetic recombination, or other genetic methods; for example, DSM (D
eutsche S amalung van M i
Methanosarcina barkeri available from
Berqe'l'S
1 lantlal of determinative
e baCt4)riol.
gV第8版に記載されている。gV 8th edition.
本発明に使用される培地は、炭素源、窒素源。The culture medium used in the present invention contains a carbon source and a nitrogen source.
イオウ源、無機塩、更に必要に応じて他の栄養素。Sulfur sources, inorganic salts, and other nutrients as needed.
微量要素等を添加して、嫌気的雰囲気にした培地が使用
される。A medium containing trace elements and the like to create an anaerobic atmosphere is used.
炭素源としては、メタノール、炭酸ガス、酢酸。Carbon sources include methanol, carbon dioxide, and acetic acid.
メチルアミン等が使用されるが、メタノールが特に好ま
しく、その濃度は2vハ%以下が好ましい。Methylamine and the like are used, but methanol is particularly preferred, and its concentration is preferably 2% or less.
メタノール濃度が高まると微生物の生育を阻害するので
、培養中のメタノール濃度を0.05〜1%に維持し、
逐次メタノールを添加し培養することもできる。As methanol concentration increases, it inhibits the growth of microorganisms, so maintain the methanol concentration during culture at 0.05 to 1%.
Cultivation can also be carried out by sequentially adding methanol.
窒素源としては、通常の微生物の培養に用いられる硫酸
アンモニウム、塩化アンモニウム、リン酸アンモニウム
、尿素、硝酸アンモニウム、硝酸ナトリウム等が挙げら
れる。Examples of the nitrogen source include ammonium sulfate, ammonium chloride, ammonium phosphate, urea, ammonium nitrate, and sodium nitrate, which are commonly used for culturing microorganisms.
無機塩としては、リン酸カリウム、硫酸マグネシウム、
塩化ナトリウム、塩化カルシウム、硫酸第一鉄、セレン
酸ナトリウム、塩化マンガンなどのほか、亜鉛、ホウ酸
、銅、ニッケル、モリブデンなどの添加も有効である。Inorganic salts include potassium phosphate, magnesium sulfate,
In addition to sodium chloride, calcium chloride, ferrous sulfate, sodium selenate, manganese chloride, etc., additions of zinc, boric acid, copper, nickel, molybdenum, etc. are also effective.
微量要素としては、ビオチン、葉酸、ビタミンB 、
B SB6.ニコチン酸、パントテン酸。Trace elements include biotin, folic acid, vitamin B,
BSB6. Nicotinic acid, pantothenic acid.
p−アミノ安息香酸、リボ酸などのビタミン類が用いら
れるほか、天然の栄養源としてコーン・ステイープ・リ
カー、酵母エキス、ペプトン等も添加できる。In addition to vitamins such as p-aminobenzoic acid and ribic acid, corn staple liquor, yeast extract, peptone, etc. can also be added as natural nutritional sources.
更に、5−ALAの前駆体として考えられるコハク酸、
α−ケトグルタル酸、グルタミン酸、4゜5−ジオキシ
吉草酸や、5−ALAデヒドラターゼ阻害剤であるレブ
リン酸などの添加により、5−ALAの生成量を増加さ
せることができる。Furthermore, succinic acid, which is considered as a precursor of 5-ALA,
The amount of 5-ALA produced can be increased by adding α-ketoglutaric acid, glutamic acid, 4°5-dioxyvaleric acid, or levulinic acid, which is a 5-ALA dehydratase inhibitor.
また、4,6−シケトヘブタン酸の添加によって5−A
LAの生成量を著しく高めることが可能である。この4
,6−シケトヘブタン酸は、1〜5mM程度の低濃度で
有効である。In addition, 5-A
It is possible to significantly increase the amount of LA produced. This 4
,6-siketohebutanoic acid is effective at concentrations as low as 1-5mM.
本発明における培養は、嫌気的に行なう必要がある。培
養を嫌気的に行なうには、培地中にL−システィン、チ
オ硫酸ナトリウム、クエン酸チタニウムなどの還元剤を
加えるほか、酸素を除去した窒素ガスや炭酸ガス、ある
いはこれらの混合気体を培地中に通気し、更に培養容器
の気相中に酸素が混入しないようにする方法が可能であ
る。Cultivation in the present invention must be performed anaerobically. To perform the culture anaerobically, in addition to adding a reducing agent such as L-cysteine, sodium thiosulfate, or titanium citrate to the medium, nitrogen gas from which oxygen has been removed, carbon dioxide gas, or a mixture of these gases is added to the medium. It is possible to provide aeration and also to prevent oxygen from being mixed into the gas phase of the culture container.
培養の形式としては、回分培養法でもよいが、生産の効
率化のためには担体に菌体な固定させ、培地を連続的に
供給する方法が好ましい、固定化に用いる担体としては
、微生物が付着できる多孔性の担体であればいかなる種
類のものでも用いることが可能であるが、具体的には、
発泡煉石、シリカ多孔質が挙げられる。Batch culture may be used as the culture method, but in order to improve production efficiency, it is preferable to immobilize the microorganisms on a carrier and continuously supply the culture medium. Any type of porous carrier that can be attached can be used, but specifically,
Examples include foamed brick and porous silica.
培養温度は25〜50℃で行なうが、30〜37℃が好
ましい、培!IpHは5.8〜7.O1好ましくは6.
3〜6.8に調節する。培養は通常3〜8日で終了する
が、他の培養条件に応じて適当に変えることができる。The culture temperature is 25 to 50°C, preferably 30 to 37°C. IpH is 5.8-7. O1 preferably 6.
Adjust to 3-6.8. Culture usually ends in 3 to 8 days, but this can be changed as appropriate depending on other culture conditions.
培養物からの5−ALAの採取は通常の方法で実施でき
る0例えば、培養物をまず遠心分離して菌体を除去し、
上清のp Hを2.5に調節した後、Na+型のイオン
交換樹脂に吸着させ、pl(5,0のクエン酸ナトリウ
ム・クエン酸v11i液で溶出し、5−ALA画分を濃
縮し、゛必要に応じて更に精製工程を加えればよい。5-ALA can be collected from a culture using a conventional method. For example, the culture is first centrifuged to remove bacterial cells,
After adjusting the pH of the supernatant to 2.5, it was adsorbed onto a Na+ type ion exchange resin, eluted with pl (5,0 sodium citrate/citric acid v11i solution, and the 5-ALA fraction was concentrated. ``A further purification step may be added if necessary.
以下、実施例を以て本発明を説明するが、本発明はこれ
に限定されるものではない。The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.
(実施例)
実施例1
メタノサルシナ バーケリ DSM804を、気相を窒
素で置換した表−1に示す基本培地で37℃、60時間
培養した。培養後、遠心分離により除菌し、得られた上
清液について生産された5−ALAを測定した結果、0
.8■/1の5−ALAが得られた。(Example) Example 1 Methanosarcina Berkeli DSM804 was cultured at 37°C for 60 hours in the basal medium shown in Table 1 in which the gas phase was replaced with nitrogen. After culturing, the bacteria were removed by centrifugation, and the amount of 5-ALA produced in the resulting supernatant was measured, and the result was 0.
.. 5-ALA of 8.1/1 was obtained.
実施例2
メタノサルシナ バーケリ DSM804を、実施例1
と同様に培養し、その6mlを表−2に示した各濃度の
4.6−シケトヘブタン酸を含有する基本培地にそれぞ
れ接種し、嫌気条件下で37℃。Example 2 Methanosarcina barkeri DSM804 was added to Example 1
6 ml of the culture was inoculated into a basal medium containing each concentration of 4.6-siketohebutanoic acid shown in Table 2, and the mixture was incubated at 37°C under anaerobic conditions.
80時間培養した。5−ALAの生成量および菌体生宵
量を表−2に示した。Cultured for 80 hours. The production amount of 5-ALA and the bacterial cell yield are shown in Table 2.
実施例3
メタノサルシナ バーケリ DSM804を、実施例1
と同様に培養し、その6mlを表−3に示した各濃度の
レブリン酸を含有する基本培地にそれぞれ接種し、嫌気
条件下で37℃、80時間培養した。5−ALAの生成
量および菌体生冑量を表−3に示した。Example 3 Methanosarcina barkeri DSM804 was added to Example 1
The cells were cultured in the same manner as above, and 6 ml of the culture was inoculated into a basal medium containing each concentration of levulinic acid shown in Table 3, and cultured under anaerobic conditions at 37°C for 80 hours. The amount of 5-ALA produced and the amount of bacterial biomass are shown in Table 3.
実施例4
メタノサルシナ バーケリ DSM804を、実施例1
と同様に培養し、その6 mlをレブリン酸20mH,
L−アラニン15nNおよび表−4に示した各濃度のα
−ケトグルタル酸を含有する基本培地にそれぞれ接種し
、嫌気条件下で37℃、 80時間培養した。5−AL
Aの生成量および菌体生冑量を表−4に示した。Example 4 Methanosarcina barkeri DSM804 was added to Example 1
Culture in the same manner as above, add 6 ml of levulinic acid to 20 mH of levulinic acid,
L-alanine 15 nN and α of each concentration shown in Table 4
- They were each inoculated into a basal medium containing ketoglutaric acid and cultured at 37°C for 80 hours under anaerobic conditions. 5-AL
The production amount of A and the amount of bacterial cell culture are shown in Table 4.
実施例5
メタノサルシナ バーケリ DSM804を、実施例1
と同様に培養し、その8.5mlを、担体として多孔性
シリカ(ナガオポーセル、長尾曹達■製)を充填し基本
培地を満たした基型リアクターに接種し、37℃、48
時間培養した。その後、表−5に示した各濃度のレブリ
ン酸を含有する基本培地をそれぞれ連続的に供給した。Example 5 Methanosarcina barkeri DSM804 was added to Example 1
8.5 ml of the culture was inoculated into a base reactor filled with porous silica (Nagao Porcel, manufactured by Nagao Soda) as a carrier and basic medium, and incubated at 37°C and 48°C.
Cultured for hours. Thereafter, basal medium containing levulinic acid at each concentration shown in Table 5 was continuously supplied.
供給速度は最終的に希釈率13.1/daVに固定した
。定常値における5−ALA生産性を表−5に示した。The feed rate was finally fixed at a dilution rate of 13.1/daV. 5-ALA productivity at steady-state values is shown in Table-5.
表−1基本培地組成
イミダゾール 5.44 gK2)
IPO40,6961r
KM2PO40,454g
NH4C11、OOt
MgS04・7 H201−005r
NaC14,5g
CaC1・2H200,25g
Fe50 ・7H204,0■
Na25ea3 o、04 MMn
Cl ・4 H200,125+wビタミン溶液 1
) 20 mlミネラル溶液 2
)6ml
クエン酸チタニウム 0 、075+eno
lL−システィン・塩酸 0.3 gメタ
ノール 8 gj
pH6,3〜6.8
1) ビタミン溶液
ビオチン 2N
葉酸 2゜
ピリドキシン・塩a 10■チアミン・塩酸
5■
リボフラビン 5■
ニコチン酸 5■
パントテン酸カルシウム 5、
P−アミノ安息香酸 5mgリポ酸
5N 112) ミネラル溶液
Z n 5040 、 1 g
MnCl ・4H200,04g
H3BO40,3g
Coal ・6HO0,2g
Cue 12 ・2H200−01t
NiCl2・6 H2・0 0 、02 、tNi
Cl ・6 H200、02t
NaMoO4−2H200,03g 11表−2
表−3
表−4
表−5
(発明の効果)
本発明により、経済的に有利な方法で5−ALAを製造
することが可能になった。Table-1 Basic medium composition Imidazole 5.44 gK2)
IPO40,6961r KM2PO40,454g NH4C11,OOt MgS04・7 H201-005r NaC14,5g CaC1・2H200,25g Fe50 ・7H204,0■ Na25ea3 o,04 MMn
Cl ・4 H200,125+w vitamin solution 1
) 20ml mineral solution 2
)6ml titanium citrate 0,075+eno
1L-cysteine/hydrochloric acid 0.3 g methanol 8 gj pH6.3-6.8 1) Vitamin solution biotin 2N folic acid 2゜pyridoxine/salt a 10 ■ Thiamine/hydrochloric acid 5 ■ Riboflavin 5 ■ Nicotinic acid 5 ■ Calcium pantothenate 5 , P-aminobenzoic acid 5mg lipoic acid
5N 112) Mineral solution Z n 5040, 1 g MnCl ・4H200,04g H3BO40,3g Coal ・6HO0,2g Cue 12 ・2H200-01t NiCl2・6 H2・0 0 ,02 ,tNi
Cl ・6 H200,02t NaMoO4-2H200,03g 11Table-2 Table-3 Table-4 Table-5 (Effect of the invention) The present invention makes it possible to produce 5-ALA in an economically advantageous method. became.
Claims (1)
属し、5−アミノレブリン酸を生産する能力を有する微
生物を培養し、5−アミノレブリン酸を生成させ、これ
を採取することを特徴とする5−アミノレブリン酸の製
造法A method for producing 5-aminolevulinic acid, which comprises culturing a microorganism belonging to the genus Methanosarcina and having the ability to produce 5-aminolevulinic acid, producing 5-aminolevulinic acid, and collecting the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30694087A JPH01148193A (en) | 1987-12-04 | 1987-12-04 | Production of 5-aminolevulic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30694087A JPH01148193A (en) | 1987-12-04 | 1987-12-04 | Production of 5-aminolevulic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01148193A true JPH01148193A (en) | 1989-06-09 |
Family
ID=17963109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30694087A Pending JPH01148193A (en) | 1987-12-04 | 1987-12-04 | Production of 5-aminolevulic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01148193A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06141875A (en) * | 1992-11-08 | 1994-05-24 | Cosmo Sogo Kenkyusho:Kk | Production of 5-aminolevulinic acid by microorganism |
WO2007034673A1 (en) * | 2005-09-21 | 2007-03-29 | Cosmo Oil Co., Ltd. | Process for producing 5-aminolevulinic acid hydrochloride |
JP2012121918A (en) * | 2012-03-08 | 2012-06-28 | Cosmo Oil Co Ltd | Method for producing 5-aminolevulinic acid hydrochloride |
-
1987
- 1987-12-04 JP JP30694087A patent/JPH01148193A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06141875A (en) * | 1992-11-08 | 1994-05-24 | Cosmo Sogo Kenkyusho:Kk | Production of 5-aminolevulinic acid by microorganism |
WO2007034673A1 (en) * | 2005-09-21 | 2007-03-29 | Cosmo Oil Co., Ltd. | Process for producing 5-aminolevulinic acid hydrochloride |
JP2007084466A (en) * | 2005-09-21 | 2007-04-05 | Cosmo Oil Co Ltd | Method for producing 5-aminolevulinic acid hydrochloride |
US8148574B2 (en) | 2005-09-21 | 2012-04-03 | Cosmo Oil Co., Ltd. | Method for producing 5-aminolevulinic acid hydrochloride |
JP2012121918A (en) * | 2012-03-08 | 2012-06-28 | Cosmo Oil Co Ltd | Method for producing 5-aminolevulinic acid hydrochloride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dou et al. | Autotrophic, heterotrophic, and mixotrophic nitrogen assimilation for single-cell protein production by two hydrogen-oxidizing bacterial strains | |
US4532210A (en) | Process for producing hydrogen by alga in alternating light/dark cycle and environmental aerobic/microaerobic conditions | |
JP2657763B2 (en) | Microbial hydrogen production | |
JPH08116964A (en) | Biomass containing l-ascorbic acid | |
CN101225411A (en) | A new method for biosynthetic production of mixed long-chain dibasic acids | |
CN111363707A (en) | Method for improving acid production rate and conversion rate of butyric acid fermentation | |
Izumi et al. | Pyruvic acid production from 1, 2-propanediol by thiamin-requiring Acinetobacter sp. 80-M | |
US4652527A (en) | Process for culturing methylophilus methylotrophus | |
Lee et al. | Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources | |
CN1952164A (en) | Combined fermentation process for producing D-lactic acid | |
CN117701444B (en) | Preparation method of magnetic biochar immobilized with ammonia nitrogen-resistant anaerobic microorganisms and method for relieving ammonia nitrogen inhibition | |
JPH01148193A (en) | Production of 5-aminolevulic acid | |
IE69844B1 (en) | Microbiological process for the preparation of 6-hydroxypicolinic acid | |
FI71766B (en) | FRAMSTAELLNING AV ETHANOL GENOM HOEGEFFEKTIV BAKTERIEJAESNING | |
CN106399387A (en) | Nitrogen defect control method for production of ethanol through fermentation of synthesis gas with mixed bacteria | |
CN114958708B (en) | Method for promoting growth of microorganisms and application thereof | |
JP6744997B2 (en) | Escherichia microorganism producing O-phosphoserine and method for producing O-phosphoserine or L-cysteine using the same | |
JPS5860992A (en) | Preparation of hydrogen from green alga utilizing light and darkness cycle | |
CN115449499A (en) | Denitrification hyphomycete and method for preparing pyrroloquinoline quinone through fermentation of same | |
CN116024280A (en) | Method for improving tryptophan fermentation conversion rate by mixed culture | |
JP3224992B2 (en) | Hydrogen-producing photosynthetic microorganism and method for producing hydrogen using the same | |
CN108179112B (en) | Method for producing hydrogen by chlorella pyrenoidosa combined bacteria | |
Sürücü | Growth requirements of thermophilic aerobic microorganisms in mixed cultures for the treatment of strong wastes | |
KR100315662B1 (en) | Rhodopseudomonas palustris p4 and preparation for hydrogen by using the same | |
CN113502308A (en) | Method for producing vitamin B12 by aerobic fermentation based on redox potential regulation |