[go: up one dir, main page]

JPH0113357B2 - - Google Patents

Info

Publication number
JPH0113357B2
JPH0113357B2 JP57218768A JP21876882A JPH0113357B2 JP H0113357 B2 JPH0113357 B2 JP H0113357B2 JP 57218768 A JP57218768 A JP 57218768A JP 21876882 A JP21876882 A JP 21876882A JP H0113357 B2 JPH0113357 B2 JP H0113357B2
Authority
JP
Japan
Prior art keywords
cells
bacterial cells
substances
present
nucleotides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57218768A
Other languages
Japanese (ja)
Other versions
JPS59109171A (en
Inventor
Yoshinori Ookuma
Takanori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP21876882A priority Critical patent/JPS59109171A/en
Priority to US06/560,119 priority patent/US4599309A/en
Publication of JPS59109171A publication Critical patent/JPS59109171A/en
Publication of JPH0113357B2 publication Critical patent/JPH0113357B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有用物質を蓄積した酵母菌体を処理す
ることによつて有用物質を回収する方法に関し、
さらに詳しくは、菌体内の細胞質中に存在する低
分子化合物を選択的に体外に排出せしめる酵母菌
体処理によつて体外に排出された低分子化合物か
ら効率よく有用物質を回収する方法に関する。 酵母を用いる発酵法は従来から広く知られてお
り、例えばグルタミン酸、リジンなのごときアミ
ノ酸、ビタミンB2、ビタミンB12などのビタミン
類、ヌクレオシド、ヌクレオチド、DNA、RNA
などの核酸類、各種酵素などを生産する方法とし
て巾広く利用されている。 而して、かかる方法の場合、目的とする有用物
質は概して菌体内に蓄積されるため、有用物質を
回収するにあたつて細胞を破砕して有用物質を体
外に分離する必要があり、その目的のためには一
般に乳鉢、ホモジナイザー、ミキサーなどで機械
的に磨砕する方法、自己消化により溶菌する方
法、過塩素酸、硫酸、蟻酸、酢酸、酢酸エチル、
アセトン、トルエンなどの薬剤で処理する方法、
細胞壁溶解酵素で処理する方法などが適宜行われ
ている。 しかし、これらの一般的な分離法では、処理に
よつて細胞壁が破壊されるために目的とする有用
物質ばかりでなく菌体内に蓄積した物質が全て排
出されることになり、その後の分離精製操作がき
わめて煩雑化するという欠点があり、また薬剤を
用いる場合には中和工程が必要となつたり有用物
質の分解や毒性の原因となるといつた問題があ
る。 而して、これらの問題点は、安全な物質を用い
て菌体内の有用物質のみを選択的に体外に分離す
ることができれば一挙に解決することができる。
そこで、本発明者らはかかる課題を解決すべく鋭
意検討を進めた結果、二価銅イオンの水溶液で酵
母菌体を処理する場合には、細胞質中の特定な物
質だけが選択的に体外に排出されることを見い出
し、本発明を完成するに到つた。 本発明の目的は、安全かつ簡単な操作で細胞内
の成分を分離することが可能な酵母菌体の処理に
より細胞質中に存在する低分子化合物から目的と
する有用物質を簡単な操作で効率よく回収する方
法を提供するとにある。 而して、本発明の目的に言う酵母菌体の処理方
法は菌体内に有用物質を蓄積した酵母菌体を二価
銅イオンの水溶液と接触させ、細胞質液中の低分
子化合物を体外に排出せしめることによつて達成
される。 本発明において用いられる酵母菌体は、有用物
質としてグルタミン酸、リジン、アスパラギン
酸、グルタミン、ホモセリン、ロイシン、メチオ
ニン、トリプトフアン、スレオニンなどのごとき
アミノ酸類、ビタミンB1、ビタミンB2、ビタミ
ンB6、ビタミンB12、パントテン酸などのごとき
ビタミン類、ヌクレオシド、ヌクレオチド、オリ
ゴヌクレオチド、DNA、RNAなどのごとき核酸
類、S−アデノシル−L−メチオニン(以下、
SAMと称する)、グルタチオンなどのごとき生理
活性物質、プロテアーゼ、DNAポリメラーゼな
どのごとき蛋白質などを適宜含有するものであ
る。かかる酵母菌体は製法によつて格別制限され
るものではなく、常法に従つて培養されたもので
あれば適宜使用することができる。 用いられる菌の具体例としては、例えばサツカ
ロマイセス属、ピキア属、ハンゼヌラ属、シゾサ
ツカロマイセス属、サツカロマイコデス属、ハン
ゼニアスポラ属、トルロプシス属、キヤンデイダ
属、ロドトルラ属、クロベロマイセス属などがあ
り、なかでもサツカロマイセス属、ハンゼヌラ
属、キヤンデイダ属、クルベロマイセス属、シゾ
サツカロマイセス属に属する酵素、とくにサツカ
ロマイセス属に属する酵素が賞用される。しか
し、酵母以外の微生物、例えば大腸菌に本発明の
処理を適用しても所期の目的を達成することはで
きない。 本発明においては、培養液中の菌体を常法によ
り集菌し、必要に応じて洗浄したのち、二価銅イ
オン水溶液による処理が行われる。かかる処理は
菌体と銅イオン水溶液を接触させるだけでよく、
この処理によつて細胞質中に存在するアミノ酸
類、低級ペプチド類、ビタシン類、ヌクレオシ
ド、ヌクレオチドなどのごとき数平均分子量1000
以下、とくに500以下の低分子化合物は速やかに
体外に排出され、他方、DNA、RNA、蛋白質、
多糖類などの高分子化合物や、SAM、アルギニ
ンなどのごとき液泡内に存在する物質は菌体内に
残留する。 銅イオン処理に見られるかかる現象はきわめて
特異的なものであり、他の二価金属イオン、例え
ばMg++、Ca++、Sr++、Ba++、Mn++、Fe++
Co++、Ni++、Zn++、Sn++、Pb++、Hg++を用い
る場合には本発明の効果を奏することができな
い。 銅イオン水溶液による処理条件は目的に応じて
適宜選択すればよいが、通常は水または緩衝液中
に菌体を懸濁させたのち、銅イオン水溶液を加え
て放置または撹拌することによつて行われる。こ
のときのPHは通常5〜7.5、好ましくは5.5〜7で
あり、懸濁液中の菌体含量は湿菌重量基準で通常
1〜50重量%、好ましくは5〜30重量%であり、
接触温度及び接触時間は通常0〜50℃で10分〜3
時間、好ましくは20〜40℃で30分〜2時間であ
る。 用いられる銅イオンの供給源は水溶液の銅イオ
ン化合物であればいずれでもよく、その具体例と
して、例えば塩化第二銅、臭化第二銅、硫酸第二
銅、酢酸第二銅などが挙げられる。かかる銅イオ
ンの添加量は通常、懸濁液中の銅イオン濃度で
5μM以上、好ましくは10〜50μMである。 排出された低分子化合物中から有用物質を回収
する方法は常法に従つて行えばよく、例えばイオ
ン交換クロマトグラフイー、ゲル過、電気泳
動、溶剤沈澱などの処理が適宜使用される。 かかる本発明によれば、低濃度での銅イオン処
理という安全性の高い、かつ簡単な操作によつて
菌体内の低分子化合物とその他の物質を効率よく
分離することができ、低分子化合物中にある有用
物質の回収をきわめて容易に行うことができる。。
また目的とする有用物質が菌体内に残存する場合
にも、夾雑物となる低分子化合物が予め除去され
ているため分離精製をきわめて効率的に行うこと
ができる。 以下に実施例を挙げて本発明をさらに具体的に
説明する。なお、実施例及び比較例中の部は重量
基準である。 実施例 1 YEPD培地(イーストエキストラクト1%、バ
クトペプトン2%、グルコース2%)で培養した
サツカロマイセス・セレビシエ
Saccharomyces.Cerevisiae)X2180−1Aを培養
して得た菌体1部(湿菌体)を100μMの塩化第
二銅水溶液100部に加えて懸濁させたのち、30℃
でゆつくりと撹拌した。所定時間後、水溶液中に
存在するヌクレオチド類、アミノ酸類及び蛋白質
の濃度を測定し、それに基づいて乾燥菌体1g当
りの割合を算出した。結果を第1表に示す。 なお、ヌクレオチド類の定量は紫外線(260n
m)の吸光度及び高速液体クロマトグラフイーに
より、アミノ酸の定量はフルオレサミンによる螢
光法により、また蛋白質の定量はローリー法によ
り行つた。 第1表の結果から、銅イオン水溶液と接触させ
ることによつてヌクレオチドやアミノ酸は速やか
に抽出されるが、蛋白質は殆んど抽出されないこ
とがわかる。
The present invention relates to a method for recovering useful substances by treating yeast cells that have accumulated useful substances.
More specifically, the present invention relates to a method for efficiently recovering useful substances from low-molecular-weight compounds excreted from the body through yeast cell treatment, which selectively excretes low-molecular-weight compounds present in the cytoplasm of the bacterial cells. Fermentation methods using yeast have long been widely known, and include, for example, amino acids such as glutamic acid and lysine, vitamins such as vitamin B 2 and vitamin B 12 , nucleosides, nucleotides, DNA, and RNA.
It is widely used as a method for producing nucleic acids such as and various enzymes. In the case of such methods, the target useful substance is generally accumulated within the bacterial body, so in order to recover the useful substance, it is necessary to crush the cells and separate the useful substance from the body. For this purpose, methods generally include mechanical grinding in a mortar, homogenizer, mixer, etc., lysis by autolysis, perchloric acid, sulfuric acid, formic acid, acetic acid, ethyl acetate,
Methods of treatment with chemicals such as acetone and toluene;
Methods such as treatment with cell wall lytic enzymes have been appropriately used. However, in these general separation methods, as the cell walls are destroyed during the treatment, not only the desired useful substances but also all the substances accumulated within the bacterial cells are excreted, and subsequent separation and purification operations are required. This method has the disadvantage that it is extremely complicated, and when using chemicals, it requires a neutralization step and causes decomposition of useful substances and toxicity. These problems can be solved at once if only the useful substances inside the microbial cells can be selectively separated from the body using safe substances.
Therefore, the present inventors conducted intensive studies to solve this problem, and found that when yeast cells are treated with an aqueous solution of divalent copper ions, only specific substances in the cytoplasm are selectively removed from the body. The present invention was completed based on the discovery that the substance is discharged. The purpose of the present invention is to efficiently extract target useful substances from low-molecular-weight compounds present in the cytoplasm by processing yeast cells that can separate intracellular components with safe and simple operations. We will provide a method for recovering it. Therefore, the method for treating yeast cells referred to in the purpose of the present invention involves contacting yeast cells that have accumulated useful substances within the cells with an aqueous solution of divalent copper ions, and expelling low-molecular compounds in the cytoplasmic fluid from the body. This is achieved by forcing people to do something. The yeast cells used in the present invention contain useful substances such as amino acids such as glutamic acid, lysine, aspartic acid, glutamine, homoserine, leucine, methionine, tryptophan, and threonine, vitamin B 1 , vitamin B 2 , vitamin B 6 , vitamin B12 , vitamins such as pantothenic acid, nucleic acids such as nucleosides, nucleotides, oligonucleotides, DNA, RNA, etc., S-adenosyl-L-methionine (hereinafter referred to as
SAM), physiologically active substances such as glutathione, and proteins such as protease and DNA polymerase, as appropriate. Such yeast cells are not particularly limited by the production method, and can be used appropriately as long as they are cultured according to conventional methods. Specific examples of the bacteria used include Satucharomyces, Pichia, Hansenula, Schizosatucharomyces, Satucharomycodes, Hanseniaspora, Torulopsis, Candeida, Rhodotorula, Cloveromyces, and the like. Among them, enzymes belonging to the genus Satucharomyces, Hansenula, Quyandida, Curveromyces, and Schizosatucharomyces, especially enzymes belonging to the genus Satucharomyces, are prized. However, even if the treatment of the present invention is applied to microorganisms other than yeast, such as Escherichia coli, the intended purpose cannot be achieved. In the present invention, the bacterial cells in the culture solution are collected by a conventional method, washed if necessary, and then treated with an aqueous divalent copper ion solution. Such treatment only requires contacting the bacterial cells with an aqueous copper ion solution;
This treatment reduces the number average molecular weight of amino acids, lower peptides, vitamins, nucleosides, nucleotides, etc. present in the cytoplasm to 1000.
In particular, low molecular weight compounds of 500 or less are quickly excreted from the body, while DNA, RNA, proteins,
Polymer compounds such as polysaccharides, SAM, arginine, and other substances present in the liquid bubbles remain within the bacterial cells. Such a phenomenon observed in copper ion treatment is very specific, and it is not possible to treat other divalent metal ions such as Mg ++ , Ca ++ , Sr ++ , Ba ++ , Mn ++ , Fe ++ ,
When Co ++ , Ni ++ , Zn ++ , Sn ++ , Pb ++ , and Hg ++ are used, the effects of the present invention cannot be achieved. The conditions for treatment with an aqueous copper ion solution may be selected as appropriate depending on the purpose, but the treatment is usually carried out by suspending the bacterial cells in water or a buffer solution, then adding the aqueous copper ion solution and leaving or stirring. be exposed. The pH at this time is usually 5 to 7.5, preferably 5.5 to 7, and the bacterial cell content in the suspension is usually 1 to 50% by weight, preferably 5 to 30% by weight, based on the weight of wet bacteria.
Contact temperature and contact time are usually 0 to 50℃ for 10 minutes to 3
The time is preferably 30 minutes to 2 hours at 20 to 40°C. The source of copper ions used may be any copper ion compound in an aqueous solution, and specific examples thereof include cupric chloride, cupric bromide, cupric sulfate, cupric acetate, etc. . The amount of copper ions added is usually determined by the concentration of copper ions in the suspension.
The amount is 5 μM or more, preferably 10 to 50 μM. Useful substances may be recovered from discharged low-molecular compounds by conventional methods, such as ion exchange chromatography, gel filtration, electrophoresis, solvent precipitation, etc., as appropriate. According to the present invention, it is possible to efficiently separate low-molecular-weight compounds in bacterial cells from other substances by a highly safe and simple operation of copper ion treatment at a low concentration, and It is extremely easy to recover useful substances found in .
Furthermore, even if the desired useful substance remains within the bacterial cells, separation and purification can be carried out extremely efficiently since low molecular weight compounds that serve as contaminants have been removed in advance. The present invention will be explained in more detail with reference to Examples below. Note that parts in Examples and Comparative Examples are based on weight. Example 1 One part of bacterial cells (wet bacterial cells) obtained by culturing Saccharomyces. Cerevisiae X2180-1A cultured in YEPD medium (1% yeast extract, 2% bactopeptone, 2% glucose) was added to 100 parts of a 100 μM cupric chloride aqueous solution and suspended at 30°C.
Stir gently. After a predetermined period of time, the concentrations of nucleotides, amino acids, and proteins present in the aqueous solution were measured, and the ratio per 1 g of dried bacterial cells was calculated based on the concentrations. The results are shown in Table 1. The quantification of nucleotides is performed using ultraviolet light (260n).
Amino acids were determined by fluorescence method using fluorescamine, and proteins were determined by the Lowry method based on absorbance and high performance liquid chromatography. From the results in Table 1, it can be seen that nucleotides and amino acids are rapidly extracted by contacting with an aqueous copper ion solution, but proteins are hardly extracted.

【表】 実施例 2 銅イオン水溶液の濃度または銅化合物の種類を
変えること以外は実施例1と同様にして試験を行
い、抽出されたヌクレオチド類の量を測定した。
結果を第2表に示す。
[Table] Example 2 A test was conducted in the same manner as in Example 1 except that the concentration of the aqueous copper ion solution or the type of copper compound was changed, and the amount of extracted nucleotides was measured.
The results are shown in Table 2.

【表】 比較例 1 塩化第二銅に代えて他の2価金属化合物を用い
ること以外は実施例1に準じて試験を行い、ヌク
レオチド類の抽出状況を調べた。なお、260nm
の吸光度はヌクレオチド類の存在を示すものであ
る。結果を第3表に示す。
[Table] Comparative Example 1 A test was conducted according to Example 1, except that another divalent metal compound was used in place of cupric chloride, and the extraction status of nucleotides was investigated. In addition, 260nm
The absorbance of indicates the presence of nucleotides. The results are shown in Table 3.

【表】 この結果から、水銀イオンを用いる場合にやや
ヌクレオチド類の抽出が認められるが、その他の
場合には殆ど抽出されていないことがわかる。な
お、塩化第二銅を用いる試験例を第3表と同様の
評価法で表示すると、0.108(0分)、0.901(30
分)、1.067(60分)となり、水銀イオンを用いる
場合に比較してもきわめて優れた抽出効率を有す
ることがわかる。 実施例 3 実施例1で用いた菌体に代えて第4表に示すご
とき菌体を用いること以外は実施例1と同様にし
て試験を行い、抽出されたヌクレオチド類及びア
ミノ酸の量を測定し、乾燥菌体1g当りの割合を
算出した。結果を第4表に示す。
[Table] From the results, it can be seen that some nucleotides are extracted when mercury ions are used, but almost no nucleotides are extracted in other cases. In addition, when the test example using cupric chloride is expressed using the same evaluation method as in Table 3, the results are 0.108 (0 minutes) and 0.901 (30 minutes).
minute), 1.067 (60 minutes), which shows that the extraction efficiency is extremely superior even when compared to the case where mercury ions are used. Example 3 A test was conducted in the same manner as in Example 1, except that the bacterial cells shown in Table 4 were used in place of the bacterial cells used in Example 1, and the amounts of extracted nucleotides and amino acids were measured. , the ratio per 1 g of dry bacterial cells was calculated. The results are shown in Table 4.

【表】 実施例 4 実施例1で用いた菌体500部を500μMの塩化第
二銅水溶液10000部に懸濁し、30℃で30分間撹拌
した後、菌体を除去した。次いで回収した抽出液
に含まれるニコチンアミドアデニンジヌクレオチ
ド(NAD)の量をアルコールデヒドロゲナーゼ
を用いる酵素法で定量したところ、0.212部であ
ることがわかつた。 この抽出液を蟻酸型強酸性イオン交換樹脂(ダ
ウエツクス1X−8、ローム・アンド・ハース社
製)に通してNADを吸着させたのち、流出液の
260nm吸光度が0.1以下になるまで水洗し、その
後、蟻酸4Mと蟻酸アンモニウム0.2Mの混合水溶
液でNADを溶出した。かくして得られたNADの
溶出液を昇華及び凍結乾燥により順次精製した結
果、0.170部のNADが得られた。 実施例 5 実施例1と同様にして30分間撹拌したのち、抽
出液中のNADを定量したところ、その抽出量は
乾燥菌体1g当り3.2μmolであつた。またOD260
物質中のNADの相対純度は15.4%であつた。 比較例 2 実施例1で用いた菌体1部を1.5N過塩素酸100
部に懸濁し、室温で1時間振とう抽出を行つたの
ち、炭酸水素カリウムで中和し、生成した過塩素
酸カリウムの沈澱を除去した。次いで抽出液中の
NADを定量したところ、その量は乾燥菌体1g
当り5.0μmolであり、OD260物質中の相対純度は
2.2%であつた。 参考例 1 シユレンク(Schlenk.F.)らの培地〔ジヤーナ
ル・オブ・バイオロジカル・ケミストリー(J.
Biol.Chem.)第229巻、第1037頁(1957年)参
照〕でサツカロマイセス(Saccharomyces・
Cerevisiae)IFO2044を培養して得られたSAM
含有菌体10部(湿量)を蒸留水で2回洗浄したの
ち、PH6.4に調整したトリス(ヒドロキシメチル)
アミノエタン−2−〔N−モルホリノ〕エタンス
ルホン酸緩衝液100部(緩衝液濃度10ミリモーラ
ー)に懸濁させた。 次いで塩化第二銅を100μMになるように加え
て30℃で1時間ゆるやに撹拌し、低分子の夾雑物
を菌体外に排出したのち、集菌し、蒸留水で2回
洗浄した。その後、蒸留水50部に懸濁させたの
ち、−20℃で5時間放置して凍結し、次いで20℃
の水で間接的に加熱して溶融させ、得られた懸濁
液から遠心分離で不溶性物質を除き、上澄み液に
含まれるSAMの含有量及び純度を測定したとこ
ろ、SAM含有量1.70部、SAM相対純度90.9%で
あつた。 なお、SAMの純度は試験液の一部をとり、二
次元ペーパークロマトグラフイーで展開後、
SAMのスポツトを検出し、紫外線検出器で試験
液のSAM濃度を検出し、試験液のOD260の測定
から次式により算出した。 SAM純度=SAM OD260/OD260×100 この参考例からわかるように、本発明の処理方
法はSAMのような菌体内に残留する物質の抽出
法としても有用である。
[Table] Example 4 500 parts of the bacterial cells used in Example 1 were suspended in 10,000 parts of a 500 μM cupric chloride aqueous solution, stirred at 30° C. for 30 minutes, and then the bacterial cells were removed. Next, the amount of nicotinamide adenine dinucleotide (NAD) contained in the collected extract was determined by an enzymatic method using alcohol dehydrogenase, and was found to be 0.212 parts. This extract was passed through a formic acid type strongly acidic ion exchange resin (Dowex 1X-8, manufactured by Rohm and Haas) to adsorb NAD, and then the effluent was
The sample was washed with water until the absorbance at 260 nm became 0.1 or less, and then NAD was eluted with a mixed aqueous solution of 4M formic acid and 0.2M ammonium formate. The thus obtained NAD eluate was sequentially purified by sublimation and freeze-drying, and as a result, 0.170 parts of NAD was obtained. Example 5 After stirring for 30 minutes in the same manner as in Example 1, the amount of NAD in the extract was quantified, and the extracted amount was 3.2 μmol per gram of dry bacterial cells. Also OD 260
The relative purity of NAD in the material was 15.4%. Comparative Example 2 One part of the bacterial cells used in Example 1 was added to 100% of 1.5N perchloric acid.
After shaking and extracting at room temperature for 1 hour, the mixture was neutralized with potassium hydrogen carbonate to remove the precipitate of potassium perchlorate formed. Then in the extract
When NAD was quantified, the amount was 1g of dry bacterial cells.
5.0 μmol per substance, and the relative purity in the OD 260 substance is
It was 2.2%. Reference example 1 Schlenk.F. et al.'s medium [Journal of Biological Chemistry (J.
Biol. Chem.) Vol. 229, p. 1037 (1957)].
Cerevisiae) SAM obtained by culturing IFO2044
Tris (hydroxymethyl) containing 10 parts of bacterial cells (wet amount) was washed twice with distilled water and adjusted to pH 6.4.
It was suspended in 100 parts of aminoethane-2-[N-morpholino]ethanesulfonic acid buffer (buffer concentration 10 mmolar). Next, cupric chloride was added to the solution at a concentration of 100 μM, and the mixture was gently stirred at 30° C. for 1 hour to expel low-molecular impurities from the cells, and then the cells were collected and washed twice with distilled water. After that, it was suspended in 50 parts of distilled water, left to stand at -20℃ for 5 hours, and then frozen at 20℃.
The resulting suspension was centrifuged to remove insoluble substances, and the content and purity of SAM contained in the supernatant was measured.The SAM content was 1.70 parts. The relative purity was 90.9%. The purity of SAM is determined by taking a portion of the test solution and developing it with two-dimensional paper chromatography.
A spot of SAM was detected, the SAM concentration of the test solution was detected using an ultraviolet detector, and it was calculated from the measurement of OD 260 of the test solution using the following formula. SAM purity=SAM OD 260 /OD 260 ×100 As can be seen from this reference example, the treatment method of the present invention is also useful as a method for extracting substances such as SAM that remain in the microbial cells.

Claims (1)

【特許請求の範囲】[Claims] 1 菌体内に有用物質を蓄積した酵母菌体を二価
銅イオンの水溶液で処理し、細胞質中の低分子化
合物を体外に排出せしめたのち、該低分子化合物
中の有用物質を回収することを特徴とする酵母菌
体から有用物質を回収する方法。
1. Treat yeast cells that have accumulated useful substances within the cells with an aqueous solution of divalent copper ions to expel low-molecular compounds in the cytoplasm from the body, and then recover the useful substances in the low-molecular compounds. A method for recovering useful substances from characteristic yeast cells.
JP21876882A 1982-12-14 1982-12-14 How to treat yeast cells Granted JPS59109171A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21876882A JPS59109171A (en) 1982-12-14 1982-12-14 How to treat yeast cells
US06/560,119 US4599309A (en) 1982-12-14 1983-12-12 Post cultivation treatment of yeast cells to facilitate product recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876882A JPS59109171A (en) 1982-12-14 1982-12-14 How to treat yeast cells

Publications (2)

Publication Number Publication Date
JPS59109171A JPS59109171A (en) 1984-06-23
JPH0113357B2 true JPH0113357B2 (en) 1989-03-06

Family

ID=16725087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876882A Granted JPS59109171A (en) 1982-12-14 1982-12-14 How to treat yeast cells

Country Status (1)

Country Link
JP (1) JPS59109171A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761259B2 (en) * 1990-10-08 1995-07-05 工業技術院長 Extraction method of yeast intracellular substance
SG11201508172PA (en) * 2013-04-02 2015-11-27 Oriental Yeast Co Ltd Yeast extract containing copper, method for manufacturing same, food product, and green color preserving and restoring agent for vegetables

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243915A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Electric motor which has clearance in shaft dirction

Also Published As

Publication number Publication date
JPS59109171A (en) 1984-06-23

Similar Documents

Publication Publication Date Title
US10808241B2 (en) Methods for purification of messenger RNA
CA2105944A1 (en) Detection of nucleic acids in blood
JP3218133B2 (en) Method for producing optically active α-hydroxycarboxylic acid having phenyl group
WO2015007800A1 (en) Method for extracting and purifying nucleic acids and buffers used
JP2003534349A (en) Method for preparing pharmaceutically acceptable salt of (SS, RS) -S-adenosyl-L-methionine
US20150184149A1 (en) Agent and kit for isolating nucleic acids
US4599309A (en) Post cultivation treatment of yeast cells to facilitate product recovery
JPH0113357B2 (en)
JP4571924B2 (en) Yeast extract and method for producing the same
EP3054008A1 (en) Method for purifying double-stranded ribonucleic acid
Trevelyan Chemical methods for the reduction of the purine content of baker's yeast, a form of single‐cell protein
Oliveira et al. Partition behavior and partial purification of hexokinase in aqueous two-phase polyethylene glycol/citrate systems
US3123539A (en) Process for recovering catalase from
JPS62501677A (en) D-amino acid oxidase and its isolation method
Trevelyan Effect of procedures for the reduction of the nucleic acid content of SCP on the DNA content of Saccharomyces cerevisiae
FR2814751A1 (en) BACTERIA USED FOR OXIDIZING ARSENIC, PROCESS FOR THEIR SELECTION AND THEIR APPLICATIONS FOR TREATING MEDIA CONTAINING ARSENIC
JPS62249956A (en) Purification of carnitine
US3941770A (en) Method for purifying 3',5'-cyclic-adenylic acid or 3',5'-cyclic-deoxyadenylic acid
JPH07113024B2 (en) Method for purifying pyrroloquinoline quinone
DE102019131561A1 (en) Composition containing dried polyphosphate and a method for obtaining polyphosphate from yeast cells containing polyphosphate
JPS6251990A (en) Treatment of microbial cell
JPH0335917B2 (en)
NAKAMURA et al. Pantothenate uptake in Escherichia coli K-12
JPH0474999B2 (en)
JP2690779B2 (en) L-ascorbic acid derivative and method for producing the same