[go: up one dir, main page]

JPH01135543A - Preparation of monolith-type catalyst - Google Patents

Preparation of monolith-type catalyst

Info

Publication number
JPH01135543A
JPH01135543A JP29273787A JP29273787A JPH01135543A JP H01135543 A JPH01135543 A JP H01135543A JP 29273787 A JP29273787 A JP 29273787A JP 29273787 A JP29273787 A JP 29273787A JP H01135543 A JPH01135543 A JP H01135543A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
liquid
supporting
monolithic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29273787A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirayama
平山 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29273787A priority Critical patent/JPH01135543A/en
Publication of JPH01135543A publication Critical patent/JPH01135543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To set a catalyst-carrying region highly precisely and uniformly, by moving the surface of a liquid carrier by shifting the bottom of a carrier bath upward and downward to a monolithic carrier which is, except an up stream part, held on the upper part of the carrier bath. CONSTITUTION:When the bottom surface 16a of a carrier bath 12 being at the highest level, the surface of a liquid carrier 24 comes to the upper side of a carrier 22 leaving a not-carried part 22a. Also, when the bottom surface of the carrier bath 12 being at the lowest level, the surface of the liquid carrier 24 comes near to the lower side of the carrier 22. As the bottom surface 16a moves upward and downward between the levels to elevate and lower the liquid carrier surface, contact degree between the liquid carrier 24 and the carrier 22 is increased and unevenness of the liquid carrier concn. is decreased and uniform catalyst-carrying is achieved. Further, it becomes easy to stop synchronously elevating the bottom surface 16a and liquid carrier surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ハニカム担体や3次元フオーム担体を用いた
モノリス型触媒であって、上流側部分に所定範囲で触媒
の未担持部を形成したモノリス型触媒の製造方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a monolith type catalyst using a honeycomb carrier or a three-dimensional foam carrier, in which an unsupported portion of the catalyst is formed in a predetermined range on the upstream side. The present invention relates to a method for producing a monolithic catalyst.

この製造方法は、たとえば、自動車用内燃機関の排気系
に装着されるモノリス型触媒を製造するために利用され
る。
This manufacturing method is used, for example, to manufacture a monolithic catalyst installed in an exhaust system of an internal combustion engine for an automobile.

〔従来の技術〕[Conventional technology]

自動車の内燃機関の排気ガス浄化のために、排気系に酸
化触媒、酸化還元触媒(3元触媒)等のモノリス型触媒
が設けられている。このモノリス型触媒は、従来のベレ
ット型触媒に比べて、単位容積当たりの浄化性能が高く
、排気ガスの圧力損失が少なく、耐久性が高い等の優れ
た性能を備えている。このモノリス型触媒は、全体に均
一に触媒成分が担持されるが、排気ガス中に存在する鉛
、燐等の被毒物質がモノリス型触媒の上流側部分に集中
して付着する。そして、この被毒物質の付着した部分の
触媒が劣化して、触媒性能が低下するとともに上流側に
担持した触媒成分(Pt、Pd、Rh等の貴金属)が無
駄になる問題があった。これに対して、被毒物質の付着
する上流部分に触媒成分の非担持部分を設け、触媒成分
の無駄を無くす技術が見られる(たとえば、特公昭59
−25855号参照)。
In order to purify exhaust gas from internal combustion engines of automobiles, monolithic catalysts such as oxidation catalysts and redox catalysts (three-way catalysts) are provided in exhaust systems. This monolith-type catalyst has superior performance, such as higher purification performance per unit volume, less pressure loss of exhaust gas, and higher durability, than conventional pellet-type catalysts. Although catalyst components are uniformly supported throughout the monolithic catalyst, poisonous substances such as lead and phosphorus present in the exhaust gas concentrate and adhere to the upstream portion of the monolithic catalyst. Then, the catalyst deteriorates in the portion to which the poisonous substance has adhered, resulting in a decrease in catalyst performance and a problem in that the catalyst components (precious metals such as Pt, Pd, Rh, etc.) carried on the upstream side are wasted. On the other hand, there is a technique that eliminates wastage of catalyst components by providing a non-supporting portion of catalyst components in the upstream portion where poisonous substances adhere (for example, Japanese Patent Publication No. 59
-25855).

この触媒成分の非担持部分を設けたモノリス型触媒を製
造するには、種々の方法が考えられるが、最も簡単な方
法としては、モノリス担体の上流側を上方に向けて非担
持部分を残して担持液内に浸漬し所定時間放置すること
により担持することが考えられる。
Various methods can be considered to produce a monolithic catalyst with a non-supported portion of the catalyst component, but the simplest method is to leave the non-supported portion with the upstream side of the monolithic carrier facing upward. It is conceivable that the particles be supported by immersing them in a supporting solution and leaving them for a predetermined period of time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述の担持方法は、モノリス担体を垂直方向
に支持した状態で担持が行われるので、重力の影響でモ
ノリス担体の下方に行くほど触媒成分が多く担持される
。このように、触媒の分布が不均一であると、均一に担
持された場合に比べて触媒の浄化効率が低くなるという
問題がある。
However, in the above-mentioned supporting method, the monolithic carrier is supported in a vertical direction, and therefore, due to the influence of gravity, more catalyst components are supported toward the bottom of the monolithic carrier. As described above, when the distribution of the catalyst is non-uniform, there is a problem that the purification efficiency of the catalyst becomes lower than when the catalyst is uniformly supported.

これに対して、均一に担持する方法として、モノリス担
体を担持液の循環路の途中に複数個多層に配置して、担
持液をハニカムセル路を循環されることにより、均一に
担持する方赳がある(特公昭60−15383号)。
On the other hand, as a method for uniformly supporting the carrier, a plurality of monolithic carriers are arranged in a multi-layered manner in the middle of the circulation path of the supporting liquid, and the supporting liquid is circulated through the honeycomb cell path to uniformly support the carrier. There is (Special Publication No. 60-15383).

しかし、この方法では上流側に触媒の非担持部分を設け
ることができない。また、担持槽内に収容する担体を1
層のみとして、上流側のみを担持液面から出してポンプ
を正逆回転させることにより、担持液を移動させること
も考えられる。しかし、担持液の供給はポンプ循環によ
り行われるため、流量制御を精度良く行うことが困難で
あり、上流側の非担持領域を所定範囲に設定できない。
However, with this method, it is not possible to provide an unsupported portion of the catalyst on the upstream side. In addition, 1 carrier housed in the carrier tank is
It is also conceivable to move the carrier liquid by moving only the layer, by bringing out only the upstream side from the carrier liquid level and rotating the pump in forward and reverse directions. However, since the supporting liquid is supplied by pump circulation, it is difficult to accurately control the flow rate, and the upstream non-supporting region cannot be set within a predetermined range.

非担持領域が少ないと、その分触媒として使用される高
価な貴金属が無駄となる。その反対に非担持領域が多い
と、すなわち、担持領域が少ないと、所定の触媒性能が
得られないという問題が生じる。
If the non-supported area is small, the expensive precious metal used as a catalyst will be wasted accordingly. On the other hand, if there are many non-supported regions, that is, if there are few supported regions, a problem arises in that the desired catalytic performance cannot be obtained.

したがって、本発明の目的は、上流側部分を除いて触媒
を担持してなるモノリス型触媒を製造するに当たって、
高い精度で触媒担持領域を設定可能とするとともに、均
一な触媒担持部分を形成することを特徴とするモノリス
型触媒の製造方法を提供することにある。
Therefore, an object of the present invention is to produce a monolithic catalyst in which a catalyst is supported except for the upstream portion.
It is an object of the present invention to provide a method for manufacturing a monolithic catalyst, which is characterized in that it is possible to set a catalyst-supporting area with high precision and to form a uniform catalyst-supporting portion.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明のモノリス型触媒の製造方法は、上流側
部分を残して担持槽の上部に保持された担体に対して、
担持槽の底面を上下させて担持液面を移動させることを
特徴とする。
Therefore, in the method for producing a monolithic catalyst of the present invention, for the carrier held at the upper part of the carrier tank leaving the upstream part
It is characterized by moving the supporting liquid level by raising and lowering the bottom of the supporting tank.

具体的には、本発明の構成は次の通りである。Specifically, the configuration of the present invention is as follows.

なお、参考までに第1図における符号を付しである。Note that the reference numerals in FIG. 1 are used for reference.

本発明は、内部に細孔(22c)を有する一体型の担体
(22)にその上流側部分(22a)を除いて触媒を担
持してなるモノリス型触媒を製造する方法である。
The present invention is a method for producing a monolithic catalyst in which a catalyst is supported on an integral carrier (22) having pores (22c) inside thereof, except for the upstream portion (22a).

まず、担体(22)を準備する。そして、その上流側を
上方に向けて担持槽(12)の上部に担体を保持した状
態で、担持槽(12)の底面(16a)を上下に移動さ
せる。それにより、担体(22)の上流側部分(22a
)を残す位置までの間で担持液面を上昇および下降させ
て触媒を担持するものである。
First, a carrier (22) is prepared. Then, the bottom surface (16a) of the support tank (12) is moved up and down while the carrier is held at the top of the support tank (12) with its upstream side facing upward. Thereby, the upstream portion (22a) of the carrier (22)
) The catalyst is supported by raising and lowering the supporting liquid level until the position where the catalyst remains.

〔作用〕[Effect]

上述の本発明のモノリス型触媒の製造方法によれば、担
持槽(12)の底面(16a)が上部に位置する状態で
、担持液(24)の液面が担体(22)の上流側の非担
持部分(22a)を残したところに位置する。また、担
持槽(12)の底面(16a)が下部に位置する状態で
、担持液(24)の液面が担体(22)の下部付近に位
置する。底面(16a)は、これらの両位置間を上下に
移動して担持液面を上昇および下降させるので、担持液
(24)と担体(22)との接触度合いが高まり担持液
(24)の濃度に偏りが少なくなり、均一な担持が可能
となる。また、上昇端における底面(16a)と担持液
面の停止時期を同期させることが容易であり、触媒担持
領域を高精度で設定することができる。
According to the above-described method for producing a monolithic catalyst of the present invention, the bottom surface (16a) of the support tank (12) is located at the top, and the liquid level of the support liquid (24) is on the upstream side of the support (22). It is located where the unsupported portion (22a) remains. Further, in a state where the bottom surface (16a) of the support tank (12) is located at the lower part, the liquid level of the support liquid (24) is located near the lower part of the carrier (22). The bottom surface (16a) moves up and down between these two positions to raise and lower the level of the carrier liquid, thereby increasing the degree of contact between the carrier liquid (24) and the carrier (22) and increasing the concentration of the carrier liquid (24). There is less bias in the results, and uniform loading becomes possible. Further, it is easy to synchronize the stop timing of the bottom surface (16a) at the rising end and the supporting liquid level, and the catalyst supporting area can be set with high precision.

〔実施例〕〔Example〕

(第1実施例) 次に、第1図に基づき、本発明にかかるモノリス型触媒
の製造方法の第1実施例を説明する。
(First Example) Next, a first example of the method for manufacturing a monolithic catalyst according to the present invention will be described based on FIG.

本実施例は、担持液の移動にエアーバッグを持ちいたも
のである。
In this embodiment, an air bag is used to move the carrier liquid.

第1図は、担持装置の縦断面図である。FIG. 1 is a longitudinal sectional view of the carrier device.

担持装置10は、円筒状の容器12で担持槽が構成され
る。容器12の鉛直方向の中央部分より少し下側に内周
面に沿って支持枠14が設けられている。支持枠14よ
り下方の容器12の底部12aには、エアーバッグ16
が収容されている。
The supporting device 10 includes a cylindrical container 12 as a supporting tank. A support frame 14 is provided slightly below the vertical center of the container 12 along the inner peripheral surface. An air bag 16 is provided at the bottom 12a of the container 12 below the support frame 14.
is accommodated.

エアーバッグ16は、ゴム(たとえば、ネオブレンゴム
)でできており、開口部12cを介して容器12の外の
切替バルブ18に接続されている。
The air bag 16 is made of rubber (for example, neoprene rubber) and is connected to a switching valve 18 outside the container 12 via an opening 12c.

なお、エアーバッグ16の底面16aは厚いゴム材でで
きており、両サイドは薄いゴム材でできている。これに
より、底面16aを平坦な状態でエアーバッグ16を上
下することができる。
Note that the bottom surface 16a of the airbag 16 is made of thick rubber material, and both sides are made of thin rubber material. Thereby, the airbag 16 can be moved up and down with the bottom surface 16a kept flat.

エアーバッグ16の上面16aは、容器12の底面を構
成することになる。
The upper surface 16a of the airbag 16 constitutes the bottom surface of the container 12.

切替バルブ18には、図示しないエアーポンプ等のエア
ー供給手段からのエアー供給管18aとエアー排出管1
8bが接続されている。
The switching valve 18 includes an air supply pipe 18a from an air supply means such as an air pump (not shown) and an air discharge pipe 1.
8b is connected.

容器12の支持枠14の上方には、開口12Cが形成さ
れている。バルブ20の上方に配設した担持液タンク(
図示しない)からバルブ20を介して開口12cへ担持
液24が供給されるように−なっている。
An opening 12C is formed above the support frame 14 of the container 12. The carrier liquid tank (
A carrier liquid 24 is supplied to the opening 12c via a valve 20 (not shown).

容器12内の支持枠14上にモノリス担体22が載置さ
れる。モノリス担体22は、コージェライト製のハニカ
ム構造体にアルミナスラリーを被覆したものを用いた。
A monolithic carrier 22 is placed on a support frame 14 within the container 12 . As the monolith carrier 22, a cordierite honeycomb structure coated with alumina slurry was used.

ハニカム構造体は、直径が107鶴、長さ78鶴、正方
形セルの密度が400セル/1nch”の寸法のものを
用いた。アルミナスラリーは、活性アルミナ粉末、アル
ミナゾル、水を混合攪拌したものを用い、浸漬による被
覆後に乾燥、焼成を行った。
The honeycomb structure used had a diameter of 107 mm, a length of 78 mm, and a square cell density of 400 cells/1 nch. The alumina slurry was prepared by mixing and stirring activated alumina powder, alumina sol, and water. After coating by dipping, drying and baking were performed.

各成分の重量割合は、アルミナ粉末が45れ%、アルミ
ナゾルが5wt%、水が50−t%であった。
The weight proportions of each component were 45 wt% alumina powder, 5 wt% alumina sol, and 50-t% water.

次に、上述の担持装置10を用い、上流側に触媒の非担
持部分を設けた触媒を担持する方法について説明する。
Next, a method of supporting a catalyst with a non-supported portion of the catalyst provided on the upstream side using the above-mentioned supporting device 10 will be described.

まず、支持枠14にモノリス担体22を載置して容器1
2内に収容した状態で、バルブ20を開けて担持液タン
クから容器12d内に担持液24を供給する。このとき
、切替バルブ18は、エアー排出管18b側へ接続され
ており、エアーバッグ16は、図上破線で示す位置にあ
る。担持液24は、容器12a内に所定量(400cc
)供給され、バルブ20が閉じられる。次に、切替バル
ブ18をエアー供給管18a側に切り替えて、エアー供
給源より2 kg=/cdのエアーをエアーバッグ16
内に供給した。エアーが供給されると、エアーバッグ1
6の上面16aが担持液24を上方に押し上げる。担持
液の液面が実線で示す位置になるまでエアーを供給した
。この上流側部分22aは、担体22の長さの25%と
した。担持液24の供給につれて下流側部分22bは、
そのセルの流路22cを介して担持液24が浸入してコ
ーディエライト材料の表面に被覆したアルミナ材料に触
媒成分が担持される。この担持液24は、ジニトロジア
ンミン白金水溶液(P t  (NH3) z  (N
First, the monolith carrier 22 is placed on the support frame 14 and the container 1 is
2, open the valve 20 and supply the carrier liquid 24 from the carrier liquid tank into the container 12d. At this time, the switching valve 18 is connected to the air discharge pipe 18b side, and the air bag 16 is in the position shown by the broken line in the figure. A predetermined amount (400 cc) of the supporting liquid 24 is contained in the container 12a.
) is supplied and valve 20 is closed. Next, the switching valve 18 is switched to the air supply pipe 18a side, and 2 kg=/cd of air is supplied from the air supply source to the air bag 16.
supplied within. When air is supplied, air bag 1
The upper surface 16a of 6 pushes the supporting liquid 24 upward. Air was supplied until the level of the supporting liquid reached the position shown by the solid line. This upstream portion 22a was 25% of the length of the carrier 22. As the supporting liquid 24 is supplied, the downstream portion 22b
The supporting liquid 24 enters through the channel 22c of the cell, and the catalyst component is supported on the alumina material coated on the surface of the cordierite material. This support liquid 24 is a dinitrodiammine platinum aqueous solution (P t (NH3) z (N
.

、)2〕を容器12内へ400 cc供給した。, )2] was supplied into the container 12 in an amount of 400 cc.

そして1分後、切替バルブ18をエアー排出管18b側
へ切り替え、担持液24を容器12dへ移し、セル22
c内の担持液24を抜く。
After one minute, the switching valve 18 is switched to the air discharge pipe 18b side, the carrier liquid 24 is transferred to the container 12d, and the cell 22
The supporting liquid 24 in c is removed.

この操作を担持液の最初の浸漬時点から2分後、5分後
、10分後に繰り返して、合計30間浸漬を行った。
This operation was repeated 2 minutes, 5 minutes, and 10 minutes after the initial immersion of the supporting liquid, for a total of 30 minutes of immersion.

浸漬終了後に容器12よりモノリス担体22を取り出し
て、乾燥(60分間)行った。その後、4ooccの塩
化ロジウム水溶液(RhCj2.)を担持液として同様
の手順で浸漬、乾燥を行った。
After the immersion was completed, the monolithic carrier 22 was taken out from the container 12 and dried (60 minutes). Thereafter, immersion and drying were performed in the same manner using 4 oocc of rhodium chloride aqueous solution (RhCj2.) as a supporting liquid.

その結果、担体容量lIt当たり白金が1.0g、ロジ
ウムが0.1g担持されたモノリス触媒が得られた。
As a result, a monolithic catalyst was obtained in which 1.0 g of platinum and 0.1 g of rhodium were supported per liter of carrier volume.

(第2実施例) 次に、第2図に基づき、本発明にかかるモノリス型触媒
の製造方法の第2実施例を説明する。
(Second Example) Next, a second example of the method for manufacturing a monolithic catalyst according to the present invention will be described based on FIG.

本実施例は、エアーバッグに代えてピストンを用いたも
のである。
This embodiment uses a piston instead of an air bag.

第2図は、担持装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the carrier device.

なお、第1実施例の担持装置と共通の部材は、第1図の
対応符号を末尾に付した100番台の符号とし、第2実
施例の特徴である部材は、200番台の符号とした。
It should be noted that members common to the supporting device of the first embodiment are numbered in the 100s with the corresponding reference numbers in FIG.

担持装置100は、円筒状の容器112で担持槽が構成
される。開口112Cには、第1実施例と同じくバルブ
120を介して担持液124が供給される。支持枠11
4より下方の容器112には、ピストン200が設けら
れている。ピストン200は、ロッド202が容器11
2の底部112aの穴204を貫通しており、穴204
に嵌合されたシール206により封止されている。ピス
トンの上面2QOaは、容器112の底面を構成するこ
とになる。このピストン200は、図示しないエアーシ
リンダによって上下方向の所定位置の間を往復動するよ
うにされている。
In the supporting device 100, a supporting tank is constituted by a cylindrical container 112. A carrier liquid 124 is supplied to the opening 112C via the valve 120, as in the first embodiment. Support frame 11
A piston 200 is provided in the container 112 below the container 4 . The piston 200 has a rod 202 connected to the container 11.
2 through the hole 204 in the bottom 112a of the hole 204.
It is sealed by a seal 206 that is fitted into the housing. The upper surface 2QOa of the piston constitutes the bottom surface of the container 112. This piston 200 is reciprocated between predetermined positions in the vertical direction by an air cylinder (not shown).

次に、上述の担持装置100を用い、上流側に触媒の非
担持部分を設けた触媒を担持する方法について説明する
Next, a method of supporting a catalyst with a non-supported portion of the catalyst provided on the upstream side using the above-mentioned supporting device 100 will be described.

支持枠114にモノリス担体122を載置して容器11
2内に収容した状態で、バルブ120を開けて担持液か
ら容器112内に担持液124を供給する。このとき、
エアーシリンダは後退端にあり、ピストン200は、図
上破線で示す位置にある。担持液124は、容器112
dに供給され、バルブ120が閉じられる。
The monolith carrier 122 is placed on the support frame 114 and the container 11
2, the valve 120 is opened to supply the carrier liquid 124 from the carrier liquid into the container 112. At this time,
The air cylinder is at the retreating end, and the piston 200 is at the position shown by the broken line in the figure. The carrier liquid 124 is contained in the container 112.
d, and valve 120 is closed.

その後、エアーシリンダを前進端まで移動させてピスト
ン200を図上実線で示す位置まで上昇させる。これに
より、ピストン200の底面200aが図上実線で示す
位置まで担持液124を上方に押し上げられ、担体12
2が担持液124に浸漬される。
Thereafter, the air cylinder is moved to the forward end, and the piston 200 is raised to the position shown by the solid line in the figure. As a result, the carrier liquid 124 is pushed upward to the position where the bottom surface 200a of the piston 200 is shown by the solid line in the figure, and the carrier 12
2 is immersed in the support liquid 124.

これらの操作は、第1実施例と同じサイクルで繰り返し
た。なお、モノリス担体122は、第1実施例と同じも
のを用いた。
These operations were repeated in the same cycle as in the first example. Note that the same monolith carrier 122 as in the first example was used.

その結果、担体容量11当たり白金が1.0g、ロジウ
ムが0.1g担持されたモノリス触媒が得られた。
As a result, a monolithic catalyst was obtained in which 1.0 g of platinum and 0.1 g of rhodium were supported per 11 carrier volumes.

(実験例) 上述の実施例において製造した触媒の担持状況を確認し
、浄化性能を実験帽より測定した。なお、担持液の上下
への移動を行わず、同じ組成の担持液で30分間浸漬状
態を保持して1 g / lの白金と、0.1g/lの
ロジウとを担持した触媒を比較例とし、併せて評価を行
った。
(Experimental Example) The supported state of the catalyst produced in the above-mentioned example was confirmed, and the purification performance was measured using an experimental cap. In addition, as a comparative example, a catalyst was prepared in which 1 g/l of platinum and 0.1 g/l of rhodium were supported by holding the immersion state in a supporting liquid of the same composition for 30 minutes without moving the supporting liquid up and down. We also conducted an evaluation.

触媒の担持状況については、第3図および第4図に示す
ように、白金、ロジウムともに実施例1.2の触媒が上
流側より略20mmで担持部分と非担持部1分が分かれ
ており、それより下流側では均一に担持されている。こ
れに対して、比較例のものは、上流側より10mの位置
から20mまでが比較的急に担持率の変化が見られるも
のの、さらに下流側にかけては、緩やかな担持率の変化
が見られ、担持が軸方向に対して不均一であることが分
る。
Regarding the supported state of the catalyst, as shown in FIGS. 3 and 4, for both platinum and rhodium, the catalyst of Example 1.2 has a supported portion and a non-supported portion separated by approximately 20 mm from the upstream side. On the downstream side, it is evenly supported. On the other hand, in the comparative example, although there is a relatively sudden change in the loading rate from 10 m to 20 m from the upstream side, there is a gradual change in the loading rate further downstream. It can be seen that the loading is non-uniform in the axial direction.

次に1.これらの触媒サンプルをの浄化性能について、
以下のごとく評価を行った。
Next 1. Regarding the purification performance of these catalyst samples,
Evaluation was performed as follows.

各触媒サンプルを触媒の上流側非担持部分を排気ガス流
入側として金属製容器に充填してエンジンの排気系に装
着した。エンジンは、2.811のガソリンエンジンを
用い、2000rpm、−380w Hgの条件で、H
C,Co5NOxの浄化率を測定した。
Each catalyst sample was filled into a metal container with the upstream unsupported portion of the catalyst as the exhaust gas inflow side, and the container was installed in the exhaust system of an engine. The engine used was a 2.811 gasoline engine, and the H
The purification rate of C, Co5NOx was measured.

その結果を、第5図ないし第7図に示す。The results are shown in FIGS. 5 to 7.

同図から明らかなように、第1実施例と第2実施例の触
媒は、比較例に比べて流入ガス温度が低くとも高いHC
浄化率、CO浄化率ならびにN。
As is clear from the figure, the catalysts of the first and second examples have higher HC than the comparative example even when the inlet gas temperature is lower.
Purification rate, CO purification rate and N.

X浄化率を示すことが分る。すなわち、第1実施例と第
2実施例の方法により製造された触媒は、低温活性が高
い。
It can be seen that it shows a purification rate of X. That is, the catalysts produced by the methods of the first and second embodiments have high low-temperature activity.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

〔発明の効果〕〔Effect of the invention〕

以上より、本発明のモノリス型触媒の製造方法によれば
、上流側部分を残して担持槽の上部に保持された担体に
対して、担持槽の底面を上下させて担持液面を移動させ
るので、高精度かつ均一に触媒担持領域を設定すること
ができる。
From the above, according to the method for producing a monolithic catalyst of the present invention, the bottom surface of the support tank is moved up and down to move the support liquid level with respect to the support held at the top of the support tank, leaving the upstream part. , it is possible to set the catalyst supporting area with high precision and uniformity.

また、担持槽の底面を移動させるので、担持液循環用ポ
ンプを含む担持槽周辺の担持液供給用の配管設備が少な
く済み、装置の小型化が図られる。
Further, since the bottom surface of the support tank is moved, the number of piping equipment for supplying the support liquid around the support tank including the support liquid circulation pump can be reduced, and the apparatus can be made smaller.

【図面の簡単な説明】 第1図は、本発明にかかるモノリス型触媒の製造方法の
第1実施例を説明するための図面であり、担持装置の縦
断面図である。 第2図は、本発明にかかるモノリス型触媒の製造方法の
第2実施例を説明するための図面であり、担持装置の縦
断面図である。 第3図ないし第7図は、本発明にかかるモノリス型触媒
の製造方法の第1実施例、第2実施例および比較例の実
験例を説明するための図面であり、第3図は、触媒の軸
方向に対する白金の担持重量割合の関係を示すグラフ、 第4図は、触媒の軸方向に対するロジウムの担持重量割
合の関係を示すグラフ、 第5図は、触媒上流側への排気ガス流入温度に対するH
C浄化率の関係を示すグラフ、第6図は、触媒上流側へ
の排気ガス流入温度に対するCO浄化率の関係を示すグ
ラフ、そして、第7図は、触媒上流側への排気ガス流入
温度に対するNOx浄化率の関係を示すグラフである。 10−・−・・・担持装置 12−・−・−担持槽 16 a−−−−−−−・底面 22・−・・−・担体 22a−・−−−−−一上流側部分 22 c−・−・細孔(流路) 出願人  トヨタ自動車株式会社 第1図 a ”  3?−,2午2
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing for explaining a first embodiment of the method for producing a monolithic catalyst according to the present invention, and is a longitudinal sectional view of a supporting device. FIG. 2 is a diagram for explaining a second embodiment of the method for manufacturing a monolithic catalyst according to the present invention, and is a longitudinal cross-sectional view of a supporting device. 3 to 7 are drawings for explaining experimental examples of the first example, the second example, and the comparative example of the method for manufacturing a monolithic catalyst according to the present invention, and FIG. Figure 4 is a graph showing the relationship between the supported weight ratio of platinum and the axial direction of the catalyst, Figure 5 is a graph showing the relationship between the supported weight ratio of rhodium and the axial direction of the catalyst, and Figure 5 is the temperature at which exhaust gas flows into the upstream side of the catalyst. H for
FIG. 6 is a graph showing the relationship between the CO purification rate and the temperature at which the exhaust gas flows into the upstream side of the catalyst, and FIG. 7 is a graph showing the relationship between the temperature at which the exhaust gas flows into the upstream side of the catalyst. It is a graph showing the relationship between NOx purification rates. 10--Carrying device 12--Carrying tank 16 a--Bottom surface 22--Carrier 22a--One upstream portion 22c -・-・Pore (flow path) Applicant Toyota Motor Corporation Figure 1 a ” 3?-, 2pm 2

Claims (1)

【特許請求の範囲】 内部に細孔を有する一体型の担体にその上流側部分を除
いて触媒を担持してなるモノリス型触媒を製造する方法
であって、 該担体を準備し、その上流側を上方に向けて担持槽の上
部に担体を保持した状態で、担持槽の底面を上下に移動
させることにより、担体の上流側部分を残す位置までの
間で担持液面を上昇および下降させて触媒を担持するこ
とを特徴とするモノリス型触媒の製造方法。
[Scope of Claims] A method for producing a monolithic catalyst in which a catalyst is supported on an integral carrier having pores in the interior except for the upstream portion thereof, the method comprising: preparing the carrier, and supporting the catalyst on the upstream side thereof; With the carrier held at the top of the carrier tank with the carrier facing upward, the bottom of the carrier tank is moved up and down to raise and lower the carrier liquid level until the upstream portion of the carrier remains. A method for producing a monolithic catalyst characterized by supporting a catalyst.
JP29273787A 1987-11-19 1987-11-19 Preparation of monolith-type catalyst Pending JPH01135543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29273787A JPH01135543A (en) 1987-11-19 1987-11-19 Preparation of monolith-type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29273787A JPH01135543A (en) 1987-11-19 1987-11-19 Preparation of monolith-type catalyst

Publications (1)

Publication Number Publication Date
JPH01135543A true JPH01135543A (en) 1989-05-29

Family

ID=17785672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29273787A Pending JPH01135543A (en) 1987-11-19 1987-11-19 Preparation of monolith-type catalyst

Country Status (1)

Country Link
JP (1) JPH01135543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314818A (en) * 2000-03-23 2001-11-13 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for partially coating carrier
JP2017532190A (en) * 2014-08-14 2017-11-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Substrate coating method
WO2024179974A3 (en) * 2023-03-01 2024-10-24 Umicore Ag & Co. Kg Coating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314818A (en) * 2000-03-23 2001-11-13 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for partially coating carrier
JP2017532190A (en) * 2014-08-14 2017-11-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Substrate coating method
WO2024179974A3 (en) * 2023-03-01 2024-10-24 Umicore Ag & Co. Kg Coating device

Similar Documents

Publication Publication Date Title
RU2553886C2 (en) Method and system for application of coating
US4039482A (en) Method of coating and impregnating catalyst support members
RU2720250C2 (en) Method of depositing catalyst component onto carrier
JP2000084417A (en) Method for coating flow route in monolithic catalyst support with coating dispersion
JP4828711B2 (en) Method for partially coating a carrier
KR102709614B1 (en) Device and method for coating substrates with washcoats
JP2010521305A (en) Method for introducing a catalyst coating into the pores of a ceramic honeycomb flow body
JP2008510606A (en) Method for coating a wall flow filter with a coating composition
JP2009136833A (en) Manufacturing method of monolith catalyst for exhaust gas purification and monolith catalyst
CN106714985B (en) Rapid and uniform coating method
CN110090669A (en) A kind of integral catalyzer vacuum coating apparatus and method
JPH01135543A (en) Preparation of monolith-type catalyst
CN220126706U (en) coating device
JP3754095B2 (en) Method and apparatus for applying slurry to tubular honeycomb body
KR102512588B1 (en) Coating device and method
JPS62117633A (en) Production of monolithic catalyst
US10661216B2 (en) Soot particle filter with storage cells for a catalyst
JP2018153719A (en) Method of producing exhaust gas-purifying catalyst
JP2003334444A (en) Catalyst for cleaning exhaust gas
JPS6012136A (en) Coating and supporting method of monolithic carrier
EP3424596A1 (en) Method for coating a monolith carrier
KR100656021B1 (en) Coating method for preparing heterogeneous catalyst
JP2018069113A (en) Method for producing exhaust gas purification catalyst
KR101282677B1 (en) Manufacturing method for catalyst of vehicle using gradient coating
JP2009254986A (en) Method of manufacturing honeycomb structure catalyst and honeycomb structure catalyst