[go: up one dir, main page]

JPH01145103A - Manufacture of fire-retardant woody product - Google Patents

Manufacture of fire-retardant woody product

Info

Publication number
JPH01145103A
JPH01145103A JP30377787A JP30377787A JPH01145103A JP H01145103 A JPH01145103 A JP H01145103A JP 30377787 A JP30377787 A JP 30377787A JP 30377787 A JP30377787 A JP 30377787A JP H01145103 A JPH01145103 A JP H01145103A
Authority
JP
Japan
Prior art keywords
flame
retardant
wood
section
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30377787A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
謙一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO GIJUTSU KENKYUSHO KK
Original Assignee
SANGYO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO GIJUTSU KENKYUSHO KK filed Critical SANGYO GIJUTSU KENKYUSHO KK
Priority to JP30377787A priority Critical patent/JPH01145103A/en
Publication of JPH01145103A publication Critical patent/JPH01145103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PURPOSE:To obtain a fire-retardant woody product which is high in a degree of woodiness, easy in secondary processing and free from generation of harmful gas, by a method wherein substance mainly comprised of a pulverized cellulose is made fire-retardant by impregnating the same with a moistureproofing and flameproofing agent and the same is heated and molded by adding powdery thermosetting resin as a binder. CONSTITUTION:When pulverized wood flour is loaded into a Henschel mixer and agitated while heating at 100 deg.C by superheated steam communicating with a jacket of an outer wall of the mixer, the wood flour is dried down to water content of 5% or less. When a 1-30pts.wt. moistureproofing and flameproofing agent is loaded per 100pts.wt. of the same and heating and agitating of the same is performed, fire-retarded wood flour, which is impregnated and coated evenly with the flameproofing agent, is obtained. When a solution obtained by dissolving a 2-30pts.wt. urea resin precondensate into methanol is loaded into the same for heating and agitating, the methanol turns fugacious and the flour where urea resin has been attached evenly to the fire-retarded wood flour is obtained. When compression molding of the flour is performed at pressure of 100kg/cm<2> while heating at 180 deg.C by loading the flour into a mold, carbon resin is cured and a fire-retardant woody product having urea as binder is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】 本発明は難燃性木質製品の製造方法に係るもので、更に
詳しくは予め微粉化したセルロースを主体とする物質に
難燃剤を含浸被覆させた後、熱硬化性樹脂を添加し、之
を均一に混合した後、加熱加圧成形する難燃性木質製品
の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing flame-retardant wood products, and more specifically, after impregnating and coating a material mainly composed of cellulose that has been pulverized in advance with a flame retardant, a thermosetting resin is applied. The present invention relates to a method for producing a flame-retardant wood product, in which the mixture is uniformly mixed, and then heated and press-molded.

【従来の技!N1 木材を難燃化する方法としては、木材中で水溶性の無機
物イオン同志の反応を行い、水に不溶性かつ不燃性の無
機物を木材中に生成させる方法が開発されている(特開
昭62−248602 )。この方法の欠点は木材中に
水溶性の無機物イオンを圧入又は含浸するのに長時間を
要することであり、且表面と内部の難燃度に差違を生ず
る事である。実際に水を充分に吸はせた木材をバリウム
イオンの水溶液に漬け、次いでリン酸イオンの水溶液に
浸すと木の内部に順番に浸透してリン酸バリウム塩が生
成され木材は難燃化されるが、木材の厚さ3〜5 ml
−rの板で約8時間を要する。更に水洗乾燥しなければ
ならないのでその生産性は非常に悪い。また樹種・樹脂
・気温・湿度等により木材内部に生成される無機物にバ
ラツキを生ずる事は避けられない。 次にJISで準不燃材料として認められている木毛をセ
メント板があるが、之は木片50重量%に対しセメント
が501iffi%と多く、板状に成形したものは難燃
性は高いが外観はセメント板に近く木材とは程遠い。ま
た通常の木材加工用工具で加工する事は不可能であり難
燃木材としては使用しに(い。 また発明者は木粉に難燃剤を含浸し之を難燃剤を添加し
た塩化ビニール樹脂で固化して難燃木材を造ったが、之
は火焔があたった時その表面が炭化すると共に塩素ガス
を発生し、人畜に有害であるので実用できなかった経験
がある。 【発明が解決しようとする問題点] 木材中に無機物を生成させる従来の木材難燃化方法に於
いてはその生産性が非常に悪くがっ木材内部に於ける難
燃性にバラツキがあった。また木毛セメント板では外観
が悪くかつ加工性に難点があった。また塩化ビニール系
の樹脂を使用する場合は塩素ガスの発生が問題であった
。 発明者は之等の欠点を除去した木質度の高い二次加工の
容易な有害ガスの発生しない難燃性木質製品を高い生産
性をもって然も安価に製造する方法を提供せんとするも
のである。 【発明の開示】 発明者はセルロースを主体とする物質を微粉化し之を熱
可塑性樹脂あるいは熱硬化性樹脂を結合剤として、セル
ロースを主体とする物質の含有率50〜98%の製品を
成形する技術を開発し之を実用化しているが、之を難燃
化するにあたり、第1段階として塩化ビニール樹脂を結
合剤として成形品を造ったところ、難燃性は良好であっ
たが火焔が成形品にあたった時その表面が炭化すると同
時に塩化ビニール樹脂が分解して塩素ガスを発生するた
め人畜に有害で実用化できない事が分った。 そこで第2段階として微粉化したセルロースを主体とす
る物質に特許第782936号に示される防湿防炎剤を
含浸して難燃化し、之を粉末状熱硬化性樹脂を結合剤と
して加熱成形したところ有害ガスを発生しない木質製品
を得た。その難燃度は建築物の内装材料及び工法の難燃
性試験方法(J l5−A 1321 )に於ける′難
燃1級に合格したが、更に難燃度を高める為に熱硬化性
樹脂にも難燃剤を添加して加熱加圧成形し、かつその木
質製品表面に難燃性塗料を塗布したところJISの準不
燃に合格する難燃性木質製品を得て本発明を完成した。 また本発明品は昭51建告1231による準不燃材料及
び難燃材料の指定に於いてその第4のガス有害性試験に
も合、格し人畜に無毒であることが証明された。 以下本発明を更に詳述する。 先づセルロースを主体とする物質の微粉化度であるが、
之は微細な程良いが 4〜100メツシユを使用する。 4メツシユはおが屑程度100メツシュはメリケン粉程
度である。4ノツシユ以下では難燃化にバラツキを生じ
るし、100メツシユ 以上では微粉化のコストが高(
ついて採算上問題が生じる。 セルロースを主体とする物質の難燃剤は種々あり、リン
系、臭素系、アンチモン系其他があるが実験の結果最も
セルロース系に適合する難燃剤はリン系であり、その中
でも特許第782936号に示される(有機リン化合物
水溶液を高速回転撹拌しつつアルミナゾルの希釈液およ
びコロイダルシリカの希釈液を添加した)難燃剤が最も
使いやす(且効果的であった。 難燃剤は液状が効果的で粉末状セルロースを主体とする
物質(以下セルロース粉末という)に含浸する割合はセ
ルロース粉末100重量部以下では全(難燃効化は無<
、30!1i量部以上では原価が高くつ(のみならず木
質感が疎外されるので適当でない。難燃剤は必ずしも液
状に限らないが液状の方が分散効果が良い。 液状の難燃剤はセルロース粉末への含浸速度が早いので
粉末を高速撹拌しつつ難燃剤を添加する必要がある。難
燃剤の含浸度合いにバラツキがあると製品の難燃性にバ
ラツキを生ずるからである。 この様にして液状の難燃剤をセルロース粉末に含浸被覆
するのでその加工速度は非常に速<、100贈のセルロ
ース粉末の難燃処理時間は僅かに30分であるのに比し
て、3 、/#厚のブナ材の中迄水溶性の無機物イオン
を浸透させ難燃化するには10時間を要し、その生産性
は本発明の比ではない。また本発明の難燃性木質製品は
その難燃性も均質で何所を切断してもその効力は同じで
ある。 次に結合剤であるが、熱可塑性樹脂は其特性からして耐
熱度は低(かつ難燃化が困難で最も難燃度の高い塩化ビ
ニール系樹脂は加熱時に塩素ガスを発生するので使用で
きない。熱硬化性樹脂はその特性からして耐熱度が高く
難燃性を有するので、熱硬化性樹脂2〜30重量部を難
燃化したセルロース粉末と均一に分散混合した後加熱加
圧成形して難燃性木質製品を製造する。熱硬化性樹脂の
添加率はセルロース粉末10(lffi部に対して最低
Zffiffi部は必要で之以下では製品としての強度
が得られない。また30ffi量部以上添加すると製品
硬度が高(なり過ぎて木質感が無くなるのみならず二次
加工が困難となるので適当ではない。 熱硬化性樹脂は粉末状が望ましいが必ずしも粉氷には限
らない。しかしながらセルロースを主体とする物質が粉
末状であるから熱硬化性樹脂も粉末状が望ましく更に望
ましくはフェノール樹脂、メラミン樹脂、ユリヤ樹脂の
1種もしくは2種以上の混合物が使用しやすい。 難燃化した熱硬化性樹脂を結合剤として使用すれば木質
製品の難燃度は一段と向上する。熱硬化性樹脂の難燃剤
としては臭素系の反応型難燃剤が良<、TBA (テト
ラブロムビスフェノールA)、HBB (ヘキサブロム
ベンゼン)、TBP(臭素化フェノール)等があり何れ
も熱硬化性樹脂と良くまざり良好な難燃性を得られる。 例えばフェノール樹脂100重量部に”対し TBAを
IO重量部配合した時UL−94による難燃性の判定は
5E−0を示した。 以上の様に難燃化したセルロース粉末と難燃化した粉末
状熱硬化性樹脂を良く混会し之を加熱加圧成形した難燃
性木質製品に更に難燃性塗料を表面に塗装して準不燃の
木質製品を得ることが出来た。 難燃性塗料は種々有るがルーフブルーフ(大日本インキ
化学工業株式会社製品の商品名)゛が最も効果的であっ
た。ルーフブルーフは有機含リン化合物系難燃剤(ルー
フブルーフP)とメラミン系樹脂固着剤(ルフブルーフ
FIX)を混合し更に硬化促進剤(カタリストX)を混
合して塗布する常温硬化型の難燃塗料で、本発明の難燃
性木質製品に塗装した結果米国では一般建材の不燃級に
相当する U L−723防火試験の1級に合格した。 またUL (UNDERWRITER3−LABORA
TORIES)で実施するI、 A F D −S t
d52による1000時間の加速ウェザリング(実際の
屋外曝露3〜5年に相当)後の防火テストも合格し、ロ
サンゼルス消防局より仮免許証を得た。 以上の様にして不燃級の木質製品を得ることができ本発
明は完成したが、本発明による木質製品は木材同様の二
次加工性を有し更に成形加工性に於いて種々の特徴を有
する。 その第1点はセルロース粉末がら直接難燃性木質製品を
成形できる事である。従来の難燃性木質製品は原木から
板材または角材を取り之を難燃化するか、あるいは更に
製品化してがら難燃化するか、何れにしても原木材を必
要とし且高価な加工費を必要とするが、本発明はセルロ
ースを主体とする物質なら何でも良く例えばハードボー
ドの打抜m・ベニヤ板工場のサンダー粉・製材工場のお
が屑あるいは有効利用法が無くて困っている全国の森林
間伐材等いづれも之を微粉化すれば使用できるので材料
原価は安く、且つ成形は金型を所望の形状に作れば粉末
から直接所望の難燃性木質製品が得られるので加工度の
高い木質製品はどその価格は安価にできる。例へは彫刻
を施した高価な玄関ドアー・欄間・格天井・ルーバー扉
等は木質製品の数分の1の価格で生産が可能である。 その第2点は成形に際し発泡剤を混入し押出引抜成型あ
るいは圧縮成形を実施すれば木材と同程度の軽い難燃性
木質製品を生産することができる事である。 その第3点は押出引抜成形・多列ロールによる連続加熱
加圧成形により天然木では得られない長尺の木管や薄板
其他異形断面の難燃性長尺木質製品を安価に製造する事
ができる事である。その実用例としては障子・ふすま・
手すり・敷居・鴨居・回り縁・破風板・はなか(し板・
つけ胴差し・ぬれ縁・床板・天井板・外壁材等である。 その第4点は表面を天然木にする為、予め難燃剤を含浸
した天然木単板を成形後に製品表面に貼着するか、或は
成形金型内に上記難燃単板を固定してインサート成形す
れば表面が天然木単板の難燃性木質製品を容易にかつ安
価に製造することができる事である。その実用例として
は玄関扉・間仕切板・キッチン扉・其他家具用扉等であ
る。 その第5点は成形品の強度が不足する場合原料の混合に
際しガラス繊維炭素繊維等不燃繊維の短いチaツブを混
入分散させれば強度を増した難燃性木質製品が得られる
事である。 その第6点は高強度が要求される場合、補強材として金
属パイプ・金属板・金網等を成形金型内にインサートし
て成形すれば木材以上の信頼性のある高強度の難燃性木
質製品が得られる事である。その実用例として玄関扉に
は金網を、窓枠や窓には金属アングルを、柱には角パイ
プをインサートすれば建築用材として充分の強度を得ら
れる。 その第7点は圧縮成形金型によるエンボス成形法である
。即ち金型に木目・皮シポ・布目等を彫刻して圧縮成形
を行えば、製品の表面には所望の凹凸模様が造られ之に
難、燃塗料による目止め着色塗装を行えば表面に木目模
様や皮シポ模様等の滓出た難燃性木質製品を安価に求め
る事ができる。
[Traditional technique! N1 As a method for making wood flame retardant, a method has been developed in which water-soluble inorganic ions react with each other in the wood to generate water-insoluble and nonflammable inorganic substances in the wood (Japanese Unexamined Patent Application Publication No. 1983-1992). -248602). The disadvantage of this method is that it takes a long time to inject or impregnate water-soluble inorganic ions into the wood, and there is a difference in flame retardancy between the surface and the interior. In fact, when wood that has sufficiently absorbed water is immersed in an aqueous solution of barium ions and then in an aqueous solution of phosphate ions, the barium phosphate salts are generated and penetrate into the interior of the wood, making the wood flame retardant. However, the thickness of the wood is 3 to 5 ml.
- It takes about 8 hours for the r board. Furthermore, since it must be washed with water and dried, the productivity is very poor. Furthermore, it is inevitable that the inorganic substances produced inside the wood will vary depending on the tree species, resin, temperature, humidity, etc. Next, there are cement boards made of wood wool, which is recognized as a quasi-noncombustible material by JIS, but the cement content is 501% by weight compared to 50% by weight of the wood, and although the board shape is highly flame retardant, it has a poor appearance. is close to cement board and far from wood. In addition, it is impossible to process with ordinary wood processing tools, so it cannot be used as a flame retardant wood.The inventor also impregnated wood flour with a flame retardant and made it with vinyl chloride resin added with a flame retardant. Although a flame-retardant wood was made by solidifying the wood, when it was exposed to flames, the surface of the wood charred and produced chlorine gas, which was harmful to humans and animals, so it could not be put to practical use. [Problems] In the conventional method of making wood flame retardant by producing inorganic substances in the wood, the productivity was very low and the flame retardancy inside the wood varied.Also, wood wool cement board However, when using vinyl chloride resin, there was a problem with the generation of chlorine gas. The object of the present invention is to provide a method for manufacturing flame-retardant wood products that are easy to process and do not emit harmful gases with high productivity and at low cost. We have developed a technology for molding micronized materials using thermoplastic resin or thermosetting resin as a binder to form products containing 50 to 98% of cellulose-based substances, and have put this into practical use. When a molded product was made using vinyl chloride resin as a binder in the first step, the flame retardancy was good, but when the flame hit the molded product, the surface of the molded product carbonized and the vinyl chloride resin was removed. It was found that it could not be put to practical use because it decomposed and generated chlorine gas, which is harmful to humans and animals.The second step was to impregnate a substance mainly composed of pulverized cellulose with a moisture and flame retardant as shown in Patent No. 782936. When this was heat-molded using a powdered thermosetting resin as a binder, a wood product that did not emit harmful gases was obtained.The degree of flame retardancy was determined by flame retardant tests on building interior materials and construction methods. Although it passed grade 1 flame retardancy in the method (J 15-A 1321), in order to further increase the degree of flame retardancy, a flame retardant was added to the thermosetting resin and the wood was molded under heat and pressure. By applying a flame-retardant paint to the surface of the product, we obtained a flame-retardant wood product that passed JIS semi-nonflammability, completing the present invention.In addition, the product of the present invention is a semi-non-flammable material and a flame-retardant material according to Notification 1231 of 1972. It passed the fourth gas toxicity test and was certified to be non-toxic to humans and animals.The present invention will be described in more detail below. degree, but
The finer the finer the better, but use 4 to 100 pieces. 4 mesh is about the same as sawdust, and 100 mesh is about the same as powder. If it is less than 4 meshes, there will be variations in flame retardancy, and if it is more than 100 meshes, the cost of pulverization will be high (
Therefore, a problem arises in terms of profitability. There are various flame retardants based on cellulose, including phosphorus-based, bromine-based, antimony-based, and others, but as a result of experiments, the flame retardant that is most compatible with cellulose is the phosphorus-based flame retardant. A flame retardant prepared by adding a dilute solution of alumina sol and a dilute solution of colloidal silica to an aqueous solution of an organic phosphorus compound while stirring at high speed was the easiest to use (and most effective).A liquid flame retardant is effective; If the impregnating ratio of a substance mainly composed of cellulose (hereinafter referred to as cellulose powder) is less than 100 parts by weight of cellulose powder, it will be completely impregnated (no flame retardant effect).
If the amount exceeds 30!1i parts, it is not suitable because the cost is high (not only does it take away the wood texture).The flame retardant does not necessarily have to be in liquid form, but it has a better dispersion effect.Liquid flame retardants include cellulose. Since the speed of impregnation into the powder is fast, it is necessary to add the flame retardant while stirring the powder at high speed.This is because variations in the degree of impregnation of the flame retardant will cause variations in the flame retardancy of the product. Since the liquid flame retardant is impregnated and coated on the cellulose powder, the processing speed is very fast.Compared to the flame retardant treatment time for cellulose powder of 100 mm, which is only 30 minutes, It takes 10 hours to infiltrate water-soluble inorganic ions into the inside of beech wood to make it flame retardant, and the productivity is not comparable to that of the present invention.Furthermore, the flame retardant wood product of the present invention has It is homogeneous and has the same effect no matter where it is cut.Next, regarding the binder, thermoplastic resin has a low heat resistance due to its characteristics (and is difficult to make flame retardant, so it has the highest flame retardancy). Vinyl chloride resins with high heat resistance cannot be used because they generate chlorine gas when heated.Thermosetting resins have high heat resistance and flame retardancy, so 2 to 30 parts by weight of thermosetting resins are A flame-retardant wood product is produced by uniformly dispersing and mixing with the combusted cellulose powder and then heating and press-molding it.The addition rate of the thermosetting resin is 10 parts of cellulose powder (minimum Zffiffi parts per lffi parts is required). If it is less than this, it will not be possible to obtain the strength of the product.Additionally, if it is added in excess of 30 ffi parts, the product hardness will be too high (it is not suitable because it will not only lose its woody feel but also make secondary processing difficult).Thermosetting resin is preferably in powder form, but is not necessarily limited to powdered ice.However, since the substance mainly composed of cellulose is in powder form, the thermosetting resin is also preferably in powder form, and more preferably one type of phenolic resin, melamine resin, or urea resin. Alternatively, it is easy to use a mixture of two or more types.Using a flame-retardant thermosetting resin as a binder will further improve the flame retardancy of wood products.Bromine-based flame retardants are suitable for thermosetting resins. Good types of flame retardants include TBA (tetrabromobisphenol A), HBB (hexabromobenzene), and TBP (brominated phenol), all of which mix well with thermosetting resins and provide good flame retardancy.For example, When 10 parts by weight of TBA was added to 100 parts by weight of phenolic resin, the flame retardant rating according to UL-94 was 5E-0.As described above, flame retardant cellulose powder and flame retardant powder A semi-non-flammable wood product was obtained by thoroughly mixing a thermosetting resin and molding the mixture under heat and pressure, and then coating the surface with a flame-retardant paint. There are various flame retardant paints, but Roof Blue (trade name of Dainippon Ink & Chemicals Co., Ltd.) was the most effective. Roofbruch is a room-temperature-curing flame-retardant paint that is applied by mixing an organic phosphorus-containing compound flame retardant (Roofbruf P) and a melamine resin fixing agent (Rufubruf FIX), and further mixing a curing accelerator (Catalyst X). As a result of coating the flame-retardant wood product of the present invention, it passed the first grade of the U L-723 fire protection test, which corresponds to the non-combustibility grade of general building materials in the United States. Also UL (UNDERWRITER3-LABORA
TORIES) I, A F D -S t
It also passed a fire test after 1,000 hours of accelerated weathering (equivalent to 3-5 years of actual outdoor exposure) using the D52, and received a provisional license from the Los Angeles Fire Department. The present invention has been completed by being able to obtain a non-combustible wood product as described above, but the wood product according to the present invention has secondary processability similar to that of wood, and further has various characteristics in terms of moldability. . The first point is that flame-retardant wood products can be molded directly from cellulose powder. Conventional flame-retardant wood products require the use of raw wood and expensive processing costs. However, the present invention can be applied to any material that is mainly composed of cellulose, such as hardboard punching m, sanding powder from plywood factories, sawdust from sawmills, or thinned wood from forests throughout the country that are in trouble because there is no effective way to use them. All of these can be used if they are pulverized, so the cost of materials is low, and the desired flame-retardant wood product can be obtained directly from the powder by molding a mold into the desired shape, so highly processed wood products can be used. Which price can be lowered. For example, expensive carved entrance doors, transoms, coffered ceilings, louvered doors, etc. can be produced at a fraction of the price of wooden products. The second point is that if a foaming agent is mixed in during molding and extrusion pultrusion molding or compression molding is performed, it is possible to produce wood products that are as light and flame-retardant as wood. The third point is that by extrusion pultrusion molding and continuous heating and pressure molding using multi-row rolls, long wood pipes, thin plates, and other flame-retardant long wood products with irregular cross sections that cannot be obtained with natural wood can be manufactured at low cost. That's a thing. Practical examples include shoji, fusuma,
Handrails, thresholds, lintels, wraparound edges, gables,
These include mounting brackets, wet edges, floor boards, ceiling boards, exterior wall materials, etc. The fourth point is that in order to make the surface natural wood, either a natural wood veneer pre-impregnated with flame retardant is attached to the product surface after molding, or the flame retardant veneer is fixed inside the mold. By insert molding, it is possible to easily and inexpensively produce a flame-retardant wood product with a natural wood veneer surface. Practical examples include entrance doors, partition boards, kitchen doors, and other furniture doors. The fifth point is that if the strength of the molded product is insufficient, a flame-retardant wood product with increased strength can be obtained by mixing and dispersing short pieces of non-combustible fiber such as glass fiber and carbon fiber when mixing the raw materials. . The sixth point is that when high strength is required, by inserting a metal pipe, metal plate, wire mesh, etc. into the mold as a reinforcing material and molding, it is possible to use a high-strength, flame-retardant wood material that is more reliable than wood. It is about getting the product. As a practical example, inserting wire mesh into the entrance door, metal angles into the window frames and windows, and square pipes into the pillars can provide sufficient strength as construction materials. The seventh point is the embossing method using a compression mold. In other words, if you carve wood grain, leather grain, cloth grain, etc. into a mold and perform compression molding, the desired uneven pattern will be created on the surface of the product. Flame-retardant wood products with wood grain patterns, leather stain patterns, etc. can be obtained at low prices.

【実施例及び効果] 以下その実施の1例を述べるが本発明はこれら実施例に
のみ限定されるものではない。 実施例1゜ 40メツシユに微粉砕した木粉100bをヘンシェルミ
キサーに投入し、ミキサー外壁のジャケットに通じる過
熱蒸気により100℃に加熱しつつ撹拌すると、約10
分で木粉は水分含有率5%以下に乾燥された。之に特許
第782936号による防湿性防炎剤10bを投入し更
に10分間加熱撹拌すると防炎剤が均−に含浸被覆され
た難燃化木粉が得られた。之に更にユリア樹脂初期縮合
物10kgをメタノールl〇−に溶解した液を投入し1
0分間加熱撹拌するとメタノールは揮散し、難燃化木粉
に尿素樹脂が均一に添着した粉末が得られた。この粉末
(所要量)を金型に投入し180℃に加熱しつつ100
b/cdの圧力で圧縮成形すると、5分間で炭素樹脂は
硬化し尿素樹脂を結合剤とした木粉87%難燃性木質製
品を得た。この難燃性木質製品の難燃性試験をJ!SΔ
−1321により行った結果JIS難燃1級に合格した
。圧縮成形金型を必要に応じて所望の形状に造れば如何
なる形状の難燃性木質製品も簡単にかつ安価に製造する
ことができる。 実施例2゜ 100メツシユに微粉砕した木粉10口に「をヘンシェ
ルミキサーに投入し、ミキサー外壁部のジャケットに通
じる過熱蒸気により100℃に加熱しつつ撹拌すると、
約10分で木粉は水分含有率5%以下に乾燥された。之
に特許第782936号による防湿性防炎剤15−を投
入し更に10分間加熱攪拌すると防炎剤が均一に含浸被
覆された難燃化木粉が得られた。 フェノール樹脂(レゾール)、10kgをメタノール4
0bに溶解した液を上記の難燃化木粉に投入して良く混
合拡散した後2をガラス繊維テープに塗布含浸させ加熱
乾燥してフェノール樹脂をB −stageでプリプレ
グしたテープを造り、之を特開昭51−58467号に
見る様に芯金に捲付けて、予熱機を通過した後芯金と共
に硬化成形用ホットダイを通過引抜くと中空パイプが出
来る。この様にして長尺の難燃性木管を得た。この木管
の難燃性試験をJI S A−1321により行った結
果JISfi燃1級に合格した。以上の様にプレプレグ
の形状ならびに引抜ダイの形状を所望の断面形状にすれ
ば所望形状の長尺な難燃性木質製品を安価に且大量に製
造することができる。 実施例3゜ フェノール樹脂(レゾール)10kgをメタノール10
−に溶解した後、難燃剤としてTBA (テトラブロム
ビスフェノールA)1−を添加して良く混合し、之を実
施例2と同様にして得られた難燃木粉JO5kfに添加
して10分間加熱撹拌するとメタノールは揮散し難燃化
フェノール樹脂が均一に添着した難燃化木粉が得られた
。この木粉(所要量)を扉の形状で且表面相当部に予め
難燃剤を含浸した天然木単板を固定した圧縮金型に投入
しつつ金網をインサートして型締めを行い、金型を18
0℃に加熱して100kg/c+Jの圧力で5分間圧縮
成形すると扉の形状で表面に天然木単板が貼着され且金
網で補強された高強度の難燃層の表板を得た。同様にし
て裏板を圧縮成形し、表板と裏板を嵌合接着して全外面
をルーフ・ブルーフで刷毛塗りし常温硬化さした。この
扉は米国に於ける一般建材の不燃級に相当し、UL−7
23防火試験1級に合格するもので、高級マンションの
玄関扉や室内扉に最適である。 実施例4゜ 80メツシユに微粉化したハードボードの打抜屑100
−をヘンシェルミキサーに投入しミキサー外壁部のジャ
ケットに通じる過熱蒸気により 100℃に加熱しつつ
3分間撹拌し水分を除去した後、之に特許第78293
6号による防湿性防炎剤12 ktを投入し更に10分
間加熱撹拌すると防炎剤が均一に含浸被覆された麹燃化
ハードボード粉が得られた。 別途にフェノール樹脂(レゾール’) 10kgおよび
難燃性可塑剤クレジルジフェノールフォスフェート1−
をメタノール20kgに溶解した液をつくり、之に上記
の!ll燃化ハードボード粉を投入し均一に撹拌混合さ
せた後2をガラス繊維布に塗布含浸し加熱乾燥してフェ
ノール樹脂が B −stageの状態でブリプレラグ
したシートを造る。このシートを予備加熱室を通過させ
ステンレス板に挟みながら特開昭62−225331−
4項第3図に示される様に水平多列のロールにより加熱
加圧しつつ送り出して難燃性ハードボードを得た。之に
更に全面にルーフプルーフを塗装し常温硬化させて不燃
級のハードボードを得た。このハードボードは UL−
793防火試験1級に合格し米国に於ける一般建材の不
燃級に相当する事が証明されたので自動車の内装削具他
用途は多々あると推定され、材料はスクラップで良く安
価かつ有用な新素材である。 実施例5゜ ベニヤ板工場で発生するサンダー粉は若干の接着剤とペ
ーパーの石粉が混入しているが95%以上は木粉である
。然し夾雑物が混入している為通常の木粉としては利用
されず燃料として使用される程度であるが、このサンダ
ー粉を利用する難燃性雨戸の製造方法を述べる。サンダ
ー粉100−をヘンシェルミキサーに投入しミキサー外
壁部のジャケットに通じる過熱蒸気により100℃で 
5分間加熱撹拌して水分を除去した後、之に特許第78
2936号による防湿性防炎剤13kgを投入し更に1
0分間加熱撹拌すると防炎剤は均一にサンダー粉に含浸
被覆され難燃性サンダー粉を得た。メラミン樹脂(初期
縮合物)10kgをメタノール10bに溶解した液を上
記難燃性サンダー粉に投入し更に10分間加熱撹拌する
とメタノールは揮散しメラミン樹脂が均一に添着した難
燃サンダー粉を得られた。この粉末(所要量)を雨戸の
金型に投入して180℃に加熱しつつ100b/cdの
圧力で5分間加熱圧縮する。雨戸の金型は表面部に天然
木から転写した木目のエツチングを施し裏面部には周囲
の補強桟と横桟を設けておく。プレス成形品の表面部の
木目状凹凸には難燃塗料で目止め着色塗装を行い、その
色合い及び凹凸の感触は天然木間等に仕上げた後、全面
にルーフ・プルーフを塗装し常温硬化させる。この様に
して出来た雨戸は U L −723の防火試験1級に
合格し米国に於ける一般建材の不燃級に相当するので、
従来木造建築であるにもががわらず防火の理由から雨戸
に止むを得ず金属サツシュを使用した為周囲の木造と調
和せず違和感があったが、本発明により周囲と調和した
色合いに仕上げる事が可能で防火性もあり尚且大量生産
も可能で金属サツシュに比して安価となる。 【発明の効果】 本発明によりセルロースを主体とする物質の粉末を難燃
化し熱硬化性樹脂を結合剤として加熱加圧成形すること
により、木質の含有量が多く、且つ、均質な難燃性を有
する難燃性木質製品を高い生産性を似て安価に供給でき
る様になり、また従来有効利用できなかったセルロース
を主体とする廃棄物を有用な難燃性木質製品として世に
蓬り出す事ができた社会的意義は大きい。
[Examples and Effects] An example of the implementation will be described below, but the present invention is not limited only to these examples. Example 1 100b of wood flour finely ground to 40 mesh was put into a Henschel mixer, heated to 100°C by superheated steam connected to the jacket on the outer wall of the mixer, and stirred.
In minutes, the wood flour was dried to a moisture content of less than 5%. A moisture-proof flame retardant 10b according to Japanese Patent No. 782936 was added thereto, and the mixture was further heated and stirred for 10 minutes to obtain flame retardant wood powder uniformly impregnated with the flame retardant. In addition, a solution of 10 kg of urea resin initial condensate dissolved in 10-methanol was added.
When heated and stirred for 0 minutes, methanol was volatilized, and a powder in which urea resin was uniformly attached to flame-retardant wood flour was obtained. This powder (required amount) was put into a mold and heated to 180°C.
When compression molded at a pressure of b/cd, the carbon resin hardened in 5 minutes, yielding a wood product with 87% flame retardant wood powder using urea resin as a binder. J! conducted a flame retardant test on this flame retardant wood product. SΔ
-1321, it passed JIS flame retardant class 1. Flame-retardant wood products of any shape can be manufactured easily and at low cost by making a compression molding mold into a desired shape as needed. Example 2: 10 pieces of wood flour finely ground into 100 meshes were put into a Henschel mixer, and stirred while being heated to 100°C by superheated steam passing through the jacket on the outer wall of the mixer.
The wood flour was dried to a moisture content of 5% or less in about 10 minutes. Moisture-proof flame retardant 15- according to Patent No. 782,936 was added thereto, and the mixture was further heated and stirred for 10 minutes to obtain flame retardant wood flour uniformly impregnated with the flame retardant. Phenol resin (resol), 10 kg methanol 4
After pouring the solution dissolved in 0b into the flame retardant wood powder mentioned above and mixing and diffusing it well, apply 2 to a glass fiber tape to impregnate it and heat and dry it to make a tape prepregged with phenol resin at the B-stage. As shown in Japanese Patent Application Laid-Open No. 51-58467, a hollow pipe is produced by wrapping it around a core metal, passing through a preheater, and then pulling it out through a hardening molding hot die together with the core metal. In this way, a long flame-retardant wood pipe was obtained. This woodwind was subjected to a flame retardant test according to JIS A-1321, and as a result, it passed JIS fi flame retardant grade 1. As described above, by making the shape of the prepreg and the shape of the drawing die into the desired cross-sectional shape, long flame-retardant wood products of the desired shape can be produced in large quantities at low cost. Example 3゜10 kg of phenolic resin (resol) was mixed with 10 kg of methanol.
-, then add TBA (tetrabromo bisphenol A) 1- as a flame retardant, mix well, add this to flame retardant wood powder JO5kf obtained in the same manner as in Example 2, and heat for 10 minutes. When stirred, the methanol was volatilized and a flame-retardant wood powder to which the flame-retardant phenol resin was uniformly adhered was obtained. This wood powder (required amount) is put into a compression mold in the shape of a door and fixed with a natural wood veneer whose surface has been pre-impregnated with flame retardant, and a wire mesh is inserted to tighten the mold. 18
By heating to 0° C. and compression molding at a pressure of 100 kg/c+J for 5 minutes, a door-shaped top panel with a high-strength flame-retardant layer on which a natural wood veneer was adhered and reinforced with wire mesh was obtained. The back plate was compression molded in the same way, the top plate and back plate were fitted and adhered, and the entire outer surface was brushed with Roof Bruf and cured at room temperature. This door is equivalent to the nonflammable grade of general building materials in the United States, and is UL-7.
It passes grade 1 of the 23 Fire Prevention Test and is ideal for entrance doors and interior doors in luxury condominiums. Example 4 100 pieces of hardboard punching waste pulverized into 80 mesh
- was put into a Henschel mixer and heated to 100°C by superheated steam passing through the jacket on the outer wall of the mixer and stirred for 3 minutes to remove water.
When 12 kt of a moisture-proof flame retardant No. 6 was added and the mixture was further heated and stirred for 10 minutes, a koji-combusted hardboard powder uniformly impregnated with the flame retardant was obtained. Separately, 10 kg of phenolic resin (Resol') and 1 kg of flame-retardant plasticizer cresyl diphenol phosphate.
Prepare a solution by dissolving the above in 20 kg of methanol, and then add the above! After adding the combustible hardboard powder and stirring and mixing it uniformly, 2 was coated on a glass fiber cloth to impregnate it, and heated and dried to make a sheet in which the phenol resin was bristle-rugged in the B-stage state. This sheet is passed through a preheating chamber and is sandwiched between stainless steel plates.
As shown in Section 4, Figure 3, a flame-retardant hardboard was obtained by feeding out the material while heating and pressurizing it with horizontal multiple rows of rolls. Furthermore, we coated the entire surface with roof proof and cured it at room temperature to obtain a non-combustible hardboard. This hardboard is UL-
It has passed the 1st grade of the 793 fire protection test and has been proven to be equivalent to the non-combustible grade of general building materials in the United States, so it is assumed that it will have many uses such as car interior cutting tools. It is the material. Example 5 Sander powder generated at a plywood factory contains some adhesive and paper stone powder, but more than 95% is wood powder. However, because it contains impurities, it cannot be used as normal wood flour and is only used as fuel. However, we will describe a method for manufacturing flame-retardant shutters using this sander powder. 100% of sander powder was put into a Henschel mixer and heated to 100°C by superheated steam passing through the jacket on the outer wall of the mixer.
After heating and stirring for 5 minutes to remove moisture, the patent No. 78
Added 13 kg of moisture-proof flame retardant according to No. 2936 and added 1.
When the mixture was heated and stirred for 0 minutes, the flame retardant was uniformly impregnated into the sander powder to obtain flame-retardant sander powder. A solution of 10 kg of melamine resin (initial condensate) dissolved in 10 b of methanol was added to the above flame-retardant sander powder, and when the mixture was heated and stirred for an additional 10 minutes, the methanol was evaporated and flame-retardant sander powder to which the melamine resin was evenly adhered was obtained. . This powder (required amount) is put into a shutter mold, heated to 180° C., and heated and compressed at a pressure of 100 b/cd for 5 minutes. The mold for the shutter is etched with the wood grain transferred from natural wood on the front surface, and surrounding reinforcing bars and horizontal bars are provided on the back surface. The wood grain-like irregularities on the surface of the press-formed product are painted with a flame-retardant paint to seal the surface, and the color and texture of the irregularities are finished to resemble natural wood.After that, Roof Proof is applied to the entire surface and cured at room temperature. . The shutters made in this way have passed the UL-723 fire protection test grade 1, and are equivalent to the noncombustible grade of general building materials in the United States.
Traditionally, despite being a wooden building, metal sashes were unavoidably used for the shutters for fire prevention reasons, which did not blend in with the surrounding wooden structures and felt strange.However, with the present invention, it has been possible to finish the building in a color that blends in with the surroundings. It is fireproof, can be mass-produced, and is cheaper than metal sashes. Effects of the Invention According to the present invention, by making the powder of a substance mainly composed of cellulose flame retardant and molding it under heat and pressure using a thermosetting resin as a binder, a product with a high wood content and homogeneous flame retardancy can be obtained. It has become possible to supply flame-retardant wood products with high productivity at low prices, and waste materials mainly consisting of cellulose, which could not be effectively used in the past, can be made available to the world as useful flame-retardant wood products. The social significance of this is great.

Claims (13)

【特許請求の範囲】[Claims] (1)予め微粉化したセルロースを主体とする物質10
0重量部に対して難燃剤1〜30重量部を均一に被覆含
浸させた後、熱硬化性樹脂2〜30重量部を添加し、之
を均一に混合した後、加熱加圧成形する事を特徴とする
難燃性木質製品の製造方法。
(1) Substance 10 mainly composed of pre-pulverized cellulose
After uniformly coating and impregnating 1 to 30 parts by weight of a flame retardant to 0 parts by weight, 2 to 30 parts by weight of a thermosetting resin is added, and the mixture is uniformly mixed and then heated and pressure molded. A method for producing characteristically flame-retardant wood products.
(2)熱硬化性樹脂に予め難燃剤を配合する特許請求の
範囲第(1)項記載の難燃性木質製品の製造方法。
(2) The method for producing a flame-retardant wood product according to claim (1), wherein a flame retardant is blended in advance with the thermosetting resin.
(3)特許請求の範囲第(1)項および第2項記載の方
法で加熱加圧成形された難燃性木質製品。
(3) A flame-retardant wood product molded under heat and pressure by the method described in claims (1) and (2).
(4)熱硬化性樹脂がフェノール樹脂、メラミン樹脂、
ユリヤ樹脂の1種もしくは2種以上の混合物である特許
請求の範囲第(1)項または第(2)項記載の難燃性木
質製品の製造方法。
(4) Thermosetting resin is phenol resin, melamine resin,
The method for producing a flame-retardant wood product according to claim (1) or (2), which is one or a mixture of two or more urea resins.
(5)成形に際し発泡剤を混入する特許請求の範囲第(
1)項または第2項記載の難燃性発泡木質製品の製造方
法。
(5) Claim No. 1 (
A method for producing a flame-retardant foamed wood product according to item 1) or item 2.
(6)成形に際し金属部品をインサートする特許請求の
範囲第(1)項第2項または第(5)項記載の難燃性木
質製品の製造方法。
(6) A method for manufacturing a flame-retardant wood product according to claim (1), item 2 or claim (5), which comprises inserting metal parts during molding.
(7)チョップ状難燃性繊維1〜20重量部を添加して
加熱加圧成形する特許請求の範囲第(1)項第2項また
は第(5)項記載の難燃性木質製品の製造方法。
(7) Manufacture of a flame-retardant wood product according to claim (1), item (2) or (5), which is formed by adding 1 to 20 parts by weight of chopped flame-retardant fibers and molding under heat and pressure. Method.
(8)成形に際し網状または布状の難燃性繊維をインサ
ートする特許請求の範囲第(1)項第2項または第(5
)項記載の難燃性木質製品の製造方法。
(8) Claims (1), (2) or (5) in which flame retardant fibers in the form of a net or cloth are inserted during molding.
) The method for manufacturing the flame-retardant wood product described in section 2.
(9)予め難燃剤を含浸し且裏打補強した天然木単板を
成形後に貼着する特許請求の範囲第(1)項、第(2)
項、第(3)項、第(6)項、第(7)項または第(8
)項記載の難燃性木質製品の製造方法。
(9) Claims (1) and (2) in which a natural wood veneer that has been pre-impregnated with a flame retardant and reinforced with a backing is attached after molding.
Section (3), Section (6), Section (7) or Section (8)
) The method for manufacturing the flame-retardant wood product described in section 2.
(10)予め難燃剤を含浸し且裏打補強した天然木単板
を成形金型内に固定しておき加熱圧縮成形する特許請求
の範囲第(1)項、第(2)項、第(5)項、第(6)
項、第(7)項または第(8)項に記載する難燃性木製
品の製造方法。
(10) Claims (1), (2), and (5) in which a natural wood veneer that has been pre-impregnated with a flame retardant and reinforced with a backing is fixed in a mold and then heated and compression molded. ), Section (6)
A method for producing a flame-retardant wood product as described in paragraph (7) or paragraph (8).
(11)所望の形状に加工した木片を金型内に固定して
成形する特許請求の範囲第(1)項、第(2)項、第(
5)項、第(6)項、第(7)項、第(8)項、第(9
)項または第(10)項記載の難燃性木質製品の製造方
法。
(11) Claims (1), (2), (
Section 5), Section (6), Section (7), Section (8), Section (9)
) or (10).
(12)圧縮成形金型に彫刻を施して成形品の表面に木
目、皮目、布目等のシポを形成する特許請求の範囲第(
1)項、第(2)項、第(5)項、第(6)項、第(7
)項、第(8)項または第(11)項記載の難燃性木質
製品の製造方法。
(12) Claim No. 1 (1) in which the compression molding mold is engraved to form grains such as wood grain, leather grain, cloth grain, etc. on the surface of the molded product.
Paragraph 1), Paragraph (2), Paragraph (5), Paragraph (6), Paragraph (7)
), (8) or (11).
(13)加熱加圧してできた難燃性木質製品に更に難燃
塗料を塗布した特許請求の範囲第(1)項〜第(12)
項記載の難燃性木質製品並びにその製造方法。
(13) Claims (1) to (12) in which a flame-retardant paint is further applied to a flame-retardant wood product made by heating and pressurizing.
Flame-retardant wood products and their manufacturing method as described in Section 1.
JP30377787A 1987-11-30 1987-11-30 Manufacture of fire-retardant woody product Pending JPH01145103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30377787A JPH01145103A (en) 1987-11-30 1987-11-30 Manufacture of fire-retardant woody product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30377787A JPH01145103A (en) 1987-11-30 1987-11-30 Manufacture of fire-retardant woody product

Publications (1)

Publication Number Publication Date
JPH01145103A true JPH01145103A (en) 1989-06-07

Family

ID=17925161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30377787A Pending JPH01145103A (en) 1987-11-30 1987-11-30 Manufacture of fire-retardant woody product

Country Status (1)

Country Link
JP (1) JPH01145103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000272A1 (en) * 1996-06-27 1998-01-08 Clausi Robert N Method of molding powdered plant fiber into high density materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144907A (en) * 1980-04-14 1981-11-11 Bitou Hitoshi Manufacture of incombustible molding
JPH01152006A (en) * 1987-12-10 1989-06-14 Sangyo Gijutsu Kenkyusho:Kk Manufacture of flame retardant woody product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144907A (en) * 1980-04-14 1981-11-11 Bitou Hitoshi Manufacture of incombustible molding
JPH01152006A (en) * 1987-12-10 1989-06-14 Sangyo Gijutsu Kenkyusho:Kk Manufacture of flame retardant woody product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000272A1 (en) * 1996-06-27 1998-01-08 Clausi Robert N Method of molding powdered plant fiber into high density materials
EP1201380A3 (en) * 1996-06-27 2005-11-09 Robert N. Clausi Method of molding powdered plant fibers into high density materials

Similar Documents

Publication Publication Date Title
DE4310191C2 (en) Laminated fibreboard
US6926954B2 (en) Decorative sheet or molding comprising fibers and fillers and process for its production
DE69225368T2 (en) Process for the production of a building board
US4176115A (en) Fire-resistant construction material
KR101551542B1 (en) Noncombustible construction board and its manufacturing method
CN109483687A (en) A kind of high fire-retardance modified fibre plate and preparation method thereof
CN1253532C (en) Aqueous fire retardant
CN100378185C (en) Expansion type fire fighting glue
US4128524A (en) Composites of metal-modified urea-melamine-formaldehyde resins and fillers
Wang et al. Progress in research on fire retardant–treated wood and wood-based composites: A Chinese perspective
KR100687484B1 (en) Polyester flame retardant plate and manufacturing method
KR101068928B1 (en) Flame-retardant interior decoration surface treated with flame retardant
JPH01152006A (en) Manufacture of flame retardant woody product
JP3109281B2 (en) Wood board
JPH01145103A (en) Manufacture of fire-retardant woody product
CN104441191A (en) Inflaming-retarding wooden artificial board
CN110563431A (en) a-grade fireproof formaldehyde-free plate and preparation method thereof
CN101892020B (en) Flame retardant, preparation method thereof and method for preparing artificial boards from same
KR101066276B1 (en) Method of manufacturing wet-drying materials and panel materials for indoor finishing using natural cotton, and wet-drying materials and panel materials manufactured thereby
GB2029837A (en) Fire-resistant Material
CN114507059A (en) Wood fiber composite diatomite fireproof flame-retardant decorative plate and preparation method thereof
KR100660442B1 (en) Architectural Sandwich Panels
KR102119860B1 (en) Pulp board having flame retardancy
JP3055315B2 (en) Wood panel
CA2256398A1 (en) Fireproofing agent for particle or fibre boards