[go: up one dir, main page]

JPH01135868A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH01135868A
JPH01135868A JP29392987A JP29392987A JPH01135868A JP H01135868 A JPH01135868 A JP H01135868A JP 29392987 A JP29392987 A JP 29392987A JP 29392987 A JP29392987 A JP 29392987A JP H01135868 A JPH01135868 A JP H01135868A
Authority
JP
Japan
Prior art keywords
resin
polyphenylene ether
coated
inorganic filler
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29392987A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
幸雄 佐々木
Tetsushi Watanabe
渡辺 哲志
Hiroshi Takamiya
高宮 洋
Kazuo Watanabe
渡辺 和男
Yoko Yamazaki
山崎 葉子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP29392987A priority Critical patent/JPH01135868A/en
Publication of JPH01135868A publication Critical patent/JPH01135868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a resin composition having excellent electrical properties, mechanical properties, heat-resistance, moisture resistance, etc., and suitable for the sealing material for electric parts, etc., by compounding an inorganic filler coated with a polyphenylene ether resin. CONSTITUTION:The objective resin composition is produced by coating 100pts.wt. of an inorganic filler (e.g., silica or glass fiber) with 1-50pts.wt., preferably 1-20pts.wt. of a polyphenylene ether (co)polymer having a structural unit of formula (R<1> is 1-3C lower alkyl; R<2> and R<3> are H or 1-3C lower alkyl) [e.g., poly(2,6-dimethyl-1,4-phenylene) ether] and compounding the coated filler to a thermosetting resin or a thermoplastic resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、改良された無機質充填材を含有する樹脂組成
物に関する。更に詳しくは、電気的性質、機械的性質、
耐熱性、耐湿性、耐クラツク性に優れた組成物を提供す
るものであり、電子、電気部品の封止用材料、自動車、
航空機、舟艇、建材、日用品等に好適な材料を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a resin composition containing an improved inorganic filler. More specifically, electrical properties, mechanical properties,
We provide compositions with excellent heat resistance, moisture resistance, and crack resistance, and are used as sealing materials for electronic and electrical components, automobiles,
It provides materials suitable for aircraft, boats, building materials, daily necessities, etc.

(従来技術) 従来から樹脂組成物の改良を目的として、種々の樹脂の
ブレンドによる樹脂の改質や、充填材の添加による強化
等が検討され実用化されてきた。しかしながら、より大
きな耐久性、信頼性を得るためには、樹脂と充填材の界
面が重要な問題となる。
(Prior Art) For the purpose of improving resin compositions, methods such as modifying resins by blending various resins and strengthening them by adding fillers have been studied and put into practical use. However, in order to obtain greater durability and reliability, the interface between the resin and the filler becomes an important issue.

樹脂と充填材の界面接着が不十分であるとかえって組成
物の強度が低下したり、外部及び、内部応力によって生
じたクラックが界面を伝播したり、耐湿性を損なうなど
の問題を生じる。
Insufficient interfacial adhesion between the resin and the filler results in problems such as a decrease in the strength of the composition, propagation of cracks caused by external and internal stresses across the interface, and loss of moisture resistance.

例えば、耐クランク性能等を改善する目的でポリブタン
エンゴムやシリコーンゴムなどでシリカ表面を被覆する
方法(特開昭60−163915、特開昭6l−203
160)が提案されているが、耐クラツク性は得られる
ものの耐湿性、耐熱性において必ずしも満足できるもの
ではなかった。また、熱伝導性や金型の摩耗を改善する
目的で、予め使用する樹脂でフィラーを被覆する方法(
特開昭6l−203121)が提案されているが、電気
的性質、機械的性質、耐クランク性などは、特に改善さ
れない。
For example, a method of coating the silica surface with polybutane rubber, silicone rubber, etc. for the purpose of improving crank resistance, etc.
160) has been proposed, but although crack resistance can be obtained, the moisture resistance and heat resistance are not necessarily satisfactory. In addition, for the purpose of improving thermal conductivity and mold wear, a method of coating the filler with resin used in advance (
JP-A No. 61-203121) has been proposed, but the electrical properties, mechanical properties, crank resistance, etc. are not particularly improved.

(発明が解決しようとする問題点) 本発明は、充填材に予めポリフェニレンエーテル系商脂
を被覆したものを使用することで、バルク樹脂と充填材
界面を補強し、上記従来の問題点を解決するとともに、
電気的、機械的により優れた樹脂組成物を提供するもの
である。
(Problems to be Solved by the Invention) The present invention solves the above conventional problems by using a filler coated with a polyphenylene ether commercial resin in advance to reinforce the interface between the bulk resin and the filler. At the same time,
This provides a resin composition that is electrically and mechanically superior.

(問題点を解決するための手段) 本発明が提供する組成物はポリフェニレンエーテル系樹
脂で被覆された無機質充填材と熱硬化性樹脂及び、また
は熱可塑性樹脂とで構成される。
(Means for Solving the Problems) The composition provided by the present invention is composed of an inorganic filler coated with a polyphenylene ether resin, and a thermosetting resin and/or a thermoplastic resin.

ここでいうポリフェニレンエーテル系樹脂とは、一般式
〔I〕 Z (R1は炭素数1〜5の低級アルキル基、fi、2−及
びR3は水素原子または炭素数1〜3の低級アルキル基
である。) で示される構造単位を有するポリフェニレンエーテルホ
モポリマー及び、またはコポリマーであり、これは一般
式〔■〕 (几1 は炭素数1〜3の低級アルキル基、几2及び几
3は水素原子または炭素数1〜3の低級アルキル基であ
る。) で示される単環式フェノールの1種以上を酸化的に重縮
合して得られる。この製造法に関しては既に公知であり
、例えば米国特許筒3306874号、第330687
5号、第5257557号、第3257358号、第3
455880号、特公昭46−27539号、特公昭4
9−16120号、特公昭52−17880号等に開示
されている。
The polyphenylene ether resin mentioned here refers to the general formula [I] Z (R1 is a lower alkyl group having 1 to 5 carbon atoms, fi, 2- and R3 are hydrogen atoms or lower alkyl groups having 1 to 3 carbon atoms) ) is a polyphenylene ether homopolymer and/or copolymer having a structural unit represented by the general formula [■] (几1 is a lower alkyl group having 1 to 3 carbon atoms, 几2 and 几3 are hydrogen atoms or It is a lower alkyl group having 1 to 3 carbon atoms. This manufacturing method is already known, for example, US Pat.
No. 5, No. 5257557, No. 3257358, No. 3
No. 455880, Special Publication No. 46-27539, Special Publication No. 4
It is disclosed in Japanese Patent Publication No. 9-16120, Japanese Patent Publication No. 52-17880, etc.

ポリフェニレンエーテル系樹脂の具体例としては、ポリ
(2,6−シメチルー1.4−フェニレン)エーテル、
ポリ(2,6−シエチルー1.4−フェニレン)エーテ
ル、ポリ(2,6−ジプロビルー1.4−フェニレン)
エーテル、ポリ(2−メチル−6−エチル−1,4−フ
エニレン)エーテル、ポリ(2−メチル−6−ブロビル
ー1.4−フェニレン)エーテル、ポリ(2−エチル−
6−ブロビルー1,4−フェニレン)エーテル、2,6
−ノメチルフエノール/2,5.6−)リメチルフェノ
ール共重合体、2.6−ツメチルフェノール/2 、3
.6−トリエチルフエノール共重合体、2.6−ジエチ
ルフェノール/2,3.6−ドリノチルフエノール共重
合体、2.6−ジプ0ピルフエノール/2,3.6−)
リメチルフェノール共重合体などが挙げられる。
Specific examples of polyphenylene ether resins include poly(2,6-dimethyl-1,4-phenylene) ether,
Poly(2,6-ethyl-1,4-phenylene) ether, poly(2,6-diprobyl-1,4-phenylene)
Ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2-methyl-6-broby-1,4-phenylene) ether, poly(2-ethyl-
6-broby-1,4-phenylene)ether, 2,6
-nomethylphenol/2,5.6-)limethylphenol copolymer, 2,6-trimethylphenol/2,3
.. 6-triethylphenol copolymer, 2.6-diethylphenol/2,3.6-dolinotylphenol copolymer, 2.6-dipylphenol/2,3.6-)
Examples include trimethylphenol copolymer.

また、ポリフェニレンエーテル系樹脂は主鎖構造が上記
説明範囲内にある限り、側鎖あるいは、末端に修飾が施
されていてもよい。例えば、無水マレイン酸、クロルシ
ランあるいは、ヒドロキシエチルアクリレートなどによ
る変性ポリフェニレンエーテル系樹脂、アセチル化など
により分子鎖末端が封鎖されたポリフェニレンエーテル
系樹脂などを挙げる事ができる。
Further, the polyphenylene ether resin may be modified at the side chain or at the end, as long as the main chain structure is within the range described above. Examples include polyphenylene ether resins modified with maleic anhydride, chlorosilane or hydroxyethyl acrylate, and polyphenylene ether resins whose molecular chain ends are blocked by acetylation.

ポリフェニレンエーテル系樹脂の長所としては、電気的
性質が極めて優れている、機械的強度が優れている、難
燃性があり自己消火性である、耐水性、耐熱水蒸気性に
優りている等が挙げられ、電気的改質、強度改良の目的
で多くの樹脂に複合化されている。
The advantages of polyphenylene ether resin include extremely good electrical properties, excellent mechanical strength, flame retardancy and self-extinguishing properties, and excellent water resistance and hot steam resistance. It is compounded into many resins for the purpose of electrical modification and strength improvement.

本発明で用いられる充填材は、通常知られている無機質
充填材であれば特に制限はなく用途、目的に応じて選択
することができる。例えば、シリカ、ガラス繊維、タル
ク、マイカ、アルミナ、炭酸カルシウム、クレー、炭酸
マグネシウム、シュウ酸カルシウム、ガラスバルーン、
カオリン、アスベスト、酸化チタン、チタン酸カリウム
、チタン酸バリウム、窒化ケイ素、炭化ケイ素、ケイ酸
ジルコニウム、ケイ酸鉛、ケイ酸カルシウム、水酸化ア
ルミニウム、硫酸カルシウム、硫酸バリウム、リン酸マ
グネシウム、窒化ボロン、酸化亜鉛、酸化鉄、酸化鉛な
どの無機質充填材を挙げることができる。
The filler used in the present invention is not particularly limited as long as it is a commonly known inorganic filler and can be selected depending on the use and purpose. For example, silica, glass fiber, talc, mica, alumina, calcium carbonate, clay, magnesium carbonate, calcium oxalate, glass balloon,
Kaolin, asbestos, titanium oxide, potassium titanate, barium titanate, silicon nitride, silicon carbide, zirconium silicate, lead silicate, calcium silicate, aluminum hydroxide, calcium sulfate, barium sulfate, magnesium phosphate, boron nitride, Inorganic fillers such as zinc oxide, iron oxide, and lead oxide can be mentioned.

また、ポリフェニレンエーテル系樹脂の末端反応基と反
応することを目的として無機質充填材表面に修飾を施し
てもかまわない。例えば、各種シラン系カップリング剤
、チタネート系カップリング剤、アルミニウム系カップ
リング剤等を挙げることができる。
Furthermore, the surface of the inorganic filler may be modified for the purpose of reacting with the terminal reactive group of the polyphenylene ether resin. Examples include various silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.

本発明組成物において、ポリフェニレンエーテル系樹脂
は、前記の無機質充填材の合計重量100重量部当りに
0.1〜50重量部の範囲で被覆して用いるのが好まし
く、更に好ましくは1〜20重量部、の範囲が良い。配
合量が0゜1より少ない場合には、目的とする樹脂の、
ポリフェニレンエーテル系樹脂の複合化による改質の効
果が少なく、また、50重量部より多い場合は無機質充
填材による補強効果が小さくなりしかも成形性が著しく
低下するので好ましくない。
In the composition of the present invention, the polyphenylene ether resin is preferably used in a coating range of 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight per 100 parts by weight of the total weight of the inorganic filler. The range of parts is good. If the blending amount is less than 0°1, the target resin
The effect of modification by compositing the polyphenylene ether resin is small, and if the amount exceeds 50 parts by weight, the reinforcing effect by the inorganic filler becomes small and moldability is significantly reduced, which is not preferable.

ポリフェニレンエーテル系樹脂の無機質充填剤への被覆
方法としては、溶液ブレンド、熔融ブレンド等が挙げら
れ、必要に応じて選択することができる。ポリフェニレ
ンエーテル系樹脂と無機質充填材とは、物理的にファン
デルワールス力で接看したり、反応基同士が化学結合し
たりしている。また、被覆されたポリフェニレンエーテ
ル系樹脂とまわりのバルク樹脂は同様に樹脂同士で物理
的、化学的に結合しており、無機質充填材とバルク樹脂
との間にポリフェニレンエーテル系樹脂で連続な緩衝層
を形成したことになる。
Examples of the method for coating the inorganic filler with the polyphenylene ether resin include solution blending and melt blending, which can be selected as required. The polyphenylene ether resin and the inorganic filler are physically in contact with each other due to van der Waals forces, or their reactive groups are chemically bonded to each other. In addition, the coated polyphenylene ether resin and the surrounding bulk resin are similarly physically and chemically bonded to each other, and a continuous buffer layer of polyphenylene ether resin is formed between the inorganic filler and the bulk resin. This means that it has been formed.

本発明で用いられる樹脂成分は、通常知られている熱硬
化性樹脂あるいは熱可塑性樹脂であれば特に制限はなく
、用途、目的に応じて選択することができ、また、二種
以上をブレンドして用いても差し支えない。
The resin component used in the present invention is not particularly limited as long as it is a commonly known thermosetting resin or thermoplastic resin, and can be selected depending on the use and purpose. There is no problem in using it.

例えば、熱硬化性樹脂では、エポキシ樹脂、ポリイミド
樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂
、シリコン樹脂、不飽和ポリエステル樹脂、メラミン樹
脂などを挙げることができる。
Examples of thermosetting resins include epoxy resins, polyimide resins, phenol resins, bismaleimide triazine resins, silicone resins, unsaturated polyester resins, and melamine resins.

また、熱可塑性樹脂では、ポリプロピレン、ポリスチレ
ン、ポリスチレン、ポリフェニレンエーテル、ポリフェ
ニレンサルファイド、ポリカーボネート、ポリアセター
ル、ポリアミド、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、AB8樹脂、ナイロン、塩化ビ
ニル、ボリアリレート樹脂、ポリスルホン樹脂、ポリエ
ーテルスルホン /、ポリメチルペンテン、芳香族ポリエステルなどを挙
げることができる。
In addition, thermoplastic resins include polypropylene, polystyrene, polystyrene, polyphenylene ether, polyphenylene sulfide, polycarbonate, polyacetal, polyamide, polyethylene terephthalate, polybutylene terephthalate, AB8 resin, nylon, vinyl chloride, polyarylate resin, polysulfone resin, polyether sulfone. /, polymethylpentene, aromatic polyester, etc.

本発明組成物の混合方法は通常知られている方法で行う
ことができ,ポリフェニレンエーテル系樹脂で被覆した
無機質充填材と全樹脂成分をナウターミキサ−、リボン
ミキサーあるいはヘンシェルミキサー等で混合した後ニ
ーダ−、押出機、あるいはロール等を用いて溶融混合す
る方法、あるいは、予め樹脂成分のみを溶融混合した後
、更にポリフェニレンエーテル系樹脂で被覆した無機質
充填材を加えて混合均一化する方法などが挙げられる。
The composition of the present invention can be mixed by a commonly known method, in which the inorganic filler coated with polyphenylene ether resin and all resin components are mixed in a Nauta mixer, ribbon mixer, Henschel mixer, etc., and then kneaded. , a method of melt-mixing using an extruder or roll, or a method of melt-mixing only the resin components in advance and then adding an inorganic filler coated with polyphenylene ether resin to make the mixture uniform. .

本発明に係る組成物には、本発明の目的を阻害しない範
囲で、目的、用途に応じた種々の添加剤を配合してもよ
く、例えば、カーボンブラック、各種顔料、染料などの
若色剤、脂肪酸エステル、カルナバワックスなどの離型
剤、などの表面処理剤、アンチモン化合、物、リン化合
物などの難燃剤、反応性シリコーンや反応性液状ポリブ
タジェン、シリコーン樹脂粉末などの可撓化剤を挙げる
事ができる。
The composition according to the present invention may contain various additives depending on the purpose and use as long as it does not impede the purpose of the present invention, such as color rejuvenating agents such as carbon black, various pigments, and dyes. , fatty acid esters, mold release agents such as carnauba wax, surface treatment agents such as antimony compounds, antimony compounds, flame retardants such as phosphorus compounds, and flexibilizing agents such as reactive silicone, reactive liquid polybutadiene, and silicone resin powder. I can do things.

(発明の効果) 無機質充填材とバルク樹脂との界面にポリフェニレンエ
ーテル系樹脂を集中的に偏在化させることにより、充填
材と樹脂の界面に生じる剥離やクラックの発生の抑制や
、界面を伝播するクラックの進行の抑止、さらには、そ
れを起因とする強度の低下の防止、などに大きな効果が
ある。
(Effect of the invention) By intensively and unevenly distributing the polyphenylene ether resin at the interface between the inorganic filler and the bulk resin, it is possible to suppress the occurrence of peeling and cracks that occur at the interface between the filler and the resin, and to prevent them from propagating across the interface. It has a great effect on inhibiting the progression of cracks and furthermore preventing a decrease in strength caused by the cracks.

また、ポリフェニレンエーテル系樹脂が複合化されるこ
とにより、電気特性、高温特性、耐湿性の改良に優れた
樹脂組成物が得られる。
Furthermore, by combining polyphenylene ether resins, a resin composition with excellent electrical properties, high temperature properties, and moisture resistance can be obtained.

(実施例) つぎに、本発明を実施例、比較例によって詳細に説明す
るが、例中の配合量(部)は全て重量部を示したもので
ある。
(Example) Next, the present invention will be explained in detail with reference to Examples and Comparative Examples, in which all amounts (parts) shown are parts by weight.

実施例 1.2 公知方法により製造したポリ(2,6−シメチルー1.
4−フェニレン)エーテル(クロロホルム中、50℃で
測定した固有粘度は0.3al/El)  1oo部と
、無水マレイン酸 10部、ジクミルパーオキサイド 
1部を、樹脂温度320℃で押し出し成形して得たマレ
イン酸変性ポリ(2,6−シメチルー1.4−フェニレ
ン)エーテル 5.6部と、3−(2−アミノエチルア
ミノプロビル)トリメトキシシラン(信越化学展 LS
−2480)1部で表面処理した非結晶性シリカ粉末(
龍森製 几り一8)  100部をトルエン中で加熱攪
拌混合した後、トルエンを留去し乾燥してポリフェニレ
ンエーテル樹脂被覆シリカ粉求人を得た(実施例1)。
Example 1.2 Poly(2,6-cymethyl-1.
10 parts of 4-phenylene) ether (intrinsic viscosity measured in chloroform at 50°C: 0.3 al/El), 10 parts of maleic anhydride, dicumyl peroxide
1 part, 5.6 parts of maleic acid-modified poly(2,6-dimethyl-1,4-phenylene) ether obtained by extrusion molding at a resin temperature of 320°C, and 3-(2-aminoethylaminoprobyl)tri Methoxysilane (Shin-Etsu Chemical Exhibition LS
-2480) surface-treated amorphous silica powder (
After heating and stirring 100 parts of Tatsumori Co., Ltd.'s Koriichi 8) in toluene, the mixture was heated and stirred, and the toluene was distilled off and dried to obtain a polyphenylene ether resin-coated silica powder (Example 1).

同様にして、マレイン酸変性ポリC2,6−シメチルー
1,4−フェニレン)エーテル 9.3部と、表面処理
したシリカ粉末(fa森製 RD−8)  100部で
、ポリフェニレンエーテル樹脂被覆シリカ粉末Bを得た
(実施例2)。
Similarly, 9.3 parts of maleic acid-modified polyC2,6-dimethyl-1,4-phenylene) ether and 100 parts of surface-treated silica powder (Fa Mori RD-8) were added to polyphenylene ether resin-coated silica powder B. was obtained (Example 2).

ポリフェニレンエーテル樹脂被覆シリカ粉求人およびポ
リフェニレンエーテル樹脂核種シリカ粉末B1クレゾー
ルノボラックエポキシ(住友化学製 B5CN  19
5−XL)、フェノールノボラック(群栄化学製 PS
F4261)、臭素化ビスフェノールAエポキシ(住友
化学製ESB−400)、三酸化ニアンチモン(王国精
錬製)、トリフェニルフォスフイン(ケイアイ化成製 
PP−360)、カルナバワックス、カーボンブラック
を第1表に示した組成でヘンシェルミキサーにて混合し
、90〜100″Cのニーダ−で混練した。更に、混練
物を冷却後粉砕し実施例1および20組成物を得た。
Polyphenylene ether resin coated silica powder and polyphenylene ether resin nuclide silica powder B1 Cresol novolac epoxy (Sumitomo Chemical B5CN 19
5-XL), phenol novolac (Gun-ei Chemical PS
F4261), brominated bisphenol A epoxy (ESB-400 manufactured by Sumitomo Chemical), diantimony trioxide (Kokoku Seiryu Co., Ltd.), triphenylphosphine (KAI Chemical Co., Ltd.)
PP-360), carnauba wax, and carbon black were mixed in a Henschel mixer with the composition shown in Table 1, and kneaded in a kneader at 90 to 100"C. Furthermore, the kneaded product was cooled and pulverized to obtain Example 1. and 20 compositions were obtained.

上記組成物を金型温度175℃、圧カフ 0 K9/r
flでトランスファー成形して、各種の試験片を作製し
、これらの試験片を180’Cの恒温槽で5時間アフタ
ーキニアーした後物性測定および耐クラツク試験に供し
た。得られた物性値および耐クラツク試験結果は第1表
のとおりである。物性測定条件および耐クラツク試験条
件を下記に説明する。
The above composition was heated at a mold temperature of 175°C and a pressure cuff of 0 K9/r.
Various test pieces were prepared by transfer molding using Fl, and after kneading these test pieces in a constant temperature bath at 180'C for 5 hours, they were subjected to physical property measurements and crack resistance tests. The obtained physical property values and crack resistance test results are shown in Table 1. The physical property measurement conditions and crack resistance test conditions are explained below.

〈ガラス転移温度の測定〉 厚み5正、直径100市の円板試験片から3朋角、長さ
15mmの角柱を切り出し、真空理工製のディクトメー
ター(こより5℃/ m i nの昇温速度での線膨張
曲線の屈曲する温度をガラス転移温゛度とした。
<Measurement of glass transition temperature> A prismatic column of 3 squares and 15 mm in length was cut out from a disk test piece with a thickness of 5 mm and a diameter of 100 mm, and heated using a dictometer manufactured by Shinku Riko (heating rate of 5℃/min). The temperature at which the linear expansion curve bends at is defined as the glass transition temperature.

〈曲げ強度の測定〉 JIS  K  6911に準じて、厚み4皿、巾10
朋、長さ100止の試験片で曲げ強度を測定した。
<Measurement of bending strength> According to JIS K 6911, thickness 4 plates, width 10
Me, the bending strength was measured using a test piece with a length of 100 mm.

〈体積抵抗率の測定〉 厚み2tnm、直径100關の円盤試験片を用いJIS
  K  6911に準拠して測定した。測定値は対数
で表示した。
<Measurement of volume resistivity> Using a disk test piece with a thickness of 2 tnm and a diameter of 100 mm, JIS
Measured according to K 6911. Measured values were expressed in logarithms.

く誘電率の測定〉 上記体積抵抗率の測定用試験片を用い、JIS  K 
 6911に準拠して測定した。
Measurement of dielectric constant〉 Using the above test piece for measuring volume resistivity, JIS K
Measured in accordance with 6911.

〈耐クラツク試験A〉 48PINフラツトパツケージ用の4,2アロイ製フレ
ーム(厚み 0.15部m)にシリコーンチップ(5,
OX5.(1++++)をマウントしたテストフレーム
を他の試験片と同様に成形、アフターキュアーして試験
に供した。
<Crack resistance test A> Silicone chips (5,
OX5. A test frame on which (1++++) was mounted was molded and after-cured in the same manner as the other test pieces, and then subjected to testing.

上記封止成形品を150℃(シリコーンオイル)60秒
、室温5秒、−196℃(液体窒素)60秒を1サイク
ルとして200サイクル毎に取り出してクラックの有無
を確認した。なお、試験数は組成物1種類あたり10個
である。
The sealed molded product was taken out every 200 cycles, each cycle consisting of 150°C (silicone oil) for 60 seconds, room temperature for 5 seconds, and -196°C (liquid nitrogen) for 60 seconds, and the presence or absence of cracks was checked. The number of tests was 10 per type of composition.

く耐クラツク試験B〉 上記封止成形品を121℃、2atm、のプレッシャー
クツカー内に18時間放置し、吸湿させた後、直ちに2
60℃の半田浴に30秒浸漬した。取り出し後、クラッ
クの有無を観察した。
Crack Resistance Test B〉 The above sealed molded product was left in a pressure cooker at 121°C and 2 atm for 18 hours to absorb moisture, and then immediately subjected to
It was immersed in a 60°C solder bath for 30 seconds. After taking it out, the presence or absence of cracks was observed.

なお、試験数は組成物1種類当り10個である。The number of tests was 10 per type of composition.

比較例 1.2 本発明の効果を示す例として、実施例1及び2のポリフ
ェニレンエーテル被覆シリカAおよびBの代わりに、シ
リカ粉末(龍森製 RD−8)および実施例1で用いた
ポリフェニレンエーテル粉末を用い、第1表シこ示す組
成で実施例1と同様に製造し比較例1および2の組成物
を製造した。その物性測定結果および耐クラツク試験結
果は第1表のとおりであった。
Comparative Example 1.2 As an example showing the effect of the present invention, in place of the polyphenylene ether-coated silica A and B of Examples 1 and 2, silica powder (RD-8 manufactured by Tatsumori) and the polyphenylene ether used in Example 1 were used. The compositions of Comparative Examples 1 and 2 were produced in the same manner as in Example 1 using powder and having the compositions shown in Table 1. The physical property measurement results and crack resistance test results are shown in Table 1.

実施例 3 実施例1に用いたポリフェニレンエーテル樹脂被覆シリ
カ粉求人、ビスマレイミドトリアジン樹脂(三菱瓦斯化
学制 BT2170)、クレゾールノボラックエポキシ
(チバガイギー製ECN−1275)、オクチル酸亜鉛
、ジクミルパーオキサイド、ヘキストワックスOPを第
2表に示した組成でヘンシェルミキサーにて混合し、9
0〜100℃のニーダ−で混練した。
Example 3 Polyphenylene ether resin-coated silica powder used in Example 1, bismaleimide triazine resin (Mitsubishi Gas Chemical BT2170), cresol novolak epoxy (ECN-1275 manufactured by Ciba Geigy), zinc octylate, dicumyl peroxide, Hoechst Wax OP was mixed with the composition shown in Table 2 in a Henschel mixer, and
The mixture was kneaded in a kneader at 0 to 100°C.

更に、混線物を冷却後粉砕し実施例3の組成物を得た。Further, the mixed material was cooled and pulverized to obtain the composition of Example 3.

上記組成物を金型温度175℃、圧カフ0に9/ ad
でトランスファー成形して、各種の試験片を作製し、こ
れらの試験片を200℃の恒温槽で4時間アフターキュ
アーした後物性測定および耐クラツク試験に供した。得
られた物性値および耐クラツク試験結果は第2表のとお
りである。
The above composition was heated to a mold temperature of 175°C and a pressure cuff of 0 to 9/ad.
Various test pieces were prepared by transfer molding, and these test pieces were after-cured for 4 hours in a constant temperature bath at 200°C, and then subjected to physical property measurements and crack resistance tests. The obtained physical property values and crack resistance test results are shown in Table 2.

比較例 3.4 実施例3のポリフェニレンエーテル樹脂被覆シリカ粉求
人の代わりに、シリカ粉末(ft[森興几D−8)およ
び実施例1で用いたマレイン化変性ポリフェニレンエー
テル粉末を用い、第2表に示す組成で、実施例3と同様
に製造し、物性測定と耐クラツク試験を実施した。得ら
れた結果は、第2表のとおりである。
Comparative Example 3.4 In place of the polyphenylene ether resin-coated silica powder of Example 3, silica powder (ft [Morikorin D-8) and the maleated modified polyphenylene ether powder used in Example 1 were used, and the second It was manufactured in the same manner as in Example 3 with the composition shown in the table, and the physical properties were measured and the crack resistance test was conducted. The results obtained are shown in Table 2.

実施例 4.5 グラスファイバー(旭ファイバーグラス社製グラスロン
03−MA−497)  100部と、実施例1に用い
たマレイン酸変性ポIJ (2、6−シメチルー1.4
−フェニレン)エーテル5.6部をトルエン中で加熱攪
拌混合し反応させた後トルエンを留去し乾燥してポリフ
ェニレンエーテル被覆グラスファイバー人を得た。
Example 4.5 100 parts of glass fiber (Glasron 03-MA-497, manufactured by Asahi Fiberglass Co., Ltd.) and the maleic acid-modified POIJ used in Example 1 (2,6-cymethyl-1.4
-phenylene ether (5.6 parts) was heated and stirred in toluene, mixed and reacted, and the toluene was distilled off and dried to obtain a glass fiber coated with polyphenylene ether.

ポリフェニレンエーテル樹脂被覆クラスファイバー人、
ポリフェニレンサルファイド樹脂(トープレン製 トー
プレンT−4)および、ポリカーボネート(三菱瓦斯化
学制 ニーピロンS−2000)を第3表に示した組成
で混合し、樹脂温度290℃にて押出し成形を行ない、
ペレットを作製した後、樹脂温度320〜340℃、金
型温度120℃、射出圧力100 oK4r/−で射出
成形を行ない各種の試験片を作製し、物性測定に供した
Polyphenylene ether resin coated class fiber people,
Polyphenylene sulfide resin (Toprene T-4 manufactured by Toprene) and polycarbonate (Niepilon S-2000 manufactured by Mitsubishi Gas Chemical) were mixed with the composition shown in Table 3, and extrusion molding was performed at a resin temperature of 290°C.
After producing pellets, injection molding was performed at a resin temperature of 320 to 340°C, a mold temperature of 120°C, and an injection pressure of 100 oK4r/- to produce various test pieces, which were used for physical property measurements.

得られた物性値は第3表のとおりである。物性測定条件
を下記に説明する。
The obtained physical property values are shown in Table 3. The physical property measurement conditions are explained below.

〈熱変形温度の測定〉 JI8  K  7207に準じて、厚み6.4富藁、
巾12.7龍、長さ127皿の試験片を用い曲げ応力1
8.5Kg/caで熱変形温度を測定した。
<Measurement of heat deformation temperature> According to JI8 K 7207, thickness 6.4 tofu straw,
Bending stress 1 using a test piece with a width of 12.7 mm and a length of 127 mm
The heat distortion temperature was measured at 8.5 Kg/ca.

〈アイゾツト衝撃試験〉 JIS  K  7110に準じて、厚み12゜71m
、巾3.3韻、長さ63朋でV/ y−y−付きの試験
片を用いアイゾツト衝撃強度を測定した。
<Izotsu impact test> According to JIS K 7110, thickness 12° 71m
The Izot impact strength was measured using a test piece with a width of 3.3 mm and a length of 63 mm with V/yy-.

〈引っ張り強度の測定法〉 JIS  K  7113に準じて、1号形試験片にて
引っ張り強度を測定した。
<Method for measuring tensile strength> Tensile strength was measured using a No. 1 test piece according to JIS K 7113.

く曲げ強度の測定〉 JIS  K  7203に準じて、厚み4朋。Measurement of bending strength> According to JIS K 7203, thickness 4 mm.

巾IQiml、長さ10100lの試験片で曲げ強度を
測定した。
The bending strength was measured using a test piece with a width of IQiml and a length of 10,100l.

く体積抵抗率の測定〉 厚み2朋、直径100Fl111の円盤試験片を用いJ
IS  K  6911に準拠して測定した。測定値は
対数で表示した。
Measurement of volume resistivity〉 J
Measured according to IS K 6911. Measured values were expressed in logarithms.

く耐クラツク試験C〉 48PINフラツトパツケージ用の4.270イ製フレ
ーム(厚み0.15朋)にシリコーンチップ(5,OX
5.0η1)をマウントしたテストフレームを他の試験
片と同様に成形、アフターキュアーして試験に供した。
Crack Resistance Test C〉 A silicone chip (5, OX
A test frame mounted with 5.0η1) was molded and after-cured in the same manner as the other test pieces, and then subjected to the test.

上記封止成形品を200°C(気相)10分、室温5分
、−50℃(気相)10分を1サイクルとして200サ
イクル行った後に取り出してクラックの有無を確認した
。なお、試験数は組成物18類あたり10個である。
The sealed molded product was subjected to 200 cycles of 200°C (gas phase) for 10 minutes, room temperature for 5 minutes, and -50°C (gas phase) for 10 minutes, and then taken out and checked for cracks. Note that the number of tests was 10 for each class 18 composition.

く耐クラツク試験D〉 耐クランク試験Cと同様にして得た封止成形品を100
℃(気相)10分、室温1分、−40℃(気相)10分
を1サイクルとして200サイクル行った後に取り出し
てクラックの有無を確聞した。なお、試験数は組成物1
種類あたり10個である。
Crack Resistance Test D〉 The sealed molded product obtained in the same manner as Crank Resistance Test C was
C. (gas phase) for 10 minutes, room temperature for 1 minute, and -40.degree. C. (gas phase) for 10 minutes as one cycle for 200 cycles, and then taken out and checked for cracks. In addition, the number of tests is composition 1
There are 10 pieces per type.

比較例 5.6.7.8 実施例4で用いたポリフェニレンエーテル樹脂被覆グラ
スファイバーAの代わりに、グラスファイバー(旭ファ
イバーグラス社製 グラスロン05−MA−497)お
よび、実施例1で用いたポリフェニレンエーテル樹脂粉
末を用いるはかは実施例4.5と同様の方法により第3
表に示す組成で比較例5.6.7.8の組成物を得た。
Comparative Example 5.6.7.8 Instead of the polyphenylene ether resin-coated glass fiber A used in Example 4, glass fiber (Glaslon 05-MA-497 manufactured by Asahi Fiberglass Co., Ltd.) and the polyphenylene used in Example 1 were used. The third method using ether resin powder was carried out in the same manner as in Example 4.5.
Compositions of Comparative Example 5.6.7.8 were obtained with the compositions shown in the table.

その物性測定の結果は第3表のとおりであった。The results of physical property measurements are shown in Table 3.

実施例 6.7 実施例4.5で用いたポリフェニレンエーテル樹脂被覆
グラスファイバーA1ポリブチレンテレフタレート樹脂
(東し製 PBT1401−XO6)および、ポリプロ
ピレン(三井石油化学製 ハイボールJ’800)を第
4表に示した組成および条件で押し出し成形を行ない、
ペレットを作製した後、第4表に示した条件で射出成形
を行ない、各種の試験片を作製し、物性測定に供した。
Example 6.7 The polyphenylene ether resin-coated glass fiber A1 used in Example 4.5 polybutylene terephthalate resin (PBT1401-XO6 manufactured by Toshi) and polypropylene (Highball J'800 manufactured by Mitsui Petrochemicals) are shown in Table 4. Perform extrusion molding with the composition and conditions shown in
After producing pellets, injection molding was performed under the conditions shown in Table 4, and various test pieces were produced and used for physical property measurements.

得られた物性値は第4表のとおりである。The obtained physical property values are shown in Table 4.

比較例 9.10.11.12 実施例6.7のポリフェニレンエーテル樹脂被覆グラス
ファイバー人の代わりに、比較例5で用いたポリフェニ
レンエーテル未処理のグラスファイバーBおよび、実施
例1で用いたポリフェニレンエーテル樹′脂粉末を用い
るほかは実施例6.7と同様の方法により第4表に示す
組成で比較例9.10.11.12の組成物を得た。
Comparative Example 9.10.11.12 Polyphenylene ether untreated glass fiber B used in Comparative Example 5 and polyphenylene ether used in Example 1 instead of polyphenylene ether resin coated glass fiber of Example 6.7 Comparative Example 9.10.11.12 compositions having the compositions shown in Table 4 were obtained in the same manner as in Example 6.7 except that resin powder was used.

その物性測定の結果は第4表のとおりであった。The results of physical property measurements are shown in Table 4.

第1表 中1;ポリフェニレンエーテルを重量比15:270で
コーティングしたシリカ粉末 傘2;ポ、リフエニレンエーテルを重量比25:270
でコーティングしたシリカ粉末 −3;ポリフェニレンエーテル未処理のシリカ粉末中4
;表示すイクル敦でのクラック発生個数(試験数 10
)傘5;半田浸漬後のクラック発生個数(試験数 10
)第2表 傘1;ポリフェニレンエーテルを重量比15:270で
コーティングしたシリカ粉末 中2;ポリフェニレンエーテル未処理のシリカ粉末11
3;表示すイクル数でのクラック発生個数(試験数 1
0)$4;半田浸漬後のクラック発生個数(試験数 1
0)手続補正書(自発) 昭和63年 1月1斗日
1 in Table 1: Silica powder umbrella coated with polyphenylene ether at a weight ratio of 15:270 2: Polyphenylene ether coated at a weight ratio of 25:270
Silica powder coated with -3; Polyphenylene ether untreated silica powder -4
;Display the number of cracks that occur in Ikuru Atsushi (number of tests: 10)
) Umbrella 5; Number of cracks after solder immersion (number of tests: 10)
) Table 2 Umbrella 1; Silica powder coated with polyphenylene ether at a weight ratio of 15:270 2; Silica powder untreated with polyphenylene ether 11
3; Number of cracks generated at the number of cycles displayed (number of tests: 1
0) $4; Number of cracks after solder immersion (number of tests: 1)
0) Procedural amendment (voluntary) January 1, 1988

Claims (1)

【特許請求の範囲】 1 ポリフェニレンエーテル系樹脂で被覆された無機質
充填剤を含有することを特徴とする樹脂組成物 2 ポリフエニレンエーテル系樹脂が下記一般式〔 I
〕で示される構造単位を有するポリフェニレンエーテル
ホモポリマー及び、またはコポリマーである特許請求の
範囲第1項記載の組成物。 ▲数式、化学式、表等があります▼〔 I 〕 (R_1は炭素数1〜3の低級アルキル基、R_2及び
R_3は水素原子または炭素数1〜3の低級アルキル基
である。)
[Scope of Claims] 1. A resin composition characterized by containing an inorganic filler coated with a polyphenylene ether resin. 2. A polyphenylene ether resin having the following general formula [I
] The composition according to claim 1, which is a polyphenylene ether homopolymer and/or copolymer having a structural unit represented by the following. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (R_1 is a lower alkyl group with 1 to 3 carbon atoms, R_2 and R_3 are hydrogen atoms or lower alkyl groups with 1 to 3 carbon atoms.)
JP29392987A 1987-11-24 1987-11-24 Resin composition Pending JPH01135868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29392987A JPH01135868A (en) 1987-11-24 1987-11-24 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29392987A JPH01135868A (en) 1987-11-24 1987-11-24 Resin composition

Publications (1)

Publication Number Publication Date
JPH01135868A true JPH01135868A (en) 1989-05-29

Family

ID=17800992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29392987A Pending JPH01135868A (en) 1987-11-24 1987-11-24 Resin composition

Country Status (1)

Country Link
JP (1) JPH01135868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426171A (en) * 1991-02-26 1995-06-20 The Dow Chemical Company Thermoplastic resins containing coated additives
JP2004156038A (en) * 2002-11-06 2004-06-03 Merck Patent Gmbh Laser marking pigment
WO2016015411A1 (en) * 2014-07-29 2016-02-04 京东方科技集团股份有限公司 Functional material, preparation method therefor, resin composition, film, and display component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426171A (en) * 1991-02-26 1995-06-20 The Dow Chemical Company Thermoplastic resins containing coated additives
JP2004156038A (en) * 2002-11-06 2004-06-03 Merck Patent Gmbh Laser marking pigment
WO2016015411A1 (en) * 2014-07-29 2016-02-04 京东方科技集团股份有限公司 Functional material, preparation method therefor, resin composition, film, and display component
US9587121B2 (en) 2014-07-29 2017-03-07 Boe Technology Group Co., Ltd. Functional material and preparation method thereof, resin composition, film, and display device

Similar Documents

Publication Publication Date Title
US4701482A (en) Epoxy resin composition for encapsulation of semiconductor devices
JPS6148544B2 (en)
JP2004359845A (en) Polyarylene sulfide resin composition and painted molded article
US5659004A (en) Epoxy resin composition
JPH11100505A (en) Polyarylene sulfide resin composition
KR930003510B1 (en) Epoxy resin composition
JPH0459819A (en) Epoxy resin composition
JPH01135868A (en) Resin composition
JPH1149952A (en) Polyarylene sulfide resin composition
JP2003020337A (en) Bisnadimide-polysiloxane alternating copolymer or its derivative and epoxy resin composition for electronic material containing the same
JP2001288363A (en) Reinforced polyarylene sulfide resin composition with good tracking resistance
JPS6055025A (en) Epoxy resin composition
JPH0459871A (en) Polyphenylene sulfide resin composition
JP2004091504A (en) Polyarylene sulfide resin composition
JPH05170876A (en) Epoxy resin composition
JP6769582B2 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
JPH04314723A (en) epoxy resin composition
JP3477212B2 (en) Polyphenylene sulfide resin composition
JP3216248B2 (en) Polyphenylene sulfide resin composition
JPS6272713A (en) Epoxy resin composition for sealing semiconductor device
JP3476160B2 (en) Polyarylene sulfide resin composition
JPH0216156A (en) maleimide resin composition
JPH04224859A (en) resin composition
JPS6067558A (en) Semiconductor-sealing epoxy resin composition
JPH01234423A (en) Heat resistant resin composition