[go: up one dir, main page]

JPH01143626A - Gas dehumidification method - Google Patents

Gas dehumidification method

Info

Publication number
JPH01143626A
JPH01143626A JP62300433A JP30043387A JPH01143626A JP H01143626 A JPH01143626 A JP H01143626A JP 62300433 A JP62300433 A JP 62300433A JP 30043387 A JP30043387 A JP 30043387A JP H01143626 A JPH01143626 A JP H01143626A
Authority
JP
Japan
Prior art keywords
gas
pressure side
gas separation
separation membrane
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62300433A
Other languages
Japanese (ja)
Other versions
JPH0667449B2 (en
Inventor
Satoru Ono
悟 小野
Kohei Ninomiya
康平 二宮
Masao Kikuchi
政夫 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62300433A priority Critical patent/JPH0667449B2/en
Publication of JPH01143626A publication Critical patent/JPH01143626A/en
Publication of JPH0667449B2 publication Critical patent/JPH0667449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスの脱湿法、詳しくは、ガスに含まれる水
分を、水分選択透過性の分離膜を用い、エネルギー効率
良く且つ容易に除去する方法に関するもので、本発明の
方法は、例えば計装用加圧ガス及び駆動装置用加圧ガス
の脱湿等に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for dehumidifying gas, and more specifically, a method for dehumidifying gas, and more specifically, a method for dehumidifying gas, using a water-selective permeable separation membrane to easily and energy-efficiently remove moisture contained in gas. The method of the present invention relates to a removal method, and the method of the present invention is used, for example, to dehumidify pressurized gas for instrumentation and pressurized gas for drive devices.

〔従来の技術〕[Conventional technology]

計装用加圧ガスは、プロセス制御vi器(例えば、空気
圧式伝送器、空気圧式調節計、空気圧式駆動装置等)に
使用されるもので、例えば、化学プラントの流墳、差圧
、圧力、液位、温度等のプロセス変数をガス圧力(0,
05〜1.0Kg/−・G)に変換し受信計器に伝送す
るためのプロセス制御装置のガス圧力源として重要な役
割を果たしている。
Pressurized gas for instrumentation is used for process control devices (e.g., pneumatic transmitters, pneumatic controllers, pneumatic drive devices, etc.), and is used, for example, in chemical plant flow chambers, differential pressure, pressure, etc. Process variables such as liquid level and temperature are expressed as gas pressure (0,
It plays an important role as a gas pressure source for the process control device to convert the gas into 0.05 to 1.0 kg/-.G) and transmit it to the receiving instrument.

また、駆動装置用加圧ガスは、産業ロボット等に使用さ
れるもので、例えば、機械加工設備(プレス、グイキャ
スト設備)の自動化を図るために使用される空気シリン
ダ、ロークリアクチエエータ等の機器の駆動源として使
用されている。このような機器の駆動源としては、通常
5Kg/aJ・G程度の加圧空気が用いられている。
In addition, pressurized gas for drive devices is used in industrial robots, etc., such as air cylinders and low reactor actuators used to automate machining equipment (presses, guicast equipment), etc. It is used as a power source for equipment. Pressurized air of about 5 kg/aJ·G is normally used as a driving source for such equipment.

上記の計装用加圧ガス及び駆動装置用加圧ガスとしては
、プロセスfi111m ’arGや機械加工設備等を
安全且つ円滑に運転するために、ドレン、ダスト等の発
生の惧れのない情浄な乾燥したガス(水分含量1500
ppm程度以下)を使用する必要がある。
The above-mentioned pressurized gas for instrumentation and pressurized gas for drive devices must be clean, free from condensate, dust, etc., in order to operate process fi111m'arG and machining equipment safely and smoothly. Dry gas (moisture content 1500
ppm or less).

従来、乾燥ガスを得る方法としては、吸着法や冷却法が
あり、特に吸着法は低レベル迄水分含量を減少させるこ
とが可能であるため、最も一般的に利用されている。こ
の吸着法における吸着剤としては、モレキュラーシーブ
、シリカゲル、活性アルミナ等が用いられている。
Conventionally, there are adsorption methods and cooling methods as methods for obtaining dry gas, and the adsorption method in particular is the most commonly used because it is capable of reducing the moisture content to a low level. As the adsorbent in this adsorption method, molecular sieves, silica gel, activated alumina, etc. are used.

また、最近、各種の無機質膜又は有機質膜からなるガス
分離ロタを内蔵したガス分離装置を用いてガスの脱湿を
行う方法が、いくつか提案されている。
Furthermore, recently, several methods have been proposed for dehumidifying gas using a gas separation device incorporating a gas separation rotor made of various inorganic or organic membranes.

このようなガス分離■りを用いたガスの脱湿方法として
は、ガス分離膜の透過側を減圧に保持することにより、
或いはガス分離膜のi3過側を乾燥ガスでパージするこ
とにより、ガス分離膜の供給側と透過側との間に水蒸気
分圧差を生じさせて、ガスを脱湿する方法があり、この
方法では、パージガスとして用いられる乾燥ガスは各種
駆動’AHの駆動源として用いられることなく大気へ放
出されている。
As a method of dehumidifying gas using such gas separation, by maintaining the permeate side of the gas separation membrane at reduced pressure,
Alternatively, there is a method of dehumidifying the gas by purging the i3 permeation side of the gas separation membrane with dry gas to create a water vapor partial pressure difference between the supply side and the permeation side of the gas separation membrane. The dry gas used as a purge gas is not used as a driving source for various driving 'AH's and is released into the atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の吸着法は、ガス中の水分の除去を非常に効率的に
行え、且つ脱湿後の水分含量を非常に低レベル、例えば
空気においては大気圧露点−50℃程度迄脱湿すること
が可能であるが、吸着容量を超えた場合には、加熱或い
は圧力変化により吸着剤の再生処理を行う必要があり、
吸着(乾燥ガスの製造)−吸着剤の再生の繰り返し運転
となる。
The above-mentioned adsorption method can remove moisture from gas very efficiently, and can reduce the moisture content after dehumidification to a very low level, for example, air can be dehumidified to an atmospheric pressure dew point of about -50°C. It is possible, but if the adsorption capacity is exceeded, it is necessary to regenerate the adsorbent by heating or changing pressure.
This is a repeated operation of adsorption (production of dry gas) and regeneration of the adsorbent.

そのため、前記の吸着法は、吸着剤の再生に要するエネ
ルギーの消費量が大きく、また運転の複雑さ、操業上の
安全性、保守・管理の困難さ等の問題がある。
Therefore, the above-mentioned adsorption method consumes a large amount of energy required for regenerating the adsorbent, and also has problems such as complexity of operation, operational safety, and difficulty in maintenance and management.

また、ガス分離膜を用いた前記の方法は、前記の吸着法
に比して、小型で軽量な装置にすることができ、維持管
理が容易であって安全性が高い等の利点を有するが、ガ
ス分離膜を用いた前記の方法の内、ガス分離膜の透過側
を減圧に保持する方法の場合は、該i3過側を減圧に保
持する手段として真空ポンプ等の装置が用いられ、その
動力費が高い等の問題がある。また、ガス分離膜の透過
側を乾燥ガスでパージする方法の場合は、かなり大量の
乾燥ガスが必要であり、この乾燥ガスの製造法が問題と
なる。ガス分離膜の透過側をパージする乾燥ガスとして
、該ガス分離膜の供給側で得られた脱湿ガスの一部を用
いることも考えられるが、この場合は、高圧の脱湿ガス
の一部を各種駆動装置の駆動源として利用することなく
消費してしまうことになるため、エネルギー効率が悪い
という問題が生じる。
In addition, the above-mentioned method using a gas separation membrane has advantages over the above-mentioned adsorption method, such as being able to use a small and lightweight device, being easy to maintain and manage, and being highly safe. Among the above methods using gas separation membranes, in the case of the method in which the permeate side of the gas separation membrane is maintained at reduced pressure, a device such as a vacuum pump is used as a means to maintain the i3 permeate side at reduced pressure. There are problems such as high power costs. Furthermore, in the case of the method of purging the permeate side of the gas separation membrane with dry gas, a considerably large amount of dry gas is required, and the method of producing this dry gas poses a problem. It is also possible to use a part of the dehumidified gas obtained on the supply side of the gas separation membrane as the dry gas to purge the permeation side of the gas separation membrane, but in this case, a part of the high-pressure dehumidified gas Since the energy is consumed without being used as a drive source for various drive devices, a problem arises in that energy efficiency is poor.

従って、本発明の目的は、低湿度のガスを、エネルギー
効率良く且つ容易に得ることができる、ガスの脱湿法を
提供することにある。
Therefore, an object of the present invention is to provide a gas dehumidification method that can easily and energy-efficiently obtain a low-humidity gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、種々検討した結果、ガス分隔膜の高圧側
で得られる脱湿ガスの一部を放圧し、該放圧時に生じる
ガスの膨張エネルギーを利用して圧縮機を駆動させ、該
圧縮機に大気中の空気を導入して加圧し、この加圧した
空気を冷却して該空気中の水分を凝縮除去した乾燥空気
を、ガス分離膜の低圧側をパージする乾燥ガスとして用
いることにより、前記目的が達成されることを知見した
As a result of various studies, the present inventors released a portion of the dehumidified gas obtained on the high-pressure side of the gas separation membrane, and used the expansion energy of the gas generated at the time of pressure release to drive the compressor. Atmospheric air is introduced into a compressor and pressurized, and the pressurized air is cooled and moisture in the air is condensed and removed. Dry air is used as dry gas to purge the low-pressure side of the gas separation membrane. It has been found that the above objective can be achieved.

本発明は、上記知見に基づきなされたもので、ガス分離
膜を内蔵したガス分離装置を2段設け、加圧した水蒸気
含有ガスを第1段目のガス分離膜の高圧側に供給し、第
1段目のガス分離■りの高圧側で得られた出口ガスを第
2段目のガス分離膜の高圧側に供給する一方、第1段目
及び第2段目のガス分離膜の低圧側それぞれを乾燥ガス
でパージすることにより、上記ガス分離膜それぞれの高
圧側と低圧側との間に水蒸気分圧差を生じさせて、上記
水蒸気含有ガスを脱湿する方法であって、第1段目のガ
ス分離膜の低圧側をパージする乾燥ガスとして、圧縮機
により加圧した空気を冷却して該空気中の水分を凝縮除
去した乾燥空気を用い、 第2段目のガス分離膜の低圧側をパージする乾燥ガスと
して、第2段目のガス分離膜の高圧側で得られた脱湿ガ
スの一部を用い、 且つ、第2段目のガス分離膜の低圧側をパージする乾燥
ガスとして用いられる上記脱湿ガスを放圧し、該放圧時
に生じるガスの膨張エネルギーを利用して上記圧縮機を
駆動させることを特徴とするガスの脱湿法を提供するも
のである。
The present invention was made based on the above knowledge, and includes two stages of gas separation devices each having a built-in gas separation membrane, and a pressurized water vapor-containing gas is supplied to the high-pressure side of the gas separation membrane in the first stage. The outlet gas obtained on the high pressure side of the first stage gas separation membrane is supplied to the high pressure side of the second stage gas separation membrane, while the low pressure side of the first stage and second stage gas separation membrane A method for dehumidifying the water vapor-containing gas by creating a water vapor partial pressure difference between the high pressure side and the low pressure side of each of the gas separation membranes by purging each with dry gas, the first step being As the dry gas for purging the low-pressure side of the second-stage gas separation membrane, dry air obtained by cooling pressurized air with a compressor and condensing and removing moisture from the air is used as the dry gas to purge the low-pressure side of the second-stage gas separation membrane. A part of the dehumidified gas obtained on the high pressure side of the second stage gas separation membrane is used as the dry gas to purge the gas, and as the dry gas to purge the low pressure side of the second stage gas separation membrane. The present invention provides a gas dehumidifying method characterized in that the dehumidifying gas used is depressurized and the compressor is driven using the expansion energy of the gas generated at the time of depressurizing.

以下、本発明のガスの脱湿法を、図面に示す好ましい実
施態様について詳述する。尚、本発明の処理対象となる
ガスの種類は、特に制限されないが、計装用及び駆動装
置用のガスとしては、主に空気が用いられているので、
以下、ガスとして空気を用いた場合について説明する。
Hereinafter, the gas dehumidification method of the present invention will be described in detail with reference to preferred embodiments shown in the drawings. The type of gas to be processed by the present invention is not particularly limited, but since air is mainly used as a gas for instrumentation and drive devices,
The case where air is used as the gas will be explained below.

処理対象である加圧した水蒸気含有空気を、第1段目の
ガス分離装置1のガス分離膜2の高圧側(供給側)21
にラインAから供給する。その際、第1段目のガス分離
膜2の低圧側(i3遇側)22を、後述するように、圧
縮機6により加圧した空気を冷却して該空気中の水分を
凝縮除去した乾燥空気でパージする。その結果、第1段
目のガス分離膜2の高圧側21と低圧倒22との間に水
蒸気分圧差が生じて、上記水蒸気含有空気に含まれる水
蒸気の一部乃至大半が第1段目のガス分離膜2を透過し
、該ガス分離膜2の高圧側21の出口に水蒸気の一部乃
至大半が除去された出口空気(非透過ガス)が得られる
The pressurized water vapor-containing air to be treated is transferred to the high pressure side (supply side) 21 of the gas separation membrane 2 of the first stage gas separation device 1.
is supplied from line A. At that time, the low pressure side (i3 side) 22 of the first stage gas separation membrane 2 is dried by cooling the air pressurized by the compressor 6 and condensing and removing moisture in the air, as described later. Purge with air. As a result, a water vapor partial pressure difference occurs between the high pressure side 21 and the low pressure side 22 of the first stage gas separation membrane 2, and a part or most of the water vapor contained in the water vapor-containing air is transferred to the first stage gas separation membrane 2. The air passes through the gas separation membrane 2, and exit air (non-permeated gas) from which part to most of the water vapor has been removed is obtained at the outlet of the high-pressure side 21 of the gas separation membrane 2.

次いで、得られた出口空気を、第2段目のガス分離装置
3のガス分離膜4の高圧側41にラインBから供給する
。その際、第2段目のガス分離膜4の低圧側42を、後
述するように、第2段目のガス分離膜4の高圧側41で
得られる脱湿空気の一部でパージする。その結果、第2
段目のガス分離膜4の高圧側41と低圧側42との間に
水蒸気分圧差が生じて、上記出口空気に残存する水蒸気
が第2段目のガス分離膜4を透過し、該ガス分離膜4の
高圧側41に脱湿空気(非透過ガス)が得られる。
Next, the obtained outlet air is supplied from line B to the high pressure side 41 of the gas separation membrane 4 of the second stage gas separation device 3. At this time, the low-pressure side 42 of the second-stage gas separation membrane 4 is purged with a portion of the dehumidified air obtained on the high-pressure side 41 of the second-stage gas separation membrane 4, as described later. As a result, the second
A water vapor partial pressure difference occurs between the high pressure side 41 and the low pressure side 42 of the gas separation membrane 4 in the second stage, and the water vapor remaining in the outlet air permeates through the gas separation membrane 4 in the second stage, resulting in gas separation. Dehumidified air (non-permeable gas) is available on the high pressure side 41 of the membrane 4.

得られた脱湿空気を、ラインCから送出し、その一部を
第2段目のガス分離膜4の低圧側42をパージする乾燥
ガス(パージガス)として該低圧側42に導入する他は
、製品としてラインDから取り出す。
The obtained dehumidified air is sent out from line C, and a part of it is introduced into the low pressure side 42 of the second stage gas separation membrane 4 as dry gas (purge gas) for purging the low pressure side 42. The product is taken out from line D.

一方、パージガスとして第2段目のガス分離膜4の低圧
側42に°導入する脱湿空気を、ラインEから駆動装置
5に導入する。駆動装置5に導入した脱湿空気を放圧し
、該放圧時に生じる膨張エネルギーを駆動源として駆動
装置5を作動させる。
On the other hand, dehumidified air, which is introduced as a purge gas into the low pressure side 42 of the second stage gas separation membrane 4, is introduced from line E into the drive device 5. The pressure of the dehumidified air introduced into the drive device 5 is released, and the drive device 5 is operated using the expansion energy generated at the time of the pressure release as a drive source.

この駆動装置5の動力を動力源として圧縮機6を駆動さ
せる。
The compressor 6 is driven using the power of the drive device 5 as a power source.

また、駆動袋W15で放圧した脱湿空気をラインFから
第2段目のガス分離膜4の低圧側42に導入する。この
脱湿空気で該低圧側42をパージし、第2段目のガス分
離膜4を透過してきた水蒸気を上記脱湿空気と共にライ
ンGから大気へ排出する。
Further, dehumidified air released from the drive bag W15 is introduced from the line F to the low pressure side 42 of the second stage gas separation membrane 4. The low pressure side 42 is purged with this dehumidified air, and the water vapor that has permeated through the second stage gas separation membrane 4 is discharged to the atmosphere from line G together with the dehumidified air.

一方、大気中の空気を、上述の如くして脱湿空気の一部
の放圧により生じた膨張エネルギーを利用して駆動させ
た圧縮機6にラインHから導入し、該圧縮機6により加
圧する。この加圧空気をライン!からクーラー7に送出
し、該クーラー7で冷却し、冷却した加圧空気をライン
Jからドレンセパレーター8に送出して、該加圧空気中
の水分を凝縮除去し、乾燥空気を得る。凝縮除去された
水分をラインNから排出する。
On the other hand, air in the atmosphere is introduced from the line H into the compressor 6 which is driven using the expansion energy generated by releasing the pressure of a part of the dehumidified air as described above, and is compressed by the compressor 6. Press. Line this pressurized air! The pressurized air is then sent to a cooler 7, cooled by the cooler 7, and the cooled pressurized air is sent from a line J to a drain separator 8, where moisture in the pressurized air is condensed and removed to obtain dry air. The condensed moisture is discharged through line N.

得られた乾燥空気を、ラインKから送出し、弁 。The obtained dry air is sent out from line K and connected to the valve.

9で乾燥空気の圧力の調整を行った後、ラインLから第
1段目のガス分離膜2の低圧側22に供給する。この乾
燥空気で該低圧側22をパージし、第1段目のガス分離
膜2を透過してきた水蒸気を上記乾燥空気と共にライン
Mから大気へ排出する。
After the pressure of the dry air is adjusted in step 9, it is supplied from line L to the low pressure side 22 of the first stage gas separation membrane 2. The low pressure side 22 is purged with this dry air, and the water vapor that has permeated through the first stage gas separation membrane 2 is discharged to the atmosphere from the line M together with the dry air.

このように、第2段目のガス分離膜4の高圧側41で得
られる脱湿空気の一部を放圧し、該放圧時に生じるガス
の膨張エネルギーを利用する圧縮機によって大気中空気
を圧縮し、次いで水分を凝縮除去することにより製造さ
れた乾燥空気で、第1段目のガス分離膜2の低圧側22
をパージし、且つ上記の放圧した脱湿空気で第2段目の
ガス分離膜4の低圧側42をパージすることにより、第
1段目のガス分離膜2及び第2段目のガス分離膜4それ
ぞれに暴ける高圧側と低圧側との間の水蒸気分圧差が確
保され、上記水蒸気含有空気の脱湿を効率良く行うこと
ができる。
In this way, a part of the dehumidified air obtained on the high pressure side 41 of the second stage gas separation membrane 4 is depressurized, and atmospheric air is compressed by a compressor that utilizes the expansion energy of the gas generated at the time of depressurization. Then, dry air produced by condensing and removing moisture is used to dry the low pressure side 22 of the first stage gas separation membrane 2.
By purging the low pressure side 42 of the second stage gas separation membrane 4 with the depressurized dehumidified air, the gas separation membrane 2 of the first stage and the gas separation of the second stage are purged. A water vapor partial pressure difference between the high pressure side and the low pressure side exposed to each of the membranes 4 is ensured, and the water vapor-containing air can be efficiently dehumidified.

第1段目のガス分離膜2の高圧側21に供給する加圧し
た水蒸気含有空気の圧力は、脱湿空気の用途に応じて適
宜決定され、通常、2.0〜9.9Kg/CIJ−G程
度である。また、水蒸気含有空気の供給量は、通常、O
,1〜30 ONn?/hrNm3/hr程度。
The pressure of the pressurized water vapor-containing air supplied to the high-pressure side 21 of the first-stage gas separation membrane 2 is determined appropriately depending on the use of the dehumidified air, and is usually 2.0 to 9.9 Kg/CIJ- It is about G. In addition, the amount of water vapor-containing air supplied is usually O
,1~30 ONn? /hrNm3/hr.

また、第1段目のガス分離膜2及び第2段目のガス分離
膜4の大きさは、それぞれ水蒸気含有空気の圧力、水蒸
気濃度及び供給量に応じて選定され、通常、有効膜面積
が0.05〜200+y?となるようにするのが好まし
い。
In addition, the sizes of the first-stage gas separation membrane 2 and the second-stage gas separation membrane 4 are selected depending on the pressure, water vapor concentration, and supply amount of the water vapor-containing air, respectively, and usually the effective membrane area is 0.05~200+y? It is preferable to do so.

また、駆動装置5としては、エアシリンダー、回転翼等
が用いられる。
Moreover, as the drive device 5, an air cylinder, a rotary blade, etc. are used.

また、圧縮[6としては、駆動装置5としてエアシリン
ダー等の往復動の駆動装置を用いた場合には往復動圧縮
機が用いられ、回転翼等の回転動の駆動装置を用いた場
合には回転動圧縮機が用いられる。
Furthermore, as the compression [6], a reciprocating compressor is used when a reciprocating drive device such as an air cylinder is used as the drive device 5, and a reciprocating compressor is used when a rotary drive device such as a rotary blade is used. A rotary dynamic compressor is used.

また、第2段目のガス分離膜4の低圧側42に導入する
脱湿空気の量は、第1段目のガス分離膜2の高圧側21
に供給する水蒸気含有空気の供給量の2〜20%とする
のが好ましい。
In addition, the amount of dehumidified air introduced into the low pressure side 42 of the second stage gas separation membrane 4 is equal to the amount of dehumidified air introduced into the high pressure side 42 of the first stage gas separation membrane 2.
It is preferable to set it as 2 to 20% of the amount of water vapor-containing air supplied.

また、第1段目のガス分離膜2の低圧側22に導入する
乾燥空気の里は、第1段目のガス分離膜2の高圧倒21
に供給する水蒸気含有空気の供給量の2〜20%とする
のが好ましい。
In addition, the dry air introduced into the low pressure side 22 of the first stage gas separation membrane 2 is connected to the high pressure side 21 of the first stage gas separation membrane 2.
It is preferable to set it as 2 to 20% of the amount of water vapor-containing air supplied.

また、圧縮416で加圧された加圧空気の圧力は、1〜
5Kg/aJ/Gとするのが好ましく、また、クーラー
7により冷却された加圧空気の温度は、5〜50℃、特
に10〜40℃とするのが好ましい。
Moreover, the pressure of the pressurized air pressurized in the compression 416 is 1 to
It is preferable to set it as 5Kg/aJ/G, and it is preferable that the temperature of the pressurized air cooled by the cooler 7 shall be 5-50 degreeC, especially 10-40 degreeC.

尚、ガス分離膜2の高圧側21に供給する水蒸気含有空
気は、該高圧側21に供給する前に、フィルターで処理
して、該水蒸気含有空気に含まれる油分、ゴミ等の不純
物を予め除去して置くことが好ましい。
Note that the water vapor-containing air supplied to the high-pressure side 21 of the gas separation membrane 2 is treated with a filter before being supplied to the high-pressure side 21 to remove impurities such as oil and dust contained in the water vapor-containing air. It is preferable to leave it as is.

上述の本発明の方法で用いられるガス分離膜としては、
セラミック多孔質膜等からなる無機質分離膜、ポリアミ
ド膜、セルロース膜、酢酸セルロース膜、ポリイミド膜
等からなる有機質分離膜が挙げられ、これらの中でも気
体選択透過性能に優れ且つ耐熱性、耐薬品性にも優れた
芳香族ポリイミド製分離膜が好ましい。
The gas separation membrane used in the method of the present invention described above includes:
Examples include inorganic separation membranes made of porous ceramic membranes, etc., organic separation membranes made of polyamide membranes, cellulose membranes, cellulose acetate membranes, polyimide membranes, etc. Among these, membranes with excellent gas selective permeation performance, heat resistance, and chemical resistance Separation membranes made of aromatic polyimide, which have excellent properties, are preferred.

上記分離膜としては、有効膜面積の大きい中空糸の集合
体が好ましいが、スパイラル状膜、平膜等でも良い。
The separation membrane is preferably an aggregate of hollow fibers with a large effective membrane area, but may also be a spiral membrane, a flat membrane, or the like.

分離膜として用いられる上記中空糸は、その外径が、通
常50〜2000μ、好ましくは200〜1000μで
ある。中空糸の外径が小さ過ぎると圧力損失が大きくな
り、大き過ぎると有効膜面積が減少する。また、上記中
空糸としては、(厚み/外径)=0.1〜0.3の条件
を満たすものを用いるのが好ましい。尚、上記厚み=(
外径−内径)/2である。中空糸の厚みが小さいと耐圧
性が不充分となり、また厚みが大きいと気体選択透過性
が不良となる場合がある。
The outer diameter of the hollow fiber used as a separation membrane is usually 50 to 2000μ, preferably 200 to 1000μ. If the outer diameter of the hollow fiber is too small, pressure loss will increase, and if it is too large, the effective membrane area will decrease. Moreover, as the above-mentioned hollow fiber, it is preferable to use one that satisfies the condition of (thickness/outer diameter)=0.1 to 0.3. In addition, the above thickness = (
Outer diameter - inner diameter)/2. If the thickness of the hollow fiber is small, pressure resistance may be insufficient, and if the thickness is large, gas selective permeability may be poor.

中空糸の集合体からなる好ましい芳香族ポリイミド製分
離膜としては、例えば、特開昭62−42723号公報
に記載の芳香族ポリイミド製分離膜が挙げられる。
A preferred aromatic polyimide separation membrane comprising an aggregate of hollow fibers includes, for example, the aromatic polyimide separation membrane described in JP-A-62-42723.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と共に挙げ、本発明を更
に詳細に説明する。
EXAMPLES Hereinafter, the present invention will be explained in more detail by giving examples of the present invention together with comparative examples.

実施例1 第1図に示すフローシートに従って下記のようにして水
蒸気含有ガスの脱湿を行った。
Example 1 A water vapor-containing gas was dehumidified in the following manner according to the flow sheet shown in FIG.

加圧湿潤空気(圧カフKg/cal・G、40℃、飽和
湿度)を120 Nm3/hrで、第1段目の芳香族ポ
リイミド製中空糸膜2(有効膜面積53ITr)の高圧
側21にラインAから供給した。第1段目の中空糸膜2
の高圧側21で得られた出口空気を第2段目の芳香族ポ
リイミド製中空糸膜4 (有効膜面積53n()の高圧
側41にラインBから供給した。第2段目の中空糸膜4
の高圧側41で得られた脱湿空気の一部を15 Nm’
 /hrでエアシリンダー5に導入し、放圧して往復動
を生じさせた。
Pressurized humid air (pressure cuff Kg/cal G, 40°C, saturated humidity) was applied at 120 Nm3/hr to the high pressure side 21 of the first stage aromatic polyimide hollow fiber membrane 2 (effective membrane area 53 ITr). It was supplied from line A. First stage hollow fiber membrane 2
The outlet air obtained on the high pressure side 21 of the second stage aromatic polyimide hollow fiber membrane 4 (effective membrane area 53n()) was supplied from line B to the high pressure side 41 of the second stage hollow fiber membrane 4. 4
A part of the dehumidified air obtained on the high pressure side 41 of
/hr into the air cylinder 5, and the pressure was released to generate reciprocating motion.

放圧した脱湿空気を第2段目の中空糸膜4の低圧側42
にラインFから導入し、該低圧側42をパージし、第2
段目の中空糸vi、4を透過してきた水藤気と共にライ
ンGから大気へ排出した。
The depressurized dehumidified air is transferred to the low pressure side 42 of the second stage hollow fiber membrane 4.
is introduced from line F, the low pressure side 42 is purged, and the second
It was discharged from line G to the atmosphere together with the water and water that had passed through the hollow fibers vi and 4 in the stages.

一方、圧縮機6にラインHから大気中の空気を14 N
m” /hrで導入した。エアシリンダー5の動力を動
力源として圧縮[6を駆動させ、圧縮機6に導入した空
気の圧力を2.5Kg/ci・Gとした。
On the other hand, atmospheric air is supplied to the compressor 6 from line H at 14 N.
m''/hr. The compressor [6 was driven using the power of the air cylinder 5 as the power source, and the pressure of the air introduced into the compressor 6 was set to 2.5 Kg/ci.G.

この加圧空気をクーラー7により30℃迄冷却しドレン
セパレータ8で該加圧空気中の水分を凝縮除去した後、
得られた乾燥空気を弁9を介して放圧し、第1段目のガ
ス分離膜2の低圧側22に導入した。この乾燥空気で該
低圧側22をパージし、乾燥空気を第1段目の中空糸膜
2を透過してきた水藩気と共にラインMから大気へ排出
した。
After cooling this pressurized air to 30°C with a cooler 7 and condensing and removing moisture in the pressurized air with a drain separator 8,
The obtained dry air was depressurized through the valve 9 and introduced into the low pressure side 22 of the first stage gas separation membrane 2. The low pressure side 22 was purged with this dry air, and the dry air was discharged to the atmosphere from line M together with the water and air that had passed through the first stage hollow fiber membrane 2.

その結果、ラインDから大気圧露点−20,6℃の脱湿
空気(水分台1i980pρm )が1100N″/h
rで得られた。
As a result, dehumidified air (moisture level 1i980 ppm) with an atmospheric pressure dew point of -20.6°C was supplied from line D at 1100 N''/h.
Obtained with r.

比較例1 エアシリンダー及び圧縮機を設けず、第2段目の中空糸
膜4の高圧側41で得られた脱湿空気の一部を放圧して
15 Nm’ /hrで該中空糸膜4の低圧側42に導
入し、且つ大気中の空気を14Nm”/hrで第1段目
の中空糸膜2の低圧側22に導入した以外は実施例1と
同様にして加圧湿潤空気の脱湿を行ったところ、大気圧
露点−10,8℃の脱湿空気(水分含量2400pρ−
)が1102N’/hrで得られた。
Comparative Example 1 A part of the dehumidified air obtained on the high pressure side 41 of the second stage hollow fiber membrane 4 was depressurized and the hollow fiber membrane 4 was heated at 15 Nm'/hr without providing an air cylinder or a compressor. The pressurized humid air was removed in the same manner as in Example 1, except that atmospheric air was introduced into the low pressure side 42 of the first stage hollow fiber membrane 2 at a rate of 14 Nm''/hr. When we humidified the air, we found that the dehumidified air had an atmospheric dew point of -10.8℃ (moisture content 2400pρ).
) was obtained at 1102 N'/hr.

〔発明の効果〕〔Effect of the invention〕

本発明のガスの脱湿法によれば、ガス分離膜の低圧側に
パージガスとして導入する脱湿ガスの量を低減させるこ
とができ、低湿度のガスをエネルギー効率良く且つ容易
に得ることができる。
According to the gas dehumidification method of the present invention, the amount of dehumidification gas introduced as purge gas into the low pressure side of the gas separation membrane can be reduced, and low-humidity gas can be easily obtained with energy efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の脱湿法の好ましい実施態様の概略を
示すフローシートである。 1・・第1段目のガス分離装置、2・・第1段目のガス
分離膜、3・・第2段目のガス分離装置、4・・第2段
目のガス分離膜、21.41・・ガス分離膜の高圧側、
22.42・・ガス分離膜の低圧側、5・・駆動装置、
6・・圧縮機、7・・クーラー、8・・ドレンセパレー
タ 特許出願人   宇部興産株式会社
FIG. 1 is a flow sheet outlining a preferred embodiment of the dehumidification method of the present invention. 1. First stage gas separation device, 2. First stage gas separation membrane, 3. Second stage gas separation device, 4. Second stage gas separation membrane, 21. 41...High pressure side of gas separation membrane,
22.42...Low pressure side of gas separation membrane, 5...Drive device,
6. Compressor, 7. Cooler, 8. Drain separator Patent applicant Ube Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)ガス分離膜を内蔵したガス分離装置を2段設け、
加圧した水蒸気含有ガスを第1段目のガス分離膜の高圧
側に供給し、第1段目のガス分離膜の高圧側で得られた
出口ガスを第2段目のガス分離膜の高圧側に供給する一
方、第1段目及び第2段目のガス分離膜の低圧側それぞ
れを乾燥ガスでパージすることにより、上記ガス分離膜
それぞれの高圧側と低圧側との間に水蒸気分圧差を生じ
させて、上記水蒸気含有ガスを脱湿する方法であって、
第1段目のガス分離膜の低圧側をパージする乾燥ガスと
して、圧縮機により加圧した空気を冷却して該空気中の
水分を凝縮除去した乾燥空気を用い、 第2段目のガス分離膜の低圧側をパージする乾燥ガスと
して、第2段目のガス分離膜の高圧側で得られた脱湿ガ
スの一部を用い、 且つ、第2段目のガス分離膜の低圧側をパージする乾燥
ガスとして用いられる上記脱湿ガスを放圧し、該放圧時
に生じるガスの膨張エネルギーを利用して上記圧縮機を
駆動させることを特徴とするガスの脱湿法。
(1) Two stages of gas separation equipment with built-in gas separation membranes are installed.
The pressurized water vapor-containing gas is supplied to the high pressure side of the first stage gas separation membrane, and the outlet gas obtained on the high pressure side of the first stage gas separation membrane is supplied to the high pressure side of the second stage gas separation membrane. By purging each of the low pressure sides of the first and second stage gas separation membranes with dry gas, a water vapor partial pressure difference is created between the high pressure side and the low pressure side of each of the gas separation membranes. A method for dehumidifying the water vapor-containing gas by generating
As the dry gas to purge the low-pressure side of the gas separation membrane in the first stage, dry air obtained by cooling the air pressurized by a compressor and condensing and removing moisture in the air is used as the dry gas to purge the low pressure side of the gas separation membrane in the second stage. A part of the dehumidified gas obtained on the high pressure side of the second stage gas separation membrane is used as dry gas to purge the low pressure side of the membrane, and the low pressure side of the second stage gas separation membrane is also purged. A method for dehumidifying gas, characterized in that the dehumidifying gas used as the drying gas is depressurized, and the compressor is driven by utilizing the expansion energy of the gas generated at the time of depressurizing.
(2)ガス分離膜が、芳香族ポリイミド製膜である特許
請求の範囲第(1)項記載のガスの脱湿法。
(2) The gas dehumidification method according to claim (1), wherein the gas separation membrane is an aromatic polyimide membrane.
JP62300433A 1987-11-27 1987-11-27 Gas dehumidification method Expired - Fee Related JPH0667449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300433A JPH0667449B2 (en) 1987-11-27 1987-11-27 Gas dehumidification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300433A JPH0667449B2 (en) 1987-11-27 1987-11-27 Gas dehumidification method

Publications (2)

Publication Number Publication Date
JPH01143626A true JPH01143626A (en) 1989-06-06
JPH0667449B2 JPH0667449B2 (en) 1994-08-31

Family

ID=17884748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300433A Expired - Fee Related JPH0667449B2 (en) 1987-11-27 1987-11-27 Gas dehumidification method

Country Status (1)

Country Link
JP (1) JPH0667449B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944776A (en) * 1989-10-05 1990-07-31 Andrew Corporation Dehumidifier for waveguide system
US4952219A (en) * 1989-09-29 1990-08-28 Air Products And Chemicals, Inc. Membrane drying of gas feeds to low temperature units
JPH067628A (en) * 1992-02-13 1994-01-18 Praxair Technol Inc Method and device for film separation and drying at two stage
US5314528A (en) * 1991-11-18 1994-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Permeation process and apparatus
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
JP2018094528A (en) * 2016-12-16 2018-06-21 株式会社東芝 Water recovery device, water reusing system and water recovery method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120839A (en) * 1977-03-24 1978-10-21 Maschf Augsburg Nuernberg Ag Method of and device for separating water from wet gas
JPS5476361U (en) * 1977-11-10 1979-05-30
JPS56151604U (en) * 1980-04-10 1981-11-13
JPS60232474A (en) * 1984-04-30 1985-11-19 株式会社島津製作所 Drier
JPS60238120A (en) * 1984-05-11 1985-11-27 Takuma Sogo Kenkyusho:Kk Air dehumidification apparatus
JPS6242723A (en) * 1985-08-20 1987-02-24 Ube Ind Ltd Mixed gas dehumidification method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120839A (en) * 1977-03-24 1978-10-21 Maschf Augsburg Nuernberg Ag Method of and device for separating water from wet gas
JPS5476361U (en) * 1977-11-10 1979-05-30
JPS56151604U (en) * 1980-04-10 1981-11-13
JPS60232474A (en) * 1984-04-30 1985-11-19 株式会社島津製作所 Drier
JPS60238120A (en) * 1984-05-11 1985-11-27 Takuma Sogo Kenkyusho:Kk Air dehumidification apparatus
JPS6242723A (en) * 1985-08-20 1987-02-24 Ube Ind Ltd Mixed gas dehumidification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952219A (en) * 1989-09-29 1990-08-28 Air Products And Chemicals, Inc. Membrane drying of gas feeds to low temperature units
US4944776A (en) * 1989-10-05 1990-07-31 Andrew Corporation Dehumidifier for waveguide system
US5314528A (en) * 1991-11-18 1994-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Permeation process and apparatus
JPH067628A (en) * 1992-02-13 1994-01-18 Praxair Technol Inc Method and device for film separation and drying at two stage
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
JP2018094528A (en) * 2016-12-16 2018-06-21 株式会社東芝 Water recovery device, water reusing system and water recovery method

Also Published As

Publication number Publication date
JPH0667449B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
KR960004608B1 (en) Hybrid Pretreatment Purifier For Low Temperature Air Separator
US4934148A (en) Dry, high purity nitrogen production process and system
US5240472A (en) Moisture removal from a wet gas
EP0411254B1 (en) Production of dry, high purity nitrogen
KR950006633B1 (en) Improved process and system for the production of dry, high purity nitrogen
JP2872521B2 (en) Two-stage membrane separation drying method and apparatus
JP2506585B2 (en) Improved membrane nitrogen system
US5632805A (en) Semipermeable membrane dryer for air compressor system
JPH01143626A (en) Gas dehumidification method
JP2011041921A (en) Air dehumidifier, gas dehumidifier, and method of dehumidifying gas
JPH01143624A (en) Method for dehumidifying gas for instrumentation or drive equipment
EP0695574A1 (en) Gas separation with fractional purge for pre- or post-purification
JP3951569B2 (en) Operation method of gas separation membrane
JPH01143625A (en) Gas dehumidification method
JPS63182019A (en) Pressurized gas dehumidification method
JPH01176425A (en) Gas dehumidification method
JP2000189743A (en) Dry gas supply operation method and system
JPS63209731A (en) Method for producing pressurized air for instrumentation and air drive equipment
JPH03143523A (en) Method for dehumidifying steam-containing gas
JP2013176765A (en) Gas dehumidifying device
JP4529285B2 (en) Gas separation membrane device and operation stop method
JP2005074387A (en) Dehumidification apparatus
KR200313568Y1 (en) High-efficiency oxygen generating apparatus
JPH02157016A (en) Dry gas manufacturing method
JPH03157117A (en) Gas separation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees