JPH01132160A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH01132160A JPH01132160A JP28936587A JP28936587A JPH01132160A JP H01132160 A JPH01132160 A JP H01132160A JP 28936587 A JP28936587 A JP 28936587A JP 28936587 A JP28936587 A JP 28936587A JP H01132160 A JPH01132160 A JP H01132160A
- Authority
- JP
- Japan
- Prior art keywords
- gaas
- type
- layer
- yas
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体装置に係り、特に信頼性に優れた半導
体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device with excellent reliability.
従来、GaAs/AQGaAs Pnp型へテロ接合バ
イポーラトランジスタのエミッタ電極には1例えばアプ
ライド フィジックス レター46巻302頁(198
5) (Appl、 Phys、 Lett、 46.
302 (1985) )に記載されているように、A
uZn系などの材料が用いられていた。その主たる理由
は、FETにおいてはnチャンネルFETが、バイポー
ラトランジスタの場合にはnpn型がそれぞれ主流であ
ったことによる。Conventionally, the emitter electrode of a GaAs/AQGaAs Pnp type heterojunction bipolar transistor has 1, for example, Applied Physics Letters, Vol. 46, p. 302 (198
5) (Appl, Phys, Lett, 46.
302 (1985)), A.
Materials such as uZn were used. The main reason for this is that n-channel FETs and bipolar transistors have been mainly n-channel FETs and npn-types, respectively.
上記従来技術は、Pnp型バイポーラトランジスタ等の
電子デバイス特有のp型電極の問題については配慮され
ておらず、Zn等の金属がGaAs中に非常に深く拡散
し、pn接合が劣化するという問題があった。電子デバ
イスではP型層を200〜300+m程度の厚さにする
ことが望ましく、半導体レーザの様に2〜3t1mと厚
くできないのでp−rL接合を劣化させるのである。The above conventional technology does not take into consideration the problem of p-type electrodes peculiar to electronic devices such as Pnp-type bipolar transistors, and has the problem that metals such as Zn diffuse extremely deeply into GaAs, deteriorating the p-n junction. there were. In electronic devices, it is desirable that the P-type layer has a thickness of about 200 to 300+ m, and unlike semiconductor lasers, it cannot be made as thick as 2 to 3 t1 m, which deteriorates the p-rL junction.
例えばPnp型二型光次元電子ガスロ接合バイポーラト
ランジスタ(特願昭61−4024に記載、以下2DE
G−HBTと略す)においては、二次元電子ガスの適正
な形式が不可欠である。すなわち、G a A sの高
い移動度を有し、急峻なヘテロ接合が保存されているこ
とが必要である。For example, a Pnp type two-type optical-dimensional electronic gas junction bipolar transistor (described in Japanese Patent Application No. 61-4024, hereinafter referred to as 2DE)
G-HBT), the proper form of the two-dimensional electron gas is essential. That is, it is necessary to have a high mobility of GaAs and to preserve a steep heterojunction.
ところが、従来p型GaAsへのオーミック電極として
用いられているA u Z n系電極は、アロイを用い
てオーミック接触を形成することに特徴があるが、Zn
がG a A s中を非常に深く拡散する傾向にあり、
pn接合が劣化することが見出された。However, the A u Z n-based electrode conventionally used as an ohmic electrode for p-type GaAs is characterized by forming an ohmic contact using an alloy.
tends to diffuse very deeply in GaAs,
It has been found that the pn junction deteriorates.
このZnの拡散は1/1111にも達する場合がある。This Zn diffusion can reach as much as 1/1111 in some cases.
特に表面保護膜CVD5iO,形成時や配線工程に伴う
絶縁膜形成時にオーミック特性(比接触抵抗ρC)の劣
化が見られた。In particular, deterioration in ohmic characteristics (specific contact resistance ρC) was observed during the formation of the surface protective film CVD5iO and during the formation of the insulating film accompanying the wiring process.
この劣化現象は、Znの拡散によるもので、pn接合特
性の劣化及びオーミック特性ρCの劣化という問題から
、このような半導体装置を集積回路に適用する場合に信
頼性の面から大きな問題があった。This deterioration phenomenon is due to the diffusion of Zn, and due to the problems of deterioration of pn junction characteristics and deterioration of ohmic characteristics ρC, there was a big problem in terms of reliability when applying such semiconductor devices to integrated circuits. .
また、エミッタ寸法の微細化に伴い、エミッタ抵抗の低
減は望ましいことである。比接触抵抗ρCは10−’Ω
dを越えると、大コレクタ電流領域でエミッタ抵抗が支
配的になり、電流増幅率、カットオフ周波数の劣化が表
面化してくる。Additionally, as emitter dimensions become smaller, it is desirable to reduce emitter resistance. Specific contact resistance ρC is 10-'Ω
When d is exceeded, the emitter resistance becomes dominant in the large collector current region, and deterioration of the current amplification factor and cutoff frequency becomes apparent.
本発明の目的は、信頼性に優れたp型GaAs層又はp
型Al1xGa、−1(As層を有する半導体装置を提
供することにある。The object of the present invention is to provide a p-type GaAs layer or a p-type GaAs layer with excellent reliability.
An object of the present invention is to provide a semiconductor device having a type Al1xGa, -1 (As layer).
上記目的は、p型GaAs又はp型MXGal−xAs
層上にp++GaAs又はp”+In、Ga、−、As
層を配置し、該p++GaAs又はp”+In、Ga1
−、As層の上に非アロイ型の金属層を配置し両者をト
ンネル接合によりオーミック接触することを特徴とする
半導体装置によって達成される。The above purpose is to use p-type GaAs or p-type MXGal-xAs.
p++GaAs or p''+In, Ga, -, As on the layer
arranging the p++GaAs or p''+In, Ga1
- This is achieved by a semiconductor device characterized in that a non-alloy metal layer is disposed on the As layer and the two are brought into ohmic contact through a tunnel junction.
トンネル接合によりオーミック接触をとるためには、例
えば上記p++GaAs層が約5X10”a++−’以
上のp型不純物を含有するか、p ” I nyGal
−yAs層が約lXl0’″C!1−”以上のp型不純
物を含有することが好ましい、このような場合、比接触
抵抗ρCがto−’Ωd以下になり、トンネル接合が形
成される。またp ” I nyGal−yAs層は、
p型GaAs又はp型All XG a 1− X A
8層に近い側はyの値を小にし、逆の側はyの値が大
になるよう組成を傾斜化することが好ましい。In order to make ohmic contact by tunnel junction, for example, the p++GaAs layer contains a p-type impurity of about 5X10"a++-' or more, or p" I nyGal.
It is preferable that the -yAs layer contains a p-type impurity of about lXl0'''C!1-'' or more. In such a case, the specific contact resistance ρC becomes less than to-'Ωd and a tunnel junction is formed. In addition, the p ”I nyGal-yAs layer is
p-type GaAs or p-type All XG a 1- X A
It is preferable to gradient the composition so that the value of y is small on the side closer to the 8th layer, and the value of y is larger on the opposite side.
非アロイ型の金属としては、Ti/Pt/Au、Mo/
Au、W、WSi、An、WN、WAQ等を用いること
ができる。特にWSi、WAQ、WN、W等は加工性に
優れるためドライエツチング法を用いてエミッタ電極と
エミッタの寸法を同一にできるのでこれらの金属を用い
ることが好ましい。これは集積回路を形成する場合に特
に有効である。Non-alloy metals include Ti/Pt/Au, Mo/
Au, W, WSi, An, WN, WAQ, etc. can be used. In particular, it is preferable to use metals such as WSi, WAQ, WN, and W, which have excellent workability and can make the dimensions of the emitter electrode and emitter the same using a dry etching method. This is particularly useful when forming integrated circuits.
これについて第1図を用いて説明する。第1図(a)(
b)は、本発明の概略を示す半導体装置の要部断面図で
ある。第1図(a)において、71は通常エミッタ領域
につながるp型GaAs層(又はp型1n、Ga1−y
As層)、70は5X10”Ω1−1程度のp型不純物
を含有するp++GaAs層(又は1x t o 19
ΩGW−’程度のp型不純物を含有するp++In、G
aニー、As層、この場合前記の如くその下層はp型G
aAs層71につながる組成であり、yの値を変化させ
て組成が傾斜していることが好ましい)、60は非アロ
イ型の金属であってTi/Pt/Au、Mo/Au等の
材料である。このような構造は通常のりフトオフ法によ
って形成することができる。This will be explained using FIG. 1. Figure 1(a) (
b) is a cross-sectional view of a main part of a semiconductor device showing an outline of the present invention. In FIG. 1(a), 71 is a p-type GaAs layer (or p-type 1n, Ga1-y
70 is a p++ GaAs layer (or 1x to 19
p++In, G containing p-type impurities of the order of ΩGW-'
a knee, As layer, in this case, as mentioned above, the underlying layer is p-type G
60 is a non-alloy type metal such as Ti/Pt/Au, Mo/Au, etc. be. Such a structure can be formed by a normal lift-off method.
一方、第1図(b)は、非アロイ型の金属としてWSi
、WM、W等の加工性に優れた金属を用いた例で、この
場合この金属をマスクとしてp++GaAs層70.p
型GaAs層71をドライエツチングによりエツチング
除去して、図の如き形状とし得る。On the other hand, FIG. 1(b) shows WSi as a non-alloy metal.
In this example, a metal with excellent workability such as , WM, W, etc. is used. In this case, the p++ GaAs layer 70. p
The type GaAs layer 71 can be etched away by dry etching to form a shape as shown in the figure.
本発明においては、アロイ型オーミック接触と異なり、
GaAs層中に準位を形成する原子の拡散がないので信
頼性の高いオーミック接触が得られる。また同様の理由
により、比接触抵抗ρCの劣化が少なく、少なくとも1
0−@Ωl程度の値が得られる。In the present invention, unlike alloy type ohmic contacts,
Since there is no diffusion of atoms forming levels in the GaAs layer, highly reliable ohmic contact can be obtained. In addition, for the same reason, the specific contact resistance ρC is less deteriorated and is at least 1
A value of approximately 0-@Ωl is obtained.
以下1本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
実施例 I
Pnpn型GaAsBTに本発明を用いた例を第2図に
示す。図において、50はTi (300人)/Pt(
300人) / Au (1500人)のエミッタ電極
。Example I FIG. 2 shows an example in which the present invention is applied to a Pnpn type GaAsBT. In the figure, 50 is Ti (300 people)/Pt (
300) / Au (1500) emitter electrode.
17はBeをlXl0”am−’含有するp ++Ga
As(1000人)、16はBeを5X1017an−
”含有するp型GaAs (1500人)、15は16
と同濃度のBeを含有するp型AQGaAs (100
0人)、14はSiを4×10”cm−’含むn型へl
lGaAs (250人)、13はアンドープAAGa
As (50人)、12はアンドープ(p−)GaAs
(1500人)、11はBeを5 X 10” aa
−”含むp++GaAs (5000人)、10は半絶
縁性G a A s基板である。ベース電極51、コレ
クター電極52は通常の仕様で形成される。この様な多
層膜は分子線エピタキシー法(MBE)で形成したが、
MOCVD法で形成してもよい、素子分離はメサ分離に
より行なった。エミッタ電極はWSi (3500人)
を被着後、ドライエツチングを用いて形成してもよい。17 is p++Ga containing Be lXl0"am-'
As (1000 people), 16 Be 5X1017an-
"Contains p-type GaAs (1500 people), 15 is 16
p-type AQGaAs (100
0 people), 14 is an n-type containing 4 x 10" cm of Si.
lGaAs (250 people), 13 is undoped AAGa
As (50 people), 12 is undoped (p-)GaAs
(1500 people), 11 Be 5 X 10” aa
10 is a semi-insulating GaAs substrate.The base electrode 51 and the collector electrode 52 are formed according to normal specifications.Such a multilayer film is formed using molecular beam epitaxy (MBE). ), but
Element isolation was performed by mesa isolation, which may be formed by MOCVD. Emitter electrode is WSi (3500 people)
After deposition, dry etching may be used.
この半導体素子は、pn接合の劣化を防ぎ、比接触抵抗
ρCを10−6Ωd以下にできた。This semiconductor element prevented deterioration of the pn junction and made the specific contact resistance ρC 10 −6 Ωd or less.
なお1本実施例では、17としてp++GaAsを用い
たがp++工nyGa1−アAsを用いることもできる
。In this embodiment, p++GaAs is used as the material 17, but p++GaAs may also be used.
実施例 2
通常のPnp型HBTに本発明を用いた実施例を第3図
に示す。Example 2 FIG. 3 shows an example in which the present invention is applied to a normal Pnp type HBT.
50はMo (1500人) / Au (1500人
)のエミッタ電極、21はMgを5X10”CIl+−
”含むp + + 工nアGa□−yAs (0,5≦
y≦Oで層の下でyの値が小ざく1層の上でyの値が大
きくなるように傾斜している。1500人)、20はM
gを6 X 1017an−3含むp型GaAs (1
000人)、19はMgを6X10”an−’含むp型
AQxGa1−xAs (X =0.45.1000人
)、18はベース層でSiを4X10”″(n−’含む
n型GaAs(1000人) 、12’はMgを2 X
10” am−’含むコレフタル型GaAs (30
00人)、11はコレクタ層でMgを5X10”as−
’含むp++GaAs (3000人)、1oは半絶縁
性GaAs基板である。ベース電極51、コレクタ電極
52は通常の方法で形成する。これらの多層膜も実施例
1と同様にMBE法又はMOCVD法で形成する。実施
例2の効果も、実施例1と同様であった。50 is Mo (1500 people) / Au (1500 people) emitter electrode, 21 is Mg in 5X10"CIl+-
”Including p + + nA Ga□-yAs (0,5≦
The slope is such that when y≦O, the value of y is small below the layer, and the value of y becomes large above the first layer. 1500 people), 20 is M
p-type GaAs (1
19 is a p-type AQ person), 12' is Mg 2
Corephthalic GaAs (30
00 people), 11 is the collector layer with Mg 5X10"as-
'Contains p++GaAs (3000 people), 1o is a semi-insulating GaAs substrate. The base electrode 51 and collector electrode 52 are formed by a normal method. These multilayer films are also formed by the MBE method or MOCVD method as in Example 1. The effects of Example 2 were also similar to those of Example 1.
なお、これらの実施例では、エミッタ領域が表面側に形
成されている場合の例を説明したが、コレクタ層が表面
側に形成されるコレクタトップ構造の場合にも、コレク
タ電極の形成に本発明を適用することは有効である。す
なわち、コレクタ層の下側にn層であるベース層が存在
し、コレクタベースのpn接合の劣化・の問題、コレク
タ抵抗の問題が生じるが、この場合も本発明を適用する
ことで問題を解決できる。In addition, in these examples, the case where the emitter region is formed on the surface side has been explained, but the present invention can also be applied to the formation of the collector electrode in the case of a collector top structure where the collector layer is formed on the surface side. It is effective to apply In other words, there is an n-layer base layer below the collector layer, which causes problems such as deterioration of the collector-base pn junction and collector resistance, but this problem can be solved by applying the present invention in this case as well. can.
以上の実施例1及び2では、エミッタ電極オーミック形
成のp++GaAs又はp++InyGa1−、Asの
p型不純物としてBe、Mgを用い、MBE法又はMO
CVD法によりドープした。しかしガスソースMBE
(MO−MBE)法により、有機金属(例えばトリメチ
ルガリウム)をガスソースとすると、C(カーボン)を
P型不純物としてドープすることができる。この場合、
大略10”(!m−’までドーピングでき、800℃以
上の熱工程を経てもCが拡散することがない。このよう
にMO−MBE法によりp++GaAs又はp ” I
nyGal−yAs層を形成してもよい。In the above Examples 1 and 2, Be and Mg are used as p-type impurities of p++GaAs or p++InyGa1-, As for ohmic formation of the emitter electrode, and MBE method or MO
It was doped by CVD method. But gas source MBE
By the (MO-MBE) method, when an organic metal (for example, trimethyl gallium) is used as a gas source, C (carbon) can be doped as a P-type impurity. in this case,
It can be doped to approximately 10"(!m-'), and C will not diffuse even after a thermal process of 800°C or higher. In this way, the MO-MBE method can dope p++GaAs or p"I
A nyGal-yAs layer may also be formed.
本発明によれば、拡散性の少ない金属と高濃度のp++
GaAs又はp ” I n、Ga1−、Asの接合を
用いてエミッタ領域にオーミック電極を形成したの−で
、pn接合の劣化を防ぎ、比接触抵抗ρCを1O−6Ω
l以下にできる。According to the present invention, a metal with low diffusivity and a high concentration of p++
By forming an ohmic electrode in the emitter region using a junction of GaAs or p''In, Ga1-, As, deterioration of the pn junction is prevented and the specific contact resistance ρC is reduced to 1O-6Ω.
It can be made less than l.
第1図は、本発明を説明するための、一実施例の要部断
面図、第2図及び第3図はそれぞれ本発明の一実施例の
半導体装置の断面図である。
lO・・・半絶縁性GaAs基板FIG. 1 is a cross-sectional view of a main part of an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views of a semiconductor device of an embodiment of the present invention. lO...Semi-insulating GaAs substrate
Claims (1)
s層上にp^+^+GaAs又はp^+^+In_yG
a_1_−_yAs層を配置し、該p^+^+GaAs
又はp^+^+In_yGa_1_−_yAs層の上に
非アロイ型の金属層を配置し、両者をトンネル接合によ
りオーミック接触することを特徴とする半導体装置。 2、上記p型GaAs又はp型Al_xGa_1_−_
xAs層はpn接合におけるp型領域である特許請求の
範囲第1項記載の半導体装置。 3、上記p^+^+GaAs又はp^+^+In_yG
a_1_−_yAs層は、p型不純物としてカーボンを
有する層である特許請求の範囲第1項記載の半導体装置
。[Claims] 1. p-type GaAs or p-type Al_xGa_1_-_xA
p^+^+GaAs or p^+^+In_yG on the s layer
a_1_−_yAs layer is arranged, and the p^+^+GaAs
Alternatively, a semiconductor device characterized in that a non-alloy metal layer is disposed on the p^+^+In_yGa_1_-_yAs layer, and the two are brought into ohmic contact by a tunnel junction. 2. The above p-type GaAs or p-type Al_xGa_1_-_
2. The semiconductor device according to claim 1, wherein the xAs layer is a p-type region in a pn junction. 3. The above p^+^+GaAs or p^+^+In_yG
2. The semiconductor device according to claim 1, wherein the a_1_-_yAs layer is a layer containing carbon as a p-type impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289365A JP2906407B2 (en) | 1987-11-18 | 1987-11-18 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289365A JP2906407B2 (en) | 1987-11-18 | 1987-11-18 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01132160A true JPH01132160A (en) | 1989-05-24 |
JP2906407B2 JP2906407B2 (en) | 1999-06-21 |
Family
ID=17742263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62289365A Expired - Fee Related JP2906407B2 (en) | 1987-11-18 | 1987-11-18 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2906407B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5436469A (en) * | 1994-06-15 | 1995-07-25 | Moll; Nicolas J. | Band minima transistor |
WO2010047281A1 (en) * | 2008-10-21 | 2010-04-29 | 日本電気株式会社 | Bipolar transistor |
US8395237B2 (en) | 2008-10-21 | 2013-03-12 | Nec Corporation | Group nitride bipolar transistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60160664A (en) * | 1984-01-31 | 1985-08-22 | Fujitsu Ltd | Manufacturing method of semiconductor device |
JPS60244065A (en) * | 1984-05-18 | 1985-12-03 | Fujitsu Ltd | Manufacture of hetero-junction bipolar semiconductor device |
JPS62232122A (en) * | 1986-04-02 | 1987-10-12 | Toshiba Corp | Manufacture of semiconductor device |
-
1987
- 1987-11-18 JP JP62289365A patent/JP2906407B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60160664A (en) * | 1984-01-31 | 1985-08-22 | Fujitsu Ltd | Manufacturing method of semiconductor device |
JPS60244065A (en) * | 1984-05-18 | 1985-12-03 | Fujitsu Ltd | Manufacture of hetero-junction bipolar semiconductor device |
JPS62232122A (en) * | 1986-04-02 | 1987-10-12 | Toshiba Corp | Manufacture of semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5436469A (en) * | 1994-06-15 | 1995-07-25 | Moll; Nicolas J. | Band minima transistor |
WO2010047281A1 (en) * | 2008-10-21 | 2010-04-29 | 日本電気株式会社 | Bipolar transistor |
US8395237B2 (en) | 2008-10-21 | 2013-03-12 | Nec Corporation | Group nitride bipolar transistor |
US8716835B2 (en) | 2008-10-21 | 2014-05-06 | Renesas Electronics Corporation | Bipolar transistor |
JP5628681B2 (en) * | 2008-10-21 | 2014-11-19 | ルネサスエレクトロニクス株式会社 | Bipolar transistor |
Also Published As
Publication number | Publication date |
---|---|
JP2906407B2 (en) | 1999-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4959702A (en) | Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate | |
JP2611640B2 (en) | Heterojunction bipolar transistor | |
JP3294461B2 (en) | Heterojunction bipolar transistor and manufacturing method thereof | |
US5631173A (en) | Method for forming collector up heterojunction bipolar transistor having insulative extrinsic emitter | |
JPH01132160A (en) | Semiconductor device | |
US3500141A (en) | Transistor structure | |
JPS61147577A (en) | Complementary semiconductor device | |
CA1237538A (en) | Lateral bipolar transistor | |
JP2001068726A (en) | Light-emitting thyristor | |
JP2003318184A (en) | Heterojunction bipolar transistor and method of manufacturing the same | |
Ma et al. | Influence of buffer layer thickness on DC performance of GaAs/AlGaAs heterojunction bipolar transistors grown on silicon substrates | |
KR100519896B1 (en) | High-concentration doped semiconductor and method of fabricating the same | |
Zipperian et al. | A gallium phosphide high‐temperature bipolar junction transistor | |
JPS63200567A (en) | Hetero junction bipolar transistor and manufacture thereof | |
JP2890729B2 (en) | Bipolar transistor and method of manufacturing the same | |
JP2621854B2 (en) | High mobility transistor | |
JP3255973B2 (en) | Semiconductor device | |
JPS59181060A (en) | semiconductor equipment | |
JP4405060B2 (en) | Heterojunction bipolar transistor | |
JPH0550858B2 (en) | ||
Ren et al. | Novel carbon‐doped p‐channel GaAs metal‐semiconductor field‐effect transistor grown by metalorganic molecular beam epitaxy | |
JP2834172B2 (en) | Field effect transistor | |
JPS59139649A (en) | Wiring structure | |
Umebachi et al. | A New Heterojunction-Gate GaAs FET | |
JPS63216376A (en) | semiconductor equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |