JPH01132936A - Method and apparatus for analyzing film - Google Patents
Method and apparatus for analyzing filmInfo
- Publication number
- JPH01132936A JPH01132936A JP62291120A JP29112087A JPH01132936A JP H01132936 A JPH01132936 A JP H01132936A JP 62291120 A JP62291120 A JP 62291120A JP 29112087 A JP29112087 A JP 29112087A JP H01132936 A JPH01132936 A JP H01132936A
- Authority
- JP
- Japan
- Prior art keywords
- light
- coating
- film
- incidence
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims description 57
- 239000011248 coating agent Substances 0.000 claims description 55
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000009672 coating analysis Methods 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 abstract description 15
- 239000010959 steel Substances 0.000 abstract description 15
- 238000001514 detection method Methods 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 7
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、被膜の分析方法及び装置に係り、特に、走行
している鋼板、鋼管等の金属表面に形成された、赤外領
域で活性な物質を主成分とし、その他に1種以上の赤外
活性な物質を含む被膜の成分組成と膜厚をオンラインで
連続的に同時測定する際に用いるに好適な、光反射する
基盤上に形成された、光を一部透過する被膜の分析方法
及び装置に関する。The present invention relates to a method and apparatus for analyzing a film formed on the surface of a metal such as a moving steel plate or steel pipe, which contains a substance active in the infrared region as a main component and one or more other infrared rays. A method for analyzing a film that partially transmits light, formed on a light-reflecting substrate, suitable for continuous online simultaneous measurement of the component composition and film thickness of a film containing an externally active substance. Regarding equipment.
近年、鋼材の表面性状の改善を目的として、無機あるい
は有機被膜で鋼材の表面を被膜した、いわゆる、はうろ
うかけ鋼製品、絶縁被膜付き電磁鋼板や有機樹脂液M鋼
板等が開発されている。
この場合、鋼材に被覆材の主原料(はうろうの場合はゆ
う薬、電磁鋼板の場合はMgO1有機樹脂の場合はポリ
エステルあるいはエポキシ等の有機樹脂)を水溶液ある
いは有機溶媒に溶かして塗布した後、所定の温度に加熱
して反応させ、鋼材表面に密着させると共に堅牢な被膜
を形成させることが一般に行われている。この際、主原
料の他に、鋼材の表面性状を更に良くするための副原料
も加えられる。従って、塗布し焼付けた被膜の量(厚さ
)と組成をi適値に管理することが、製品品質の管理、
11!造コストの低減から非常に重要となる。
一般に、めっき、塗装、高温酸化等を行った後の表面層
の組成や被膜量の分析は、螢光X線分析法により行われ
ているが、被測定物が有機樹脂やほうろう等のときには
、測定する元素が軽元素であるため、螢光Xaを用いた
場合には真空で測定する必要がある。従って、例えば円
板状に打ち抜いた試料片を螢光Xm分析装置の試料室に
入れ、高真空に排気して分析するため破壊検査となり、
製造ラインで連続的にMW−1成分組成を測定すること
は極めて困雌であった。
このような問題のない連続分析法として、従来より、種
々の膜厚計が用いられているが、非接触で連続して測定
できるものとしては、特開昭57−179607、特開
昭58−18109、特開昭58−102106、実開
昭61−163915に開示された赤外線膜厚計が知ら
れている。これは、特定波長の光が被膜により吸収を受
けることを利用したものであり、その吸収量を測定する
ことにより、被膜の膜厚を計算する方法である。
この赤外apA厚計は、例えば第2図に示す如く構成さ
れており、被膜12によって吸収される特定波長の光と
、被JIW12には吸収されない特定波長の光を照射し
、それぞれの反射強度を測定することにより、被膜12
のWJ、厚を求める。具体的には、光源20から放出さ
れた光22を、例えば多W!I膜フィルタから成るフィ
ルタ24に通過させ、被膜12に吸収される特定波長の
光を選別した後、ビームスプリッタ26で二分し、一方
(28,A )は検出器30Aに直接入射し、他方は、
M板10上に形成された被FT1i12で吸収・反射さ
れた後、反射光28Bとして他方の検出H30Bに入射
するようにする。検出器30A、30Bに入射した光は
、それぞれ光強度信号に変換された後、計算機32に送
られる。計![32は、送られてきた入射光28A及び
被y!A12により吸収を受けた反射光28Bの2つの
光強度信号を比較演算することにより、被膜12のM厚
を計算するものである。
このフィルタ方式の赤外線膜厚計は、原理的には、複数
の成分組成から成る被膜であっても、それぞれの成分に
おいて吸収される波長を選別するフィルタを複数個使用
すれば、被膜の成分組成の分析が可能なはずであるが、
従来は、被膜の膜厚及び成分組成をラインにおいて連続
的に同時分析しな事例はなかった。
この原因として、次の問題点が挙げられる。
■赤外光を被膜に照射した場合、被膜を通って被膜下面
で反射する光の他に、被膜上面で反射する光がある。こ
のため反射光同士が干渉を起こし、測定誤差を生じるた
め実用的な測定精度が得られなかった。
■被膜が多種類成分から構成される場合に、その成分組
成を分析するには、光を複数個のフィルタに通す必要が
あり、光を多数に分離しなければならない、このため光
強度が弱くなり、測定精度が低下してしまう。
■各成分の吸収波長を選別するための適当なフィルタが
容易に得られない。
■被膜の種類がよく変わるような生産ラインでは、種類
変化毎にフィルタの交換が必要となり、実用的でない。
以上の■の問題を解決する方法として、近年、特開昭6
0−73406において、フィルム測定の際に干渉の影
響を除去する方法が開示されているI
この方法は、第3図に示すような装置において、光源部
40から放射された赤外光を、振動鏡42により入射角
θを所定範囲で変化させ、偏光子43を介してフィルム
44に照射し、フィルム44を透過した光46Bの光強
度を、凹面鏡48及び反射鏡50を介して検出器30で
検出した後、フィルム4111の膜厚を算出するように
している。
一方、フィルム44で反射された光46Aは、入射角設
定用光検出器31で光強度が測定されている。このとき
、成る角度θ=θ0においては、干渉が無くなるため、
入射角設定用光検出器31で検出される、フィルム44
で反射した光46Aの強度が弱くなる。従って、フィル
ム44で反射した光強度を光検出器31で監視し、該強
度が低下したときのみの膜厚値を採用すれば、干渉の影
響のない膜厚が連続的に測定できる。In recent years, with the aim of improving the surface properties of steel materials, so-called hot-roasted steel products, electrical steel sheets with insulating coatings, organic resin liquid M steel sheets, etc., have been developed in which the surface of steel materials is coated with an inorganic or organic coating. . In this case, the main raw material for the coating material (powder in the case of porcelain, organic resin such as polyester or epoxy in the case of MgO1 organic resin for electrical steel sheet) is dissolved in an aqueous solution or an organic solvent and applied. Generally, it is heated to a predetermined temperature to cause a reaction so that it adheres to the surface of the steel material and forms a robust film. At this time, in addition to the main raw materials, auxiliary raw materials are also added to further improve the surface properties of the steel material. Therefore, controlling the amount (thickness) and composition of the applied and baked film to an appropriate value is essential for product quality control.
11! This is very important because it reduces manufacturing costs. Generally, the composition and coating amount of the surface layer after plating, painting, high-temperature oxidation, etc. are analyzed by fluorescent X-ray analysis, but when the object to be measured is an organic resin or enamel, Since the element to be measured is a light element, it is necessary to perform the measurement in a vacuum when fluorescent Xa is used. Therefore, for example, a sample piece punched out in the shape of a disc is put into the sample chamber of a fluorescent Xm analyzer, evacuated to a high vacuum, and analyzed, resulting in a destructive inspection.
It was extremely difficult to continuously measure the MW-1 component composition on the production line. Conventionally, various film thickness meters have been used as continuous analysis methods that do not have such problems, but the ones that can perform continuous measurement without contact are JP-A-57-179607 and JP-A-58- 18109, Japanese Patent Laid-Open No. 58-102106, and Utility Model Application Laid-open No. 61-163915 are known. This method utilizes the fact that light of a specific wavelength is absorbed by the coating, and is a method for calculating the thickness of the coating by measuring the amount of absorption. This infrared apA thickness meter is configured as shown in FIG. 2, for example, and irradiates light of a specific wavelength that is absorbed by the coating 12 and light of a specific wavelength that is not absorbed by the target JIW 12, and the reflection intensity of each is By measuring the coating 12
Find the WJ and thickness of. Specifically, the light 22 emitted from the light source 20 is, for example, multi-W! After passing through a filter 24 consisting of an I-film filter and sorting out light of a specific wavelength that is absorbed by the coating 12, the light is split into two by a beam splitter 26. One (28, A) is directly incident on the detector 30A, and the other is ,
After being absorbed and reflected by the FT 1i12 formed on the M plate 10, the light is made to enter the other detection H30B as reflected light 28B. The light incident on the detectors 30A and 30B is each converted into a light intensity signal and then sent to the computer 32. Total! [32 is the transmitted incident light 28A and the incident light y! The thickness M of the coating 12 is calculated by comparing and calculating two light intensity signals of the reflected light 28B absorbed by A12. In principle, this filter-type infrared film thickness meter can detect the composition of a film by using multiple filters that select the wavelengths absorbed by each component, even if the film is composed of multiple components. It should be possible to analyze
In the past, there was no case where the film thickness and component composition of a coating were not simultaneously analyzed continuously on the line. The causes of this include the following problems. (2) When a film is irradiated with infrared light, in addition to the light that passes through the film and is reflected on the bottom surface of the film, there is also light that is reflected on the top surface of the film. As a result, the reflected lights interfere with each other, resulting in measurement errors, making it impossible to obtain practical measurement accuracy. ■When a film is composed of many types of components, in order to analyze its composition, it is necessary to pass the light through multiple filters and separate the light into many parts, which results in a weak light intensity. As a result, measurement accuracy decreases. ■Appropriate filters for selecting the absorption wavelength of each component cannot be easily obtained. ■In production lines where the type of coating changes frequently, filters must be replaced each time the type changes, which is impractical. In recent years, as a method to solve the above problem ■,
No. 0-73406 discloses a method for removing the influence of interference during film measurement. This method uses a device such as the one shown in FIG. The incident angle θ is varied within a predetermined range by the mirror 42, the film 44 is irradiated via the polarizer 43, and the light intensity of the light 46B transmitted through the film 44 is detected by the detector 30 via the concave mirror 48 and the reflecting mirror 50. After the detection, the thickness of the film 4111 is calculated. On the other hand, the light intensity of the light 46A reflected by the film 44 is measured by the incident angle setting photodetector 31. At this time, at the angle θ=θ0, there is no interference, so
Film 44 detected by incident angle setting photodetector 31
The intensity of the reflected light 46A becomes weaker. Therefore, by monitoring the intensity of light reflected by the film 44 with the photodetector 31 and adopting the film thickness value only when the intensity decreases, the film thickness can be continuously measured without the influence of interference.
しかしながら、第3図に示したような従来装置をそのま
ま金属表面上被膜の測定に用いて、金属表面上の被膜1
2に光を照射すると、第4図に示す如く、被WA12の
上面で反射された光46Aだけでなく、被yA1゛2を
透過した光46Cも反射されるため、被膜12の上面で
反射された光46Aのみの検出は不可能となり、第3図
に示したような従来装置で干渉の影響を除去する測定は
不可能であった。However, if the conventional device shown in Fig. 3 is used as it is to measure the coating on the metal surface, the coating on the metal surface 1.
When light is irradiated onto the coating 12, as shown in FIG. It became impossible to detect only the light 46A, and it was impossible to perform measurements to eliminate the influence of interference using the conventional apparatus shown in FIG.
本発明は、前記従来の問題点を解消するべくなされたも
ので、光を反射する基盤上に形成された被膜の成分組成
及び膜厚を、連続的に同時分析可能な、被膜の分析方法
及び装置を提供することを目的とする。The present invention has been made to solve the above-mentioned conventional problems, and includes a film analysis method and a film analysis method that can continuously and simultaneously analyze the component composition and film thickness of a film formed on a light-reflecting substrate. The purpose is to provide equipment.
本発明は、光反射する基盤上に形成された、光を一部透
過する被膜の分析方法において、入射面に平行に偏光し
た赤外光を実質的にブリュースタ角で該被膜に照射し、
該赤外光の反射スペクトル −の吸収ピークから被膜の
成分組成と膜厚を分析するようにして、前記目的を達成
したものである。
又、本発明の実施態様は、前記被膜が、走行している光
反射基盤上に形成されており、該被膜の成分組成と膜厚
をほぼ連続的にオンライン分析するようにしたものであ
る。
又、本発明は、前記のような被膜の分析方法において、
入射面に平行に偏光した光を、所定範囲の入射角で被膜
に照射し、該被膜に照射された光の反射光をスペクトル
に分光して、該スペクトル波形の波長による強度変化が
最小となる入射角を見つけ出し、次に、入射面に平行に
偏光した赤外光を、該入射角で照射して、該赤外光の反
射スペクトルの吸収ピークから被膜の成分組成と膜厚を
測定するようにして、同じく前記目的を達成したもので
ある。
又、本発明は、前記方法を実施するに好適な装置を、光
を入射面に平行に偏光させる偏光子を含み、該偏光子に
より偏光された光を所定範囲の入射角で、被膜に照射す
る光照射部と、該被膜に照射された光の反射光を受光し
てスペクトルに分光する分光器と、該スペクトルの各波
長における光強度に応じた信号を出力する光検出器と、
該光強度に応じた信号の各波長における変化が最小とな
る入射角を見つけ出す信号処理部と、入射面に平行に偏
光した赤外光を該入射角で被膜に照射し、該被膜からの
反射光を受光して、該赤外光の反射スペクトルを測定す
る機構を含む、フーリエ変換型赤外分光装置と、磁赤外
反射スペクトルの吸収ピークから被膜の成分組成と膜厚
を測定する演算部とを備えることによって構成したもの
である。The present invention provides a method for analyzing a coating formed on a light-reflecting substrate that partially transmits light, including irradiating the coating with infrared light polarized parallel to the plane of incidence at substantially Brewster's angle;
The above object has been achieved by analyzing the component composition and film thickness of the coating from the absorption peak of the reflection spectrum of the infrared light. Further, in an embodiment of the present invention, the coating is formed on a traveling light-reflecting substrate, and the component composition and thickness of the coating are almost continuously analyzed on-line. Further, the present invention provides a method for analyzing a film as described above, including:
A film is irradiated with light polarized parallel to the plane of incidence at a predetermined angle of incidence, and the reflected light of the light irradiated onto the film is separated into a spectrum, so that the intensity change depending on the wavelength of the spectral waveform is minimized. Find the angle of incidence, then irradiate infrared light polarized parallel to the plane of incidence at the angle of incidence, and measure the composition and thickness of the film from the absorption peak of the reflection spectrum of the infrared light. In this way, the above objective has also been achieved. The present invention also provides an apparatus suitable for carrying out the method, which includes a polarizer that polarizes light parallel to the plane of incidence, and irradiates the coating with the light polarized by the polarizer at an incident angle within a predetermined range. a light irradiation unit, a spectrometer that receives the reflected light of the light irradiated on the coating and separates it into a spectrum, and a photodetector that outputs a signal according to the light intensity at each wavelength of the spectrum;
A signal processing unit that finds the angle of incidence that minimizes the change in each wavelength of the signal according to the light intensity, and irradiates the coating with infrared light polarized parallel to the plane of incidence at the angle of incidence, and detects the reflection from the coating. A Fourier transform infrared spectrometer including a mechanism that receives light and measures the reflection spectrum of the infrared light, and a calculation unit that measures the component composition and film thickness of the coating from the absorption peak of the magnetic infrared reflection spectrum. It is constructed by having the following.
本発明は、光反射する基盤上に形成された、光を一部透
過する被膜の分析に際して、透明な誘電体(屈折率n)
に平行光線が入射すると、入射角θがθ=tan−10
を満す角度(ブリュースタ角)では、入射面に垂直な開
光成分は一部反射し、−部通過するが、入射面に平行な
成分の反射は零で全て透過することを利用している。即
ち、第4図のように干渉した反射光をスペクトルに分散
すると、波長により光強度の強弱が連続する、いわゆる
干渉縞が表われる。そこでスペクトルを観察しながら入
射角を変化させると、ある角度(ブリュースタ角)で干
渉縞が消滅するなめ、干渉の影響が除去できる角度θ0
を見つけることが可能となる。よって、入射面に平行に
偏光した赤外光を実質的に該ブリュースタ角θ0で該被
膜に照射し、該赤外光の反射スペクトルの吸収ピークか
ら被膜の成分組成とPIAFf−を分析することによっ
て、光反射する基盤上に形成された被膜の成分組成と膜
厚を連続的に同時分析することが可能となる。
又、成分組成が全く未知な材料から成る被膜を分析する
に際しては、入射面に平行に偏光した光を、所定範囲の
入射角で被膜に照射し、その反射光をスペクトルに分光
して、該スペクトル波形の波長による強度変化が最小と
なる入射角を見つけ出してブリュースタ角とし、次に、
例えばフーリエ変換型赤外分光装g(FT−IR)によ
り、見つけ出した入射角で入射面に平行に偏光した赤外
光を照射して、該赤外光の反射スペクトルの吸収ピーク
から被膜の成分組成と膜厚を測定する。この場合には、
成分組成が全く未知でブリュースタ角が不明である被膜
の分析が可能となる。
又、FT−IRを用いた場合には、一定波長範囲を同時
に測定できる。The present invention uses a transparent dielectric material (refractive index n) when analyzing a film formed on a light-reflecting substrate that partially transmits light.
When a parallel ray is incident on , the angle of incidence θ is θ=tan-10
At an angle that satisfies (Brewster's angle), part of the open light component perpendicular to the plane of incidence is reflected and - part passes through, but the reflection of the component parallel to the plane of incidence is zero and all is transmitted. . That is, when the reflected light that has interfered is dispersed into a spectrum as shown in FIG. 4, so-called interference fringes appear, in which the intensity of the light is continuous depending on the wavelength. Therefore, if we change the incident angle while observing the spectrum, the interference fringes disappear at a certain angle (Brewster's angle), so the angle θ0 at which the influence of interference can be removed.
It becomes possible to find. Therefore, the coating is irradiated with infrared light polarized parallel to the plane of incidence at substantially the Brewster angle θ0, and the component composition and PIAFf of the coating are analyzed from the absorption peak of the reflection spectrum of the infrared light. This makes it possible to simultaneously and continuously analyze the component composition and film thickness of a coating formed on a light-reflecting substrate. In addition, when analyzing a coating made of a material whose composition is completely unknown, the coating is irradiated with light polarized parallel to the plane of incidence at a predetermined angle of incidence, and the reflected light is divided into spectra. Find the angle of incidence that minimizes the change in intensity due to wavelength of the spectral waveform and use it as Brewster's angle. Next,
For example, using a Fourier transform infrared spectrometer (FT-IR), irradiate infrared light polarized parallel to the plane of incidence at a found incident angle, and determine the composition of the coating from the absorption peak of the reflection spectrum of the infrared light. Measure composition and film thickness. In this case,
It becomes possible to analyze coatings whose composition is completely unknown and whose Brewster's angle is unknown. Furthermore, when FT-IR is used, a certain wavelength range can be measured simultaneously.
以下図面を参照して、本発明の実施例を詳細に説明する
。
本実施例は、第1図に示す如く構成されており、金属、
例えば鋼板10の表面上に形成された被膜12は、第1
図中に矢印Aで示された方向に走行している。
FT−IR光源部60から放射される、時間的に干渉し
た所定波長範囲の赤外光は、偏光子62で入射面に平行
に偏光された後、入射光用凹面鏡64で入射角θとされ
て被膜12に照射される。
ここで、凹面鏡64は、第1図中に破mBで示す方向に
移動する機構を有しており、入射角θを変化できるよう
にされている。
被膜12の上下面で反射された光(ブリュースタ角θG
においては、被膜12の下面のみからの反射光28B)
は、反射光用の凹面fi66により、FT−IR先光検
出68に集光される。該反射光用凹面鏡66も、入射角
θの変化に対応させるため、入射光用凹面fi64と同
様に、図中矢印Bで示す方向に移動するR梢を有してい
る。
前記FT−IR光検出部68で光強度は電気信号に変換
され、FT−I R信号処理部70に送られる。該FT
−IR信号処理部70は、送られてきた信号をフーリエ
変換し、予め記憶されている、被膜12のない金属の反
射スペクトルから、被膜12による赤外反射スペクトル
を計算する。
入射角θを変化させながら赤外反射スペクトルを計算し
て、所定波長範囲において、各波長における光強度変化
が最小となる入射角θ0の時、FT−IR信号処理部7
0は、計算機72に赤外反射スペクトルを出力する。
該計算8172は、送られてきた赤外反射スペクトルの
所定吸収ピークの大きさと、予めfi準試料により作成
し記憶しである検量線より、被v412の膜厚及び成分
組成を算出して出力する。
なお信号処理部70は、最適入射角θGを見つけた時、
入反射用凹面a641.66に移動停止指令を出力し、
凹面鏡64.66が最適入射角θ0を維持するようにす
る。
更に、信号処理部70は所定波長範囲における光強度変
化を監視しており、被膜12の成分組成変化による屈折
率の変化や、被測定物(鋼板10及び被wA12)の角
度変動によって、最適入射角θ0が変化して干渉が起こ
り、波長による光強度変化が大きくなると、入反射用凹
面鏡64.66に移動指令を出力して、再度最適入射角
θ0を見つけ出した後、被膜12の分析を開始する。
シリカを配合したエポキシ樹脂を鋼板表面に塗布し焼付
けた試料の膜厚とシリカ含有率を、実施例により求めた
。具体的には、樹脂を被覆しない鋼板を基準とし、40
0〜4000c1−’の赤外反射スペクトルを測定し、
予め記憶しである検量線と1100cn−’付近の5i
−0伸縮振動の吸収ピークについて、ピーク面積からシ
リカ含有量(%)を算出し、2900cl−’付近のC
−H伸縮振動の吸収ピーク面積から膜厚(g/rn’)
を算出した。
最適入射角θ0は60度であった。
この場合、塗布液の塗布量と配合比より求めたシリカ含
有率25%、膜厚2.5g/m’に対して、シリカ含有
率については±2%、WA厚については±O,Ig/m
”の分析精度で分析することがでさた。
本実施例においては、スペクトル測定として最適入射角
設定用と被膜分析用で同じFT−IRを用いているので
、装置が簡略である。なお、入射角設定用として別の分
光器を用い、干渉縞を監視する波長域を、赤外、可視、
紫外領域と膜厚に応じて変える構成とすることもできる
。これは、被膜の膜厚が小さくなると、干渉縞のピッチ
(山−山間、成るいは谷−谷間の波長差)が大きくなる
ため、干渉縞を監視するには波長の短い紫外領域が適し
ており、逆に、V厚が大きくなると干渉縞のピッチが小
さくなるため、波長の長い赤外領域で監視するのが適す
る等の理由による。
又、本実施例においては、フーリエ変換型赤外分光装f
i(FT−IR)を用いているので、同時に全波長域の
スペクトルが測定でき、複雑な組成の被膜の膜厚と各成
分の含有率を同時に高速で連続測定することができる。
なお、本発明の実施方法はこれに限定されず、フーリエ
変換型以外の赤外分光装置を使用することも可能である
。Embodiments of the present invention will be described in detail below with reference to the drawings. This embodiment is constructed as shown in FIG.
For example, the coating 12 formed on the surface of the steel plate 10 is
The vehicle is traveling in the direction indicated by arrow A in the figure. The temporally interfered infrared light in a predetermined wavelength range emitted from the FT-IR light source section 60 is polarized by a polarizer 62 parallel to the incident plane, and then polarized by a concave mirror 64 for incident light to have an incident angle of θ. The coating 12 is irradiated with the light. Here, the concave mirror 64 has a mechanism that moves in the direction indicated by mB in FIG. 1, so that the incident angle θ can be changed. Light reflected on the upper and lower surfaces of the coating 12 (Brewster angle θG
, reflected light 28B only from the lower surface of the coating 12)
is focused on the FT-IR front light detection 68 by the concave surface fi 66 for reflected light. The reflected light concave mirror 66 also has an R tip that moves in the direction shown by arrow B in the figure, like the incident light concave surface fi64, in order to correspond to changes in the incident angle θ. The light intensity is converted into an electrical signal by the FT-IR light detection section 68 and sent to the FT-IR signal processing section 70. The FT
- The IR signal processing unit 70 performs Fourier transform on the sent signal and calculates the infrared reflection spectrum due to the coating 12 from the previously stored reflection spectrum of the metal without the coating 12. The FT-IR signal processing unit 7 calculates the infrared reflection spectrum while changing the incident angle θ, and when the incident angle θ0 is the minimum light intensity change at each wavelength in a predetermined wavelength range, the FT-IR signal processing unit 7
0 outputs an infrared reflection spectrum to the computer 72. The calculation 8172 calculates and outputs the film thickness and component composition of the target v412 from the magnitude of a predetermined absorption peak of the sent infrared reflection spectrum and a calibration curve that has been created and stored in advance using the fi quasi-sample. . Note that when the signal processing unit 70 finds the optimal incident angle θG,
Output a movement stop command to the input/reflection concave surface a641.66,
The concave mirrors 64 and 66 maintain the optimum angle of incidence θ0. Furthermore, the signal processing unit 70 monitors changes in light intensity in a predetermined wavelength range, and determines the optimum incidence by changes in the refractive index due to changes in the composition of the coating 12 and changes in the angle of the objects to be measured (steel plate 10 and wA 12). When the angle θ0 changes and interference occurs and the change in light intensity due to wavelength becomes large, a movement command is output to the concave mirrors 64 and 66 for input and reflection, and after finding the optimum angle of incidence θ0 again, analysis of the coating 12 is started. do. The film thickness and silica content of a sample in which an epoxy resin containing silica was applied to the surface of a steel plate and baked were determined according to an example. Specifically, based on a steel plate that is not coated with resin, 40
Measure the infrared reflection spectrum from 0 to 4000c1-',
Calibration curve stored in advance and 5i near 1100cn-'
Regarding the absorption peak of −0 stretching vibration, the silica content (%) was calculated from the peak area, and the C
-Film thickness (g/rn') from absorption peak area of H stretching vibration
was calculated. The optimum angle of incidence θ0 was 60 degrees. In this case, the silica content is 25% and the film thickness is 2.5 g/m' determined from the coating amount and compounding ratio of the coating solution, and the silica content is ±2% and the WA thickness is ±O, Ig/m'. m
In this example, the same FT-IR is used for setting the optimum angle of incidence for spectrum measurement and for film analysis, so the apparatus is simple. A separate spectrometer is used to set the angle of incidence, and the wavelength range for monitoring interference fringes is set in the infrared, visible,
It is also possible to have a configuration that changes depending on the ultraviolet region and film thickness. This is because as the film thickness of the coating decreases, the pitch of the interference fringes (the wavelength difference between peaks and peaks, or between valleys) increases, so the ultraviolet region with short wavelengths is suitable for monitoring interference fringes. Conversely, as the V thickness increases, the pitch of the interference fringes decreases, which is why it is suitable to monitor in the infrared region, which has a long wavelength. In addition, in this example, a Fourier transform infrared spectrometer f
Since the i(FT-IR) is used, spectra in all wavelength ranges can be measured at the same time, and the film thickness and content of each component of a film with a complex composition can be measured simultaneously and continuously at high speed. Note that the method of implementing the present invention is not limited to this, and it is also possible to use an infrared spectrometer other than the Fourier transform type.
以上説明した通り、本発明によれば、金属等の光を反射
する基盤の表面上に形成された、光を一部透過する被膜
の成分組成と膜厚を、オンラインで連続的に精度よく同
時分析することが可能となる。従って、製造ラインにお
ける操業条件のi適化や品質の管理を容易に行うことが
でき、優れた表面性状をもつ鋼材等を安定して生産する
ことができるという優れた効果を有する。As explained above, according to the present invention, the composition and thickness of a film that partially transmits light, which is formed on the surface of a light-reflecting substrate such as a metal, can be determined simultaneously online and with high accuracy. It becomes possible to analyze. Therefore, it is possible to easily optimize the operating conditions and control the quality in the production line, and it has the excellent effect of stably producing steel materials with excellent surface properties.
第1図は、本発明に係る被膜の分析方法を実施するたl
装置の実施例の構成を示す、一部ブロック線図を含む正
面図、第2図は、従来の吸収法による膜厚測定の原理を
説明するための概略図、第3図は、フィルム厚の測定に
用いられている従来例の構成を説明するための概略図、
第4図は、表面に被膜が形成された金属に光を照射した
ときの反射光の状態を示す断面図である。
10・・・鋼板、
12・・・被膜、
22・・・入射光、
60・・・フーリエ変換型赤外分光装置(FT−IR)
光源部、
62・・・偏光子、
64.66・・・凹面鏡、
θ・・・入射角、
θo−al!i入射角、
68・・・FT−I R光検出部、
70・・・FT−I R信号検出部、
72・・・計算機。FIG. 1 shows a diagram for carrying out the coating analysis method according to the present invention.
A front view including a partial block diagram showing the configuration of an embodiment of the device, FIG. 2 is a schematic diagram for explaining the principle of film thickness measurement by the conventional absorption method, and FIG. A schematic diagram for explaining the configuration of a conventional example used for measurement,
FIG. 4 is a cross-sectional view showing the state of reflected light when light is irradiated onto a metal whose surface is coated. DESCRIPTION OF SYMBOLS 10... Steel plate, 12... Coating, 22... Incident light, 60... Fourier transform infrared spectrometer (FT-IR)
Light source section, 62... Polarizer, 64.66... Concave mirror, θ... Incident angle, θo-al! i incident angle, 68... FT-IR light detection unit, 70... FT-IR signal detection unit, 72... calculator.
Claims (4)
る被膜の分析方法において、 入射面に平行に偏光した赤外光を実質的にブリユースタ
角で該被膜に照射し、 該赤外光の反射スペクトルの吸収ピークから被膜の成分
組成と膜厚を分析することを特徴とする被膜の分析方法
。(1) A method for analyzing a film formed on a light-reflecting substrate that partially transmits light, in which the film is irradiated with infrared light polarized parallel to the plane of incidence at substantially the Brilleusta angle, and the infrared light is A coating analysis method characterized by analyzing the component composition and film thickness of the coating from the absorption peak of the reflection spectrum of external light.
れており、該被膜の成分組成と膜厚をほぼ連続的にオン
ライン分析するようにした特許請求の範囲第1項記載の
被膜の分析方法。(2) The coating according to claim 1, wherein the coating is formed on a traveling light-reflecting substrate, and the component composition and film thickness of the coating are almost continuously analyzed on-line. analysis method.
る被膜の分析方法において、 入射面に平行に偏光した光を、所定範囲の入射角で被膜
に照射し、 該被膜に照射された光の反射光をスペクトルに分光して
、該スペクトル波形の波長による強度変化が最小となる
入射角を見つけ出し、 次に、入射面に平行に偏光した赤外光を、該入射角で照
射して、 該赤外光の反射スペクトルの吸収ピークから被膜の成分
組成と膜厚を測定することを特徴とする被膜の分析方法
。(3) In a method for analyzing a coating formed on a light-reflecting substrate that partially transmits light, the coating is irradiated with light polarized parallel to the plane of incidence at an incident angle within a predetermined range; The reflected light is divided into spectra to find the angle of incidence at which the intensity change depending on the wavelength of the spectral waveform is minimized. Next, infrared light polarized parallel to the plane of incidence is irradiated at the angle of incidence. A method for analyzing a film, comprising: measuring the component composition and film thickness of the film from the absorption peak of the reflection spectrum of the infrared light.
る被膜の分析装置において、 光を入射面に平行に偏光させる偏光子を含み、該偏光子
により偏光された光を所定範囲の入射角で、被膜に照射
する光照射部と、 該被膜に照射された光の反射光を受光してスペクトルに
分光する分光器と、 該スペクトルの各波長における光強度に応じた信号を出
力する光検出器と、 該光強度に応じた信号の各波長における変化が最小とな
る入射角を見つけ出す信号処理部と、入射面に平行に偏
光した赤外光を該入射角で被膜に照射し、該被膜からの
反射光を受光して、該赤外光の反射スペクトルを測定す
る機構を含む、フーリエ変換型赤外分光装置と、 磁赤外反射スペクトルの吸収ピークから被膜の成分組成
と膜厚を測定する演算部と、 を備えたことを特徴とする被膜の分析装置。(4) An analyzer of a coating formed on a light-reflecting substrate that partially transmits light, which includes a polarizer that polarizes the light parallel to the plane of incidence, and transmits the light polarized by the polarizer within a predetermined range. a light irradiation unit that irradiates the coating at an incident angle of , a spectrometer that receives the reflected light of the irradiated light on the coating and separates it into a spectrum, and outputs a signal according to the light intensity at each wavelength of the spectrum. a photodetector that detects the light intensity, a signal processing unit that finds the angle of incidence that minimizes the change in each wavelength of the signal according to the light intensity, and a signal processing unit that irradiates the coating with infrared light polarized parallel to the plane of incidence at the angle of incidence. , a Fourier transform infrared spectrometer including a mechanism for receiving reflected light from the coating and measuring the reflection spectrum of the infrared light; and determining the composition of the coating and the coating from the absorption peak of the magnetic infrared reflection spectrum. A coating analysis device characterized by comprising: a calculation section for measuring thickness;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291120A JPH01132936A (en) | 1987-11-18 | 1987-11-18 | Method and apparatus for analyzing film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62291120A JPH01132936A (en) | 1987-11-18 | 1987-11-18 | Method and apparatus for analyzing film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01132936A true JPH01132936A (en) | 1989-05-25 |
Family
ID=17764714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62291120A Pending JPH01132936A (en) | 1987-11-18 | 1987-11-18 | Method and apparatus for analyzing film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01132936A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03110405A (en) * | 1989-09-25 | 1991-05-10 | Japan Spectroscopic Co | Multi-layered thin film evaluator |
US6734967B1 (en) | 1995-01-19 | 2004-05-11 | Kla-Tencor Technologies Corporation | Focused beam spectroscopic ellipsometry method and system |
WO2013035726A1 (en) * | 2011-09-07 | 2013-03-14 | Jfeスチール株式会社 | Measurement method and measurement apparatus |
JP2014055830A (en) * | 2012-09-12 | 2014-03-27 | Jfe Steel Corp | Spectral measuring apparatus, and spectral measuring method |
JP2014508921A (en) * | 2011-01-31 | 2014-04-10 | ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths |
JP2020098214A (en) * | 2015-09-30 | 2020-06-25 | アルセロールミタル | Method for the fabrication of a steel product comprising the step of characterizing an oxide layer on a steel substrate in progress |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5323678A (en) * | 1976-08-17 | 1978-03-04 | Minolta Camera Co Ltd | Phot ometer |
JPS5342759A (en) * | 1976-09-29 | 1978-04-18 | Canon Inc | Interference measuring method |
JPS5453595A (en) * | 1977-10-04 | 1979-04-26 | Nippon Bunko Kogyo Kk | Powder measuring apparatus |
JPS5876741A (en) * | 1981-10-31 | 1983-05-09 | Toyota Central Res & Dev Lab Inc | Optical apparatus |
JPS60128330A (en) * | 1983-12-15 | 1985-07-09 | Matsushita Electric Ind Co Ltd | Refractive index measuring device of thin film |
-
1987
- 1987-11-18 JP JP62291120A patent/JPH01132936A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5323678A (en) * | 1976-08-17 | 1978-03-04 | Minolta Camera Co Ltd | Phot ometer |
JPS5342759A (en) * | 1976-09-29 | 1978-04-18 | Canon Inc | Interference measuring method |
JPS5453595A (en) * | 1977-10-04 | 1979-04-26 | Nippon Bunko Kogyo Kk | Powder measuring apparatus |
JPS5876741A (en) * | 1981-10-31 | 1983-05-09 | Toyota Central Res & Dev Lab Inc | Optical apparatus |
JPS60128330A (en) * | 1983-12-15 | 1985-07-09 | Matsushita Electric Ind Co Ltd | Refractive index measuring device of thin film |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03110405A (en) * | 1989-09-25 | 1991-05-10 | Japan Spectroscopic Co | Multi-layered thin film evaluator |
US6734967B1 (en) | 1995-01-19 | 2004-05-11 | Kla-Tencor Technologies Corporation | Focused beam spectroscopic ellipsometry method and system |
JP2014508921A (en) * | 2011-01-31 | 2014-04-10 | ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths |
WO2013035726A1 (en) * | 2011-09-07 | 2013-03-14 | Jfeスチール株式会社 | Measurement method and measurement apparatus |
JPWO2013035726A1 (en) * | 2011-09-07 | 2015-03-23 | Jfeスチール株式会社 | Measuring method and measuring device |
JP2014055830A (en) * | 2012-09-12 | 2014-03-27 | Jfe Steel Corp | Spectral measuring apparatus, and spectral measuring method |
JP2020098214A (en) * | 2015-09-30 | 2020-06-25 | アルセロールミタル | Method for the fabrication of a steel product comprising the step of characterizing an oxide layer on a steel substrate in progress |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1275170C (en) | Method for on-line thickness monitoring of a transparent film | |
US7407817B2 (en) | Surface plasmon resonance sensors and method for detecting samples using the same | |
CN105333841B (en) | Metal Surface Roughness detection method based on reflection-type terahertz time-domain spectroscopy | |
JPS6052706A (en) | Film thickness measuring device | |
US7012698B2 (en) | Method and arrangement for contactless determination of geometric and optical characteristics | |
JPH01132935A (en) | Method and apparatus for analyzing film | |
Kivioja et al. | Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy | |
JPH01132936A (en) | Method and apparatus for analyzing film | |
CN1074832C (en) | On-line near infrared multicomponent measuring method and apparatus | |
JPS63241321A (en) | Spectral analysis of membrane like specimen | |
JPH07294220A (en) | Method and apparatus for detecting film thickness of multilayer thin film | |
US6411388B1 (en) | System and method for frequency domain interferometric second harmonic spectroscopy | |
JP2011196766A (en) | Method for measuring shape of measured object having light transmittance | |
Heigl et al. | Near infrared spectroscopy, cluster and multivariate analysis hyphenated to thin layer chromatography for the analysis of amino acids | |
Räty et al. | Measurement of refractive index of liquids using s-and p-polarized light | |
JP2003503685A (en) | Layer thickness measurement method and equipment | |
CN114152588A (en) | Self-reference optical parameter measurement method for reflective terahertz time-domain spectroscopy composites | |
JP2000193424A (en) | Method and device for measuring thickness of thin-film | |
US20240142372A1 (en) | Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy | |
JPH0337123B2 (en) | ||
KR102515267B1 (en) | High-aspect-ratio sample inspection apparatus based on a near-normal-incidence ellipsometer | |
JPH01262404A (en) | Measuring instrument for spectral interference fringe | |
WO2022177534A1 (en) | Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy | |
JPS6186634A (en) | Method and device for measuring amount of powder film on metal surface | |
JPS61137048A (en) | Apparatus for measuring scattering of light |