[go: up one dir, main page]

JPH01138335A - Engine fuel system dynamic characteristic analysis method - Google Patents

Engine fuel system dynamic characteristic analysis method

Info

Publication number
JPH01138335A
JPH01138335A JP29521987A JP29521987A JPH01138335A JP H01138335 A JPH01138335 A JP H01138335A JP 29521987 A JP29521987 A JP 29521987A JP 29521987 A JP29521987 A JP 29521987A JP H01138335 A JPH01138335 A JP H01138335A
Authority
JP
Japan
Prior art keywords
fuel
air
engine
fuel ratio
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29521987A
Other languages
Japanese (ja)
Inventor
Nobusuke Takahashi
信補 高橋
Teruji Sekozawa
瀬古沢 照治
Seiju Funabashi
舩橋 誠壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29521987A priority Critical patent/JPH01138335A/en
Publication of JPH01138335A publication Critical patent/JPH01138335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To simulate accurately the model of fuel flow properties within inlet pipes in various operating ranges by computing parameters for a fuel system model based on both the quantity of fuel injection converted into mass flow per unit time and time series data for the measured value of an air-fuel ratio of exhaust gas. CONSTITUTION:In an engine with a single point fuel injection system, fuel is injected by a single point fuel injection valve 24 into all cylinders of the engine. In this case, detected signals from an air capacity sensor 23, a throttle angle sensor 25, an internal pressure sensor 26, a crank angle sensor 27, a water temperature sensor 28 and an air-fuel ratio sensor 29 are inputted into a computer 21 respectively via a A/D converter 22. And parameters for the fuel system model representing fuel flow properties within inlet pipes are computed based on both the commanding value for the quantity of fuel injection which represents the quantity of fuel injection converted into mass flow per unit time and time series data for the measured value of an air-fuel ratio of exhaust gas. This constitution thereby allows the model of fuel flow properties within inlet pipes to be accurately simulated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸気管内の燃料流動特性を定式化するのに好
適なエンジンの燃料系動特性解析法。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is an engine fuel system dynamic characteristic analysis method suitable for formulating fuel flow characteristics in an intake pipe.

〔従来の技、術〕[Traditional techniques, techniques]

吸気管内の燃料流動特性を定式化するための従来法とし
て、自動車技術会、学術講演会前刷集842049記載
の方法が知られている。この方法では、回転数、吸気管
内圧等にエンジン状態量を一定に保ち、燃料噴射量をス
テップ変化させた時の排ガス空燃比の応答を空燃比セン
サで計測、この計測値が5AE810494記載の燃料
流動モデルを用いて同一条件でシミュレーションを行な
った結果に最も一致するようモデル内のパラメータを定
め、これをエンジン状態量のマツプとして定式化してい
た。
As a conventional method for formulating fuel flow characteristics in an intake pipe, a method described in Society of Automotive Engineers of Japan, Academic Lecture Preprint Collection 842049 is known. In this method, engine state quantities such as engine speed and intake pipe internal pressure are kept constant, and the response of the exhaust gas air-fuel ratio is measured with an air-fuel ratio sensor when the fuel injection amount is changed in steps. The parameters in the model were determined to best match the results of a simulation under the same conditions using a flow model, and these were formulated as a map of engine state quantities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来法では、実験結果とシミュレーショ
ン結果の一致の判定を目視で行っているため最適なパラ
メータ算出が困難であり、又、パラメータ算出に試行錯
誤的手法を用いなければならず算出に工数を要するとい
う問題があった。
However, with conventional methods, it is difficult to calculate optimal parameters because the agreement between experimental results and simulation results is visually determined, and a trial-and-error method must be used to calculate parameters, which requires a lot of man-hours. There was a problem that it was necessary.

さらに、算出パラメータをエンジン状態量のマツプとし
て定式化する際に1回転数、吸気管内圧等の状態変数の
選択に配慮がなされておらず、正確なモデリングが行え
ていないという問題があった。このため、従来モデルか
ら導出された制御アルゴリズムでエンジンの制御を行う
場合、様々な運転領域で期待通りの制御性能が得られず
、排ガス浄化性能、動力性能、燃費等が劣化するという
問題が生ずる。
Furthermore, when formulating the calculated parameters as a map of engine state quantities, no consideration was given to the selection of state variables such as the number of revolutions and intake pipe internal pressure, resulting in the problem that accurate modeling was not possible. For this reason, when controlling the engine using a control algorithm derived from a conventional model, the expected control performance cannot be obtained in various driving regions, leading to problems such as deterioration in exhaust gas purification performance, power performance, fuel efficiency, etc. .

又、従来法において、空燃比センサの応答遅れ排ガスの
排気管内の流動遅れ等の各種違れへの配慮が明示されて
おらず、このためモデリングの精度が落ちるという問題
もあった。
Further, in the conventional method, consideration is not clearly given to various differences such as a response delay of an air-fuel ratio sensor, a flow delay of exhaust gas in an exhaust pipe, etc., and as a result, there is a problem that the accuracy of modeling is reduced.

本発明の目的は、上記問題点を解消した燃料系動特性解
析法を提供することにある。
An object of the present invention is to provide a fuel system dynamic characteristic analysis method that eliminates the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、排ガス空燃比を検出するための空燃比セン
サの応答遅れ、排ガスの排気管内での流動遅れ等、燃料
噴射からその効果が空燃比センサの出力に表われるまで
の遅れのうち、吸気管内の燃料流動特性を表現する燃料
系モデルで表現できない遅れを定式化するためのステッ
プ、前記ステップで定式化された遅れモデルと未知パラ
メータを含む前記燃料系モデルから得られる入力が燃料
噴射量、出力が排ガス空燃比の差分方程式の方程式誤差
が最小となるよう実験データに基づき燃料系モデルのパ
ラメータを一意に算出するステップ、前記ステップで決
定されたパラメータを合理的に吸入空気量、吸気管内圧
等のエンジン状態量のマツプあるいは関数として特性定
式化するステップを設けることで達成される。
The above purpose is to eliminate the delay between fuel injection and its effect appearing in the output of the air-fuel ratio sensor, such as response delay of the air-fuel ratio sensor to detect the exhaust gas air-fuel ratio, and flow delay of exhaust gas in the exhaust pipe. A step for formulating a delay that cannot be expressed by a fuel system model that expresses fuel flow characteristics in the pipe, and input obtained from the delay model formulated in the step and the fuel system model including unknown parameters is a fuel injection amount, A step of uniquely calculating the parameters of the fuel system model based on experimental data so that the equation error of the difference equation of the exhaust gas air-fuel ratio is minimized; This is achieved by providing a step of formulating the characteristics as a map or function of engine state quantities such as .

〔作用〕[Effect]

センサの応答遅れ、排ガスの流動遅れ等の定式化は、次
のようにしてまとめて行う、エンジンの燃料噴射位置に
吸気管壁面へ付着がないLPガス等のガス状燃料の噴射
弁を設け、ガス噴射量をステップ変化させた時の排ガス
空燃比の応答を空燃比センサで計測し、この計測値に基
づき、伝達関数あるいは、インパルス応答モデルで遅れ
を定式燃料系モデルの未知パラメータ決定に関しては、
燃料系モデルと前記方法で定式化した遅れモデルから得
られる差分方程式の誤差方程式が未知パラメータに対し
線形となるので、方程式誤差の2乗平均が最小という意
味での最適なパラメータが、簡単な計算で一意に定まる
The sensor response delay, exhaust gas flow delay, etc. are formulated as follows: An injection valve for gaseous fuel such as LP gas that does not adhere to the intake pipe wall is installed at the fuel injection position of the engine. The response of the exhaust gas air-fuel ratio when the gas injection amount is changed in steps is measured using an air-fuel ratio sensor, and based on this measurement value, the delay is determined using a transfer function or an impulse response model to determine the unknown parameters of the formula fuel system model.
Since the error equation of the difference equation obtained from the fuel system model and the delay model formulated using the above method is linear with respect to the unknown parameters, the optimal parameters in the sense that the root mean square of the equation error is the minimum can be easily calculated. is uniquely determined.

又、パラメータ特性定式化に関しては、パラメータの物
理的な意味あいを考え、影響が大きいと思われるエンジ
ン状態量のマツプあるいは関数とすることで合理的なモ
デリングが行える。
Furthermore, regarding parameter characteristic formulation, rational modeling can be performed by considering the physical meaning of the parameters and using them as maps or functions of engine state quantities that are considered to have a large influence.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図から第4図に従って説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

モデリングの対象となる吸気管内の燃料流動特性を表現
するモデルとして次式を用いる。
The following equation is used as a model to express the fuel flow characteristics in the intake pipe, which is the object of modeling.

G*e=(L  X)・Gz+−・Mi     −(
1)dt             τ ここに Gi :インジエクタで噴射される燃料を燃料流量(g
/s)で表現したもの(以下、燃料噴射と呼ぶ) Mi :吸気管壁面付着燃料量(g)(以下、液膜と呼
ぶ) Gzeニジリンダに流入する燃料を燃料流量(g/s)
で表現したもの X:噴射燃料が吸気管壁面へ付着する率(以下付着率と
呼ぶ) m:液膜が単位時間に蒸発する率(以下、τ 一を蒸発率、τを蒸発時定数と呼ぶ) τ である。
G*e=(L X)・Gz+−・Mi −(
1) dt τ where Gi: The fuel injected by the injector is the fuel flow rate (g
/s) (hereinafter referred to as fuel injection) Mi: Amount of fuel adhering to the intake pipe wall (g) (hereinafter referred to as liquid film) Gze Fuel flowing into the cylinder is expressed as fuel flow rate (g/s)
X: The rate at which the injected fuel adheres to the intake pipe wall (hereinafter referred to as the adhesion rate) m: The rate at which the liquid film evaporates per unit time (hereinafter, τ is the evaporation rate and τ is the evaporation time constant) ) τ.

以下、(1) (2)式で表わされる燃料系モデルの定
Below, the fuel system model equations expressed by equations (1) and (2) are defined.

式化、すなわち、モデルパラメータX、−の定式τ 化の手法を説明する。formulation, i.e., the formulation τ of the model parameters X,− Explain the method of conversion.

パラメータ定式化は、第1図に示す3つのステップによ
り行う。
Parameter formulation is performed through three steps shown in FIG.

まず、第1のステップとして燃料噴射から、その効果が
排気管に設置した空燃比センサの出力に表われるまでの
遅れのうち前記燃料系モデルで表現できない遅れの定式
化を第2図に示す如き装置によって実験に基づいて行う
First, as a first step, we will formulate the delay between fuel injection and its effect appearing in the output of the air-fuel ratio sensor installed in the exhaust pipe, which cannot be expressed by the fuel system model, as shown in Figure 2. Perform experimentally with equipment.

実験装置では本来の燃料噴射弁設置位置にインジェクタ
にかわりLPガス等のガス状燃料の噴射弁が設けられて
おり、吸入空気量、内圧等のエンジン状態がセンサ、A
/D変換器を通して計算機に取り込まれるようになって
いる。このような実験装置において、吸入空気量、吸気
管内圧、水温。
In the experimental equipment, an injection valve for gaseous fuel such as LP gas is installed instead of an injector in the original fuel injection valve installation position, and the engine status such as intake air amount and internal pressure is monitored by sensors and A.
The data is imported into the computer through a /D converter. In such experimental equipment, intake air volume, intake pipe internal pressure, and water temperature.

スロットル開度2回転数を一定に保ち、エンジンを定常
運転し、ガス噴射量をステップ変化させた時の排ガス空
燃比の応答を排気管に設置した空燃比センサで計測する
。排ガス空燃比のサンプリング周期をΔtガス噴射量を
ステップ変化させた時刻からの排ガス空燃比のサンプリ
ングデータを5(k)(k=o、1.2・・・・・・)
とする。
The throttle opening and rotation speed are kept constant, the engine is operated steadily, and the response of the exhaust gas air-fuel ratio is measured with an air-fuel ratio sensor installed in the exhaust pipe when the gas injection amount is changed in steps. The sampling data of the exhaust gas air-fuel ratio from the time when the sampling period of the exhaust gas air-fuel ratio is changed by step of Δt gas injection amount is 5(k) (k=o, 1.2...)
shall be.

ここで、第2図において、21は計算機、22はAD変
換器、23は空気量センサ、24はガス燃料噴射弁、2
5はスロットル角センサ、26は内圧センサ、27はク
ランク角センサ、28は水温センサ、29は空燃比セン
サである。
Here, in FIG. 2, 21 is a calculator, 22 is an AD converter, 23 is an air amount sensor, 24 is a gas fuel injection valve, 2
5 is a throttle angle sensor, 26 is an internal pressure sensor, 27 is a crank angle sensor, 28 is a water temperature sensor, and 29 is an air-fuel ratio sensor.

この時、上記の燃料系モデルで表現できない遅れを、ガ
ス噴射量をガソリンの燃料流量相当値に換算した時の噴
射量Gto (g / s )と排ガス空燃比の計測値
A/Fの関係式により次式で表現する。
At this time, the delay that cannot be expressed by the above fuel system model can be solved using the relational expression between the injection amount Gto (g/s) and the measured value A/F of the exhaust gas air-fuel ratio when the gas injection amount is converted to a value equivalent to the fuel flow rate of gasoline. It is expressed as the following formula.

・・・(3) S (ko)  S (0) (i=o、・・・、kol) ここに、 Qa :吸入空気量(g/5) ko :空燃比の応答が落ちつく時刻 である。...(3) S (ko) S (0) (i=o,..., kol) Here, Qa: Intake air amount (g/5) ko: Time at which the air-fuel ratio response settles down It is.

ここで、遅れを燃空比の移動平均で定式化するのは、後
述する燃料噴射量、排ガス空燃比の2変数量の数式モデ
ルをパラメータX、−に対し線形τ とするためである。
Here, the reason why the delay is formulated as a moving average of the fuel-air ratio is to make the mathematical model of two variables, the fuel injection amount and the exhaust gas air-fuel ratio, which will be described later, linear τ with respect to the parameters X and -.

次に第2のステップではこのステップでは、様様な運転
条件で、実験データを採取し、運転条件に対応させ、(
3) (4)式の形式で遅れモデルを定式化する。燃料
噴射量の指令値Gi と非ガス空燃比の計測値A/Fの
2変数間の差分方程式を導出し、方程式誤差が最小とな
るようにパラメータX。
Next, in the second step, experimental data is collected under various operating conditions, and is adjusted to correspond to the operating conditions.
3) Formulate a delay model in the form of equation (4). A difference equation between two variables, the command value Gi of the fuel injection amount and the measured value A/F of the non-gas air-fuel ratio, is derived, and the parameter X is set so that the equation error is minimized.

−を定める。(3)式のモデル内に含まれる吸気管τ 内の燃料流動遅れをむだ時間と考えると上記差分方程式
は、GzOをGzeに等しくおき、(1)(2)式の差
分式と(3)式を連立させることによって得られ、次式
となる。
− is determined. Considering the fuel flow delay in the intake pipe τ included in the model of equation (3) as dead time, the above difference equation sets GzO equal to Gze, and the difference equation of equations (1) and (2) and (3) It is obtained by combining the equations and becomes the following equation.

(5)式は、その誤差方程式が、パラメータX。In equation (5), the error equation is the parameter X.

−に対して線形となるので、方程式誤差の2乗乎τ 均が最小という意味での最適なパラメータが次式で算出
される。
Since it is linear with respect to -, the optimal parameter in the sense that the square of the equation error is minimum is calculated by the following equation.

(Σa(k)2)−(Σb(k)”)−(Σa(k)b
(k))”・・・(6) (Σa(k)2)・(Σb(k)2)−(Σa(k)−
bOc))”・・・(7) ・・・(8) ・・・(9) ・(Gn(i)−Gz(i  1))        
      ・・・(10)(6)〜(10)式により
X、−を算出するためには、τ 燃料噴射量の時系列データGz(k) 、排ガス空燃比
の計測値の時系列データA/F(k)が必要である。こ
れらのデータは、第1のステップで遅れモ・デルを導出
した時と同じエンジン運転条件すなわち吸入空気量、水
温等を一定に保ち、エンジンを定常運転し、燃料噴射量
をランダムに変化させた時の排ガス空燃比の応答を計測
することで得る。
(Σa(k)2)−(Σb(k)”)−(Σa(k)b
(k))”...(6) (Σa(k)2)・(Σb(k)2)−(Σa(k)−
bOc))”...(7) ...(8) ...(9) ・(Gn(i)-Gz(i 1))
...(10) In order to calculate X, - using equations (6) to (10), τ time series data of fuel injection amount Gz(k), time series data of measured value of exhaust gas air-fuel ratio A/ F(k) is required. These data were obtained under the same engine operating conditions as when the lag model was derived in the first step, i.e., the intake air amount, water temperature, etc. were kept constant, the engine was operated steadily, and the fuel injection amount was randomly varied. It is obtained by measuring the response of the exhaust gas air-fuel ratio at

X、−の算出には、同一運転条件で実験を行ってτ 得た(4)式の遅れモデルのゲインG(k)、及び、前
記時系列データGf(k)、A/F(k)を使用し、算
出パラメータには、実験時のエンジン運転条件を対応さ
せておく。
In order to calculate The calculated parameters are made to correspond to the engine operating conditions during the experiment.

最後に、第3のステップでは、エンジン運転状態に対応
して定まったパラメータX、−を運転状τ 態を表現する少なくとも1つの変数の関数あるいはマツ
プとして定式化する。付着現象に特に影響が大きいと思
われる変数を選択するとスロットル開度、吸入空気量、
吸気管内圧水温、液膜の蒸発現象に特に影響が大きいと
思われる変数を選択すると水温、吸入空気量、吸気管内
圧となる。パラメータX、−は、各々の選択変数の関係
あるいはτ マツプとして特性定式化する。なお、上記の方法で定式
化した後、パラメータへの影響が小さい変数が見出され
たなら、その変数を除いて特性表現を行うようにする。
Finally, in the third step, the parameters X, - determined corresponding to the engine operating state are formulated as a function or map of at least one variable expressing the operating state τ. Selecting variables that are considered to have a particularly large influence on the adhesion phenomenon include throttle opening, intake air amount,
Intake pipe internal pressureWater temperature, variables that are considered to have a particularly large influence on the liquid film evaporation phenomenon are water temperature, intake air amount, and intake pipe internal pressure. The parameters X, - are characteristically formulated as a relationship between each selected variable or as a τ map. Note that, after formulating using the above method, if a variable that has a small influence on the parameters is found, that variable is excluded from the characteristic expression.

これにより、X、−の特性をτ 利用して制御を行う場合、ROM内のメモリを節約する
ことができる。
This allows the memory in the ROM to be saved when control is performed using the characteristics of X, -.

以上述べた、パラメータX、−の定式化の手順τ を簡略具体化したものを第3図に示す。実際の定式化は
このフローに基づいて行なうのが簡単で良し111 まず、ステップ31では、スロットル開度、吸入空気量
、吸気管内圧2回転数をどのような値に保ちエンジンを
運転するかという、エンジン運転条件を設定する。
FIG. 3 shows a simplified embodiment of the procedure τ for formulating the parameters X and - described above. It is easy to formulate the actual formulation based on this flow.111 First, in step 31, what values should be maintained for the throttle opening, intake air amount, and intake pipe internal pressure 2 rpm at which the engine should be operated? , to set engine operating conditions.

次に、ステップ32ではステップ31で設定した運転条
件の基で、エンジンを定常運転し、本来の燃料噴射位置
に設置した■、Pガスのガス噴射量をステップ変化させ
排ガス空燃比の応答5(k)を計測する。22で、k=
oは、燃料をステップ変化させた時刻である。
Next, in step 32, based on the operating conditions set in step 31, the engine is operated steadily, and the gas injection amount of P gas is changed step by step, and the exhaust gas air-fuel ratio response 5 ( k). 22, k=
o is the time at which the fuel is changed in steps.

ステップ33では、同じエンジン運転条件で、インジェ
クタにより燃料噴射量Gi(k)をランダムに変化させ
た時の排ガス空燃比の応答A/F(k)を計測する。
In step 33, the response A/F(k) of the exhaust gas air-fuel ratio when the fuel injection amount Gi(k) is randomly changed by the injector under the same engine operating conditions is measured.

ステップ34では、ステップ32で採取した時系列デー
タ5(k)から(4)式によりモデルのゲインG(k)
を算出する。
In step 34, the model gain G(k) is calculated from the time series data 5(k) collected in step 32 using equation (4).
Calculate.

ステップ35では、ステップ33で採取し九時系列デー
タa t (k ) 、 A / F (k ) 、ス
テップ34で計算した遅れモデルのゲインGz(lc)
、及び。
In step 35, the nine time series data at(k), A/F(k) collected in step 33, and the gain Gz(lc) of the lag model calculated in step 34.
,as well as.

ステップ31で設定した吸入空気量Qaから(6)〜(
10)式に基づいて付着率X、蒸発率−を算出すτ る。以上のステップを様々な運転条件で繰り返す(ステ
ップ36)・ 次に、ステップ37では、様々なエンジン運転条件に対
応して定まったX、−をそれぞれスロットル開度、吸入
空気量、吸気管内圧、水温、及び、吸気管内圧、吸入空
気量、水温の関数、あるいは、マツプとして定式化する
From the intake air amount Qa set in step 31, (6) to (
10) Calculate the adhesion rate X and evaporation rate - based on the formula. The above steps are repeated under various operating conditions (step 36).Next, in step 37, X and - determined corresponding to various engine operating conditions are adjusted to throttle opening, intake air amount, intake pipe internal pressure, and Formulated as a function or map of water temperature, intake pipe internal pressure, intake air amount, and water temperature.

最後に、ステップ38では、特性定式化後、X。Finally, in step 38, after the characteristic formulation, X.

−に影響が小さいと思われる変数が見出された場τ 合は、その変数を除いて特性表現を行う。If a variable is found that seems to have a small influence on −, then τ If so, perform characteristic expression excluding that variable.

以上で燃料系モデルの定式化を終了する。This completes the formulation of the fuel system model.

なお、水温一定として定式化した蒸発率−の特τ 性が、第4図のように、吸気管内圧一定のラインで、そ
の増加率が急激に変化した場合、図の点線の右側の領域
で液膜が吸気管壁面]二を流れ、直接シリンダに流入す
る現象が発生しているものと見なし、この領域では、新
たに設けた変数、液膜シリンダ流入率α(α:Mjが単
位時間にシリダンに流入する液膜量どなる変数)と蒸発
率−の和、τ すなわち(α+−)として、(7)式で算出した蒸τ 発率−を表現することにする。これにより、本手τ 法で液膜シリンダ流入現象を含めた燃料流動特性のモデ
ルリングが可能となる。
In addition, if the evaporation rate - characteristic τ, which is formulated assuming a constant water temperature, changes rapidly on the line where the intake pipe internal pressure is constant, as shown in Figure 4, then it will change in the region to the right of the dotted line in the figure. It is assumed that a phenomenon in which the liquid film flows through the intake pipe wall surface]2 and directly flows into the cylinder is occurring.In this region, a newly established variable, the liquid film cylinder inflow rate α (α: Mj per unit time Let us express the evaporation rate τ calculated by equation (7) as the sum of the amount of liquid film flowing into the cylindane (a variable) and the evaporation rate τ, that is, (α+−). This makes it possible to model fuel flow characteristics including the liquid film cylinder inflow phenomenon using the original τ method.

以上、本発明によれば、誤差二乗平均が最小という意味
で最適なパラメータX、−を一意に決定τ できパラメータ算出工数を低減できる。又、吸気管内の
燃料流動遅れ以外の遅れを全て考慮していす るので精度良くパラメータX、−が算出できる。
As described above, according to the present invention, it is possible to uniquely determine the optimal parameters X, - in terms of the minimum root mean square error, and reduce the number of man-hours for parameter calculation. Furthermore, since all delays other than the fuel flow delay in the intake pipe are taken into account, the parameters X and - can be calculated with high accuracy.

τ 又1合理的に、パラメータ特性の定式化を行っているの
で、様々な運転領域で精度の高い燃料流動特性のモデル
リングが行える。
τ Also, since the parameter characteristics are formulated rationally, highly accurate modeling of fuel flow characteristics can be performed in various operating regions.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、様々な運転領域で吸気管内の燃
料流動特性を正確にモデルリングできる。
As described above, according to the present invention, fuel flow characteristics in the intake pipe can be accurately modeled in various operating regions.

よって、空燃比制御等のエンジン制御に、本発明の手法
で定式化したモデルを利用すれば、様々な運転領域で期
待通りの制御性能を得ることができ、排ガス浄化性能、
動力性能、燃費等を向上させることができるという効果
がある。
Therefore, if the model formulated by the method of the present invention is used for engine control such as air-fuel ratio control, the expected control performance can be obtained in various driving ranges, and the exhaust gas purification performance and
This has the effect of improving power performance, fuel efficiency, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、唯一個の噴射弁により全気筒への燃料の供給を行う
単点燃料噴射システムのエンジンにおいて、少なくとも
、吸入空気量、吸気管内圧、水温スロットル開度、回転
数が一定というエンジン運転状態のもとで、燃料噴射量
を所定条件で変化させた時の排ガス空燃比の応答を排気
管に設置した空燃比センサで計測し、インジェクタで噴
射される燃料を単位時間の質量流量に換算した量である
燃料噴射量の指令値及び、排ガス空燃比の計測値の時系
列データから吸気管内の燃料流動特性を表現する燃料系
モデルのパラメータを算出する事を特徴とするエンジン
の燃料系動特性解析法。 2、燃料噴射位置に、ガス状燃料の噴射弁を設け前記エ
ンジン運転状態のもとで、ガス噴射量を所定条件で変化
させた時の排ガス空燃比の応答を前記空燃比センサで計
測し、ガス噴射量の指令値及び、排ガス空燃比の計測値
の時系列データから、燃料の噴射からその効果が空燃比
センサの出力に表われるまでの遅れのうち、前記燃料系
モデルで表現できない遅れを数式モデル化することを特
徴とする第1項記載のエンジンの燃料系動特性解析法。 3、第2項で得られるモデルと前記燃料系モデルから入
力が燃料噴射量の指令値、出力が排ガス空燃比の計測値
である差分方程式を導出、誤差分方程式の方程式誤差が
最小となるよう前記燃料系モデルのパラメータを算出す
ることを特徴とする第1項、第2項記載のエンジンの燃
料系動特性解析法。 4、様々なエンジン運転状態に対応する燃料系モデルの
パラメータを算出、エンジン運転状態を表現する少なく
とも1つの変数の関数、あるいは、マップとして前記パ
ラメータ特性を定式化することを特徴とする第1項乃至
第3項記載のエンジンの燃料系動特性解析法。
[Claims] 1. In an engine with a single point fuel injection system in which fuel is supplied to all cylinders by a single injection valve, at least the intake air amount, intake pipe internal pressure, water temperature, throttle opening, and rotation speed are An air-fuel ratio sensor installed in the exhaust pipe measures the response of the exhaust gas air-fuel ratio when the fuel injection amount is changed under specified conditions under a constant engine operating state. An engine characterized in that parameters of a fuel system model expressing fuel flow characteristics in an intake pipe are calculated from a command value of a fuel injection amount, which is an amount converted to a mass flow rate, and time series data of a measured value of an exhaust gas air-fuel ratio. fuel system dynamic characteristics analysis method. 2. A gaseous fuel injection valve is provided at the fuel injection position, and the air-fuel ratio sensor measures the response of the exhaust gas air-fuel ratio when the gas injection amount is changed under predetermined conditions under the engine operating state; From the time-series data of the command value of gas injection amount and the measured value of exhaust gas air-fuel ratio, we can calculate the delay that cannot be expressed by the fuel system model among the delays from fuel injection until the effect appears in the output of the air-fuel ratio sensor. 2. The engine fuel system dynamic characteristic analysis method according to item 1, characterized in that mathematical modeling is performed. 3. From the model obtained in the second term and the fuel system model, derive a difference equation whose input is the command value of the fuel injection amount and the output is the measured value of the exhaust gas air-fuel ratio, so that the equation error of the error component equation is minimized. 2. The engine fuel system dynamic characteristic analysis method according to item 1 or 2, characterized in that parameters of the fuel system model are calculated. 4. Parameter 1, characterized in that the parameters of the fuel system model corresponding to various engine operating states are calculated, and the parameter characteristics are formulated as a function or a map of at least one variable expressing the engine operating state. 3. A fuel system dynamic characteristic analysis method for an engine according to item 3.
JP29521987A 1987-11-25 1987-11-25 Engine fuel system dynamic characteristic analysis method Pending JPH01138335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29521987A JPH01138335A (en) 1987-11-25 1987-11-25 Engine fuel system dynamic characteristic analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29521987A JPH01138335A (en) 1987-11-25 1987-11-25 Engine fuel system dynamic characteristic analysis method

Publications (1)

Publication Number Publication Date
JPH01138335A true JPH01138335A (en) 1989-05-31

Family

ID=17817747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29521987A Pending JPH01138335A (en) 1987-11-25 1987-11-25 Engine fuel system dynamic characteristic analysis method

Country Status (1)

Country Link
JP (1) JPH01138335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
KR20020052076A (en) * 2000-12-23 2002-07-02 이계안 Combustion chamber structure and parameter presume method for diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
US5329914A (en) * 1991-03-28 1994-07-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for internal combustion engine
KR20020052076A (en) * 2000-12-23 2002-07-02 이계안 Combustion chamber structure and parameter presume method for diesel engine

Similar Documents

Publication Publication Date Title
KR940006050B1 (en) Control method and apparatus for fuel injection
CN111337258B (en) Device and method for online calibration of engine control parameters by combining genetic algorithm and extremum search algorithm
Sui et al. Mean value modelling of diesel engine combustion based on parameterized finite stage cylinder process
JP6139896B2 (en) Engine test apparatus and method
CN103711599B (en) A kind of method and device realizing EGR control
KR0158880B1 (en) Fuel injection control method of engine
JPH0617680A (en) Device for controlling fuel injection quantity in internal combustion engine
JPH11343916A (en) Data estimating method in engine control
CN110414089A (en) The simulated prediction method of vehicle PEMS discharge based on Engine Universal Characteristics
JPH11351045A (en) Method for estimating the quantity indicating the state of the engine
Delosh et al. Dynamic computer simulation of a vehicle with electronic engine control
JP2564806B2 (en) Feedback control method for internal combustion engine
CN112883653B (en) Artificial intelligence-based modeling method for real-time engine model
Sandoval et al. Computational technique for turbocharger transient characterization using real driving conditions data
JPH01138335A (en) Engine fuel system dynamic characteristic analysis method
Unver et al. Modeling and validation of turbocharged diesel engine airpath and combustion systems
Guardiola et al. Representation limits of mean value engine models
Huang et al. Development of a bond graph based model library for turbocharged diesel engines
JP2020165341A (en) Actual time performance predict method and actual time performance predict program of combustion engine
Hao et al. Dynamic indicated torque estimation for turbocharged diesel engines based on back propagation neural network
Cordon et al. One-dimensional engine modeling and validation using Ricardo WAVE
Katrašnik et al. Tailored cylinder models for system level engine modelling
Gambino et al. Experimental and computational analysis of a dynamic model for control strategy optimization in a spark ignition engine
Lahti et al. Dynamic engine control for HCCI combustion
JPH04159439A (en) Control effect estimation method and apparatus therefor