JPH01131879A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH01131879A JPH01131879A JP28970787A JP28970787A JPH01131879A JP H01131879 A JPH01131879 A JP H01131879A JP 28970787 A JP28970787 A JP 28970787A JP 28970787 A JP28970787 A JP 28970787A JP H01131879 A JPH01131879 A JP H01131879A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- temperature
- evaporators
- defrosting
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2347/00—Details for preventing or removing deposits or corrosion
- F25B2347/02—Details of defrosting cycles
- F25B2347/021—Alternate defrosting
Landscapes
- Defrosting Systems (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は低温ショーケースや冷蔵庫等に使用される冷凍
装置であって、蒸発器を3個備えた冷凍装置に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigeration system used in low-temperature showcases, refrigerators, etc., and is equipped with three evaporators.
(ロ)従来の技術
低温ショーケースに用いられる冷凍装置としては、除霜
時、貯蔵室の温度上昇の抑制を図るために、少なくとも
2個の蒸発器を備え、一方の蒸発器の除霜を行なう間、
他方の蒸発器の冷却を行なう除霜、冷却併用方式がとら
れるものが多くなってきた。(b) Conventional technology A refrigeration system used in a low-temperature showcase is equipped with at least two evaporators and is equipped with at least two evaporators to suppress the temperature rise in the storage room during defrosting. While doing
Increasingly, a combination of defrosting and cooling methods are being adopted in which the other evaporator is cooled.
この除霜、冷却併用方式としては、相互に並列接続され
た複数個の蒸発器の総べてを冷気流循環用の内層に配置
する方式及び、一方の蒸発器を内層に、他方の蒸発器を
保護気流循環用の外層に配置する方式がある。This combined defrosting and cooling method includes a method in which all of a plurality of evaporators connected in parallel are placed in an inner layer for cold air circulation, and a method in which one evaporator is placed in an inner layer and the other evaporator is placed in an inner layer for circulating cold air. There is a method of placing it in the outer layer for protective air circulation.
前者の方式としては特公昭62−25952号公報、特
開昭60−256773号公報、米国特許第46336
77号、後者の方式としては特公昭60−12542号
公報、米国特許第4648247号公報がある。The former method is disclosed in Japanese Patent Publication No. 62-25952, Japanese Patent Application Laid-Open No. 60-256773, and U.S. Patent No. 46336.
No. 77, and examples of the latter method include Japanese Patent Publication No. 60-12542 and U.S. Pat. No. 4,648,247.
(ハ)発明が解決しようとする問題点
上記特公昭62−25952号公報に示された低温ショ
ーケースは、3個の蒸発器を前後方向に重ね合わせ夫々
の空気入口面及び空気出口面が同じ高さになるよう内層
に配置している関係上、1個の蒸発器の除霜運転の間、
隣接する他方の蒸発器を冷却運転するために、各蒸発器
が相互に他方の蒸発器の温度の影響を受けやすくなる。(c) Problems to be solved by the invention The low-temperature showcase shown in the above-mentioned Japanese Patent Publication No. 62-25952 has three evaporators stacked one on top of the other in the front and back direction, so that the air inlet surface and air outlet surface of each are the same. During defrosting operation of one evaporator, because it is arranged in the inner layer so that it is at the same height,
Since the adjacent evaporator is operated for cooling, each evaporator is mutually susceptible to the influence of the temperature of the other evaporator.
このため貯蔵室の設定温度を0℃以下とした場合には、
商品収納及び取出用の開口を閉室するエアーカーテンが
昇温することを考慮して冷却運転される蒸発器の冷媒蒸
発温度を一10″C以下に設定する必要があり、従って
、除霜運転されている蒸発器で゛熱交換され過冷却液と
なる高圧液冷媒を除霜熱源とするには、冷却運転されて
いる蒸発器の温度が低いために、除霜熱源の熱量が不足
し、設定された除霜時間例えば20分間中に除重運転さ
れている蒸発器の霜を完全に除去することができない問
題点が生じた。又、霜残りの他の原因としては、3個の
蒸発器を冷却運転した後に、2個の蒸発器の冷却運転を
継続したま〜、1個の蒸発器を除霜運転に切り換えて冷
却運転される蒸発器の個数を減らすために、冷却運転中
の蒸発器の冷媒蒸発温度が極端に低下して冷却運転中の
蒸発器への着霜量が多くなることに併わせ、除霜熱源と
なる高圧液冷媒の熱量が不足し、除霜運転中の蒸発器に
霜残りが発生することになる。For this reason, if the set temperature of the storage room is set below 0℃,
Considering that the temperature of the air curtain that closes the product storage and removal openings increases, it is necessary to set the refrigerant evaporation temperature of the evaporator operated for cooling to below -10"C. In order to use high-pressure liquid refrigerant, which undergoes heat exchange and becomes supercooled liquid in the evaporator, as a defrosting heat source, the temperature of the evaporator during cooling operation is low, so the amount of heat in the defrosting heat source is insufficient, and the setting A problem arose in that the frost on the evaporator that was being operated was not completely removed during the defrosting time, for example, 20 minutes.Also, another cause of residual frost was that the three evaporators After the cooling operation of the two evaporators, one evaporator is switched to the defrosting operation to reduce the number of evaporators that are being cooled. The evaporation temperature of the refrigerant in the evaporator is extremely low, and the amount of frost on the evaporator increases during cooling operation.In addition, the amount of heat in the high-pressure liquid refrigerant, which is the defrosting heat source, is insufficient, causing evaporation during defrosting operation. This will leave frost residue on the container.
又、特開昭60−256773号公報及び米国特許第4
633677号に示された低温ショーケースは共に内層
の1部を内側路と外側路とに分け、相互に並タロ接続さ
れた2個の蒸発器のうち一方を内側路に、他方を外側路
に夫々配置し、2個の蒸発器を冷却運転した後、一方の
蒸発器の冷却運転を継続したま〜、他方の蒸発器を除霜
運転に切り換えるために、上記特公昭62−25952
号公報と同様に冷却運転中の蒸発器の冷媒蒸発温度が極
端に低下して冷却運転中の蒸発器への着霜量が多くなる
ことに併わせ、除霜熱源となる高圧液冷媒の熱量が不足
し、除霜運転中の蒸発器に霜残りが発生ずる問題点が生
じる。Also, Japanese Patent Application Laid-open No. 60-256773 and U.S. Patent No. 4
The low-temperature showcase shown in No. 633677 both divides a part of the inner layer into an inner passage and an outer passage, and has two evaporators connected parallel to each other, one of which is connected to the inner passage and the other to the outer passage. After cooling the two evaporators, the cooling operation of one evaporator is continued, while the other evaporator is switched to defrosting operation.
Similar to the publication, the refrigerant evaporation temperature of the evaporator during cooling operation drops extremely, and the amount of frost on the evaporator during cooling operation increases. This causes a problem in that frost remains on the evaporator during defrosting operation.
又、上記特公昭60−12542号公報及び米国特許第
4648247号に示された低温ショーケースは、相互
に並列接続された2個の蒸発器のうち一方を内層に、他
方を外層に配置し、内層の蒸発器の除重熱源としてホッ
トガス又は高圧液冷媒等の高圧冷媒を用いて熱交換させ
た後、この冷媒を減圧して冷却運転中の外層の蒸発器に
導くようにしているが、季節即ち低温ショーケースが設
置された周囲条件の温度変化に応じて冷媒の凝縮温度も
変化するために、除霜熱源から蒸発器に与えられる単位
時間当りの熱量が冬期等の外気温度の低い季節によって
は少なくなり、除霜時間内に蒸発器の霜を完全に除去す
ることができない問題点があり、又逆に夏期等外気温度
の高い季節には除重熱源から蒸発器に与えられる単位当
りの熱量が増えるために、霧が解けて蒸発器の表面が循
環気流に晒される除霜後期には、除霜熱源の方が冷却熱
源の熱・量よりも多くなり、貯蔵室の温度が急激に上昇
する問題点が生じた。Furthermore, the low-temperature showcase shown in Japanese Patent Publication No. 60-12542 and U.S. Patent No. 4,648,247 has two evaporators connected in parallel, one of which is arranged in the inner layer and the other in the outer layer, After heat exchange is performed using a high-pressure refrigerant such as hot gas or high-pressure liquid refrigerant as a de-weighting heat source for the inner layer evaporator, this refrigerant is depressurized and guided to the outer layer evaporator during cooling operation. Since the condensation temperature of the refrigerant changes according to the season, that is, the temperature change of the ambient conditions in which the low-temperature showcase is installed, the amount of heat given to the evaporator from the defrosting heat source per unit time decreases during seasons such as winter when the outside air temperature is low. There is a problem that the frost on the evaporator cannot be completely removed within the defrosting time, and conversely, in seasons such as summer when the outside temperature is high, the amount of water supplied to the evaporator from the de-duty heat source per unit During the latter stages of defrosting, when the fog melts and the surface of the evaporator is exposed to the circulating airflow, the defrosting heat source becomes larger than the cooling heat source, and the temperature in the storage room increases rapidly. An increasing number of problems arose.
因に低温ショーケースの周囲温度27°C5周囲湿度7
0%の条件下で、第1.第2両蒸発器の冷媒蒸発温度を
一13°Cとし、内蓋発器に減圧液冷媒“を供給して冷
却作用をさせた後、一方の蒸発器に継続して減圧液冷媒
を供給すると共に、他方の蒸発器への減圧液冷媒の供給
I中断を交互に繰り返すと、第8図に示す如く減圧液冷
媒が供給されている蒸発器の冷媒蒸発温度が一20°C
程度に低下するために冷却作用中の蒸発器の着霜量が増
加するばかりでなく、循環される冷気流も低温となるた
めに、減圧液冷媒の供給中断きれた除霜作用中の蒸発器
の除霜も進行せず、総体的に見れば低温ショーケースの
着霜量が増えるという問題点が生じる。Incidentally, the ambient temperature of the low-temperature showcase is 27°C, and the ambient humidity is 7.
Under the condition of 0%, the first. After setting the refrigerant evaporation temperature of both second evaporators to -13°C and supplying reduced pressure liquid refrigerant to the inner lid generator for a cooling effect, the reduced pressure liquid refrigerant is continuously supplied to one evaporator. At the same time, when the supply of reduced pressure liquid refrigerant to the other evaporator is alternately interrupted, the refrigerant evaporation temperature of the evaporator to which the reduced pressure liquid refrigerant is being supplied decreases to 120°C as shown in FIG.
Not only does the amount of frost on the evaporator during the cooling process increase as the temperature decreases, but also the circulating cold air flow becomes lower in temperature. The defrosting process does not progress, and overall, the problem arises that the amount of frost on the low-temperature showcase increases.
(ニ)問題点を解決するための手段
本発明は上記問題点を解決することを目的とするもので
、その手段として相互に並列接続された第1乃至第3蒸
発器を備え、第1蒸発器が冷媒供給を停止され除霜され
ているときには、第2.第3両蒸発器が冷却作用をなし
、第2蒸発器が冷媒供給を停止され除霜されているとき
には第1.第3両蒸発器が冷却作用をなす冷凍装置を提
供する。(d) Means for Solving the Problems The present invention aims to solve the above problems, and as a means thereof, first to third evaporators are connected in parallel to each other. When the refrigerant supply is stopped and the equipment is being defrosted, the second. Both the third evaporator performs the cooling action, and when the second evaporator is defrosted with the refrigerant supply stopped, the first evaporator performs the cooling action. A refrigeration system is provided in which both third evaporators perform a cooling action.
(ネ)作用
実施例によれば、第1.第2両蒸発器(14)(15)
に減圧液冷媒を供給して2個の蒸発器(14)(15)
が冷却作用しているときと、第1蒸発器(14)が除霜
作用、第2.第3両蒸発器(15)(19)が冷却作用
をしているとき、及び第2蒸発器(15)が除霜作用、
第1.第3両蒸発器(14)(19)が冷却作用をして
いるときとは、共に2個の蒸発器に常に減圧液冷媒が供
給されている関係上、冷凍装置における減圧液冷媒の供
給量が略一定となる。(n) According to the working example, the first. Second double evaporator (14) (15)
Two evaporators (14) (15) are supplied with reduced pressure liquid refrigerant to
is performing a cooling action, the first evaporator (14) is performing a defrosting action, and the second evaporator (14) is performing a defrosting action. When both third evaporators (15) and (19) are performing a cooling action, and when the second evaporator (15) is performing a defrosting action,
1st. When both the third evaporators (14) and (19) are performing a cooling action, the reduced pressure liquid refrigerant is constantly supplied to both evaporators, so the supply amount of the reduced pressure liquid refrigerant in the refrigeration system is becomes approximately constant.
(へ)実施例
以下図面に基づいて本発明の詳細な説明すると、第3図
に示す(1)は前面に商品収納及び取出用の開口(2)
を形成した断熱壁(3)にて本体を構成してなる低温シ
ョーケースで、前記断熱壁(3)の内壁より適当間隔を
存して第1.第2両仕切板(4)(5)を順次配設する
ことにより、冷気流循環用の内B(6)と、保護気流循
環用の外層(7)と、複数枚の棚(8)を備えた貯蔵室
(9)と、前記開口(2)の上縁長手方向に沿う前記内
外両層(6)(7)の吹出口(10)(11)と、前記
開口(2)の下縁長手方向に沿い前記吹出口(10)(
11)に相対する前記内外両層(6)(7)の吸込口(
12)(13)とが形成される。(f) Example The present invention will be explained in detail below based on the drawings. (1) shown in Fig. 3 is an opening (2) for storing and taking out products on the front side.
A low-temperature showcase whose main body is composed of a heat insulating wall (3) formed with a first heat insulating wall (3) at an appropriate interval from the inner wall of the heat insulating wall (3). By sequentially arranging the second partition plates (4) and (5), an inner layer B (6) for circulating cold air, an outer layer (7) for circulating protective air, and multiple shelves (8) can be arranged. a storage chamber (9) equipped with a storage chamber (9), an air outlet (10) (11) of both the inner and outer layers (6) and (7) along the longitudinal direction of the upper edge of the opening (2), and a lower edge of the opening (2). The air outlet (10) (
The suction ports (
12) and (13) are formed.
前記内層(6)にはプレートフィン形をなし熱交換容量
が共に同じ第1.第2両蒸発器(14)(15)と、こ
の両蒸発器の空気入口側の面となる下面に設けられ、対
応する蒸発器(14)(15)の除霜時に通電される第
1.第2電気ヒータ(16)(17)と、第3図実線矢
印の如く内層(6)の冷気流を強制循環する軸流形の第
1送風フアン(18)とが配置され、又前記外層(7)
にはプレートフィン形をなす第3蒸発器(19)と、第
3図1点鎖線矢印の如く外層(7)の保護気流を強制循
環する軸流形の第2送風フアン(20)とが配置されて
いる。前記第1.第2両送風ファン(18)(20)は
常時運転きれ、第2送風フアン(20)よりも第1送風
フアン(18)の送風量を多く、且つ風速を速くするた
めに、第1送風フアン(18)の個数を第2送風フアン
(20)よりも多くしている。The inner layer (6) has a first layer having a plate-fin shape and having the same heat exchange capacity. Both the second evaporators (14, 15) and the first evaporator, which is provided on the lower surface of the air inlet side of the two evaporators and is energized when the corresponding evaporators (14, 15) are defrosted. A second electric heater (16) (17) and a first axial blower fan (18) for forcibly circulating the cold air flow in the inner layer (6) as shown by the solid arrow in FIG. 7)
A third evaporator (19) in the form of a plate fin and a second axial blower fan (20) for forcibly circulating the protective airflow of the outer layer (7) are arranged as indicated by the dashed line arrow in Fig. 3. has been done. Said 1st. Both the second blower fans (18) and (20) are fully operational at all times, and in order to increase the amount of air blown by the first blower fan (18) and to increase the wind speed than the second blower fan (20), the first blower fan (18) is operated at full capacity. (18) is made larger than the number of second blowing fans (20).
前記第1仕切板(4)の背部部分には後下がりに傾斜す
る傾斜部(21)が形成され、又底壁部分には垂直な立
上部(22)が形成されている関係上、前記内外両層(
6)(7)内の背部区域及び底部区域には通路幅が広く
なる旅路(23)(24)<25)(26)が形成され
、前記内層(6)の背部区域の旅路(23)には第1、
第2両蒸発器(14)(15)、前記外層(7)の背部
区域の旅路(24)には第3蒸発器(19)、前記内層
(6)の底部区域の旅路(25)には第1送風フアン(
18)、前記外層(7)の底部区域の旅路(26)には
第2送風フアン(2つ)が夫々配置されている。The back portion of the first partition plate (4) is formed with a sloped portion (21) that slopes backward, and the bottom wall portion is formed with a vertical raised portion (22), so that the inside and outside of the Both layers (
6) A path (23) (24) < 25) (26) with a wider passageway width is formed in the back area and bottom area in (7), and the path (23) in the back area of the inner layer (6) is the first,
A second double evaporator (14) (15), a third evaporator (19) in the path (24) of the back area of the outer layer (7), a third evaporator (19) in the path (25) of the bottom area of the inner layer (6); The first ventilation fan (
18), second blowing fans (two) are respectively arranged in the passages (26) of the bottom area of said outer layer (7).
(27)は前記内層(6)の旅路(23)内に配置され
、この旅路(23)を内側路(28)と外側路(29)
とに内外2分するステンレス等金属製の分割板で、その
中央には後下がりに傾斜する傾斜部(30)が形成され
、又前記第1電気ヒータ(16)よりも下方に延びる下
部には、前記第1蒸発器(14)の下面と相対するフラ
ンジ(31)を有する延田部(32)が形成されている
。この分割板(27)が傾斜部(30)を形成したこと
により、内側路(28〉の下部及び外側路(29)の上
部は前記第1.第2両蒸発器(14)(15)を配置す
るための拡幅路(33)<34)となる一方で、内側路
(28)の上部及び外側路(29)の下部は冷気流を絞
るための狭幅路(35)(36)となる。又前記分割板
(27)により内側路(28)の入口幅は外側路(29
)の入口幅の約2倍となる一方で、外側路(29)の出
口幅は内側路(28)の出口幅の約2倍となっており、
着霜のない状態における両蒸発器(14)(15)の通
風量を一定としている。(27) is arranged in the path (23) of the inner layer (6), and connects this path (23) with the inner path (28) and the outer path (29).
It is a dividing plate made of metal such as stainless steel that is divided into two parts, the inside and outside, and in the center thereof there is formed an inclined part (30) that slopes downward from the rear, and in the lower part that extends downward from the first electric heater (16). , an extension part (32) having a flange (31) facing the lower surface of the first evaporator (14) is formed. Since the dividing plate (27) forms the inclined part (30), the lower part of the inner passage (28>) and the upper part of the outer passage (29) are connected to both the first and second evaporators (14) and (15). The upper part of the inner passage (28) and the lower part of the outer passage (29) serve as narrow passages (35) (36) for narrowing the cold air flow. . Also, the entrance width of the inner passage (28) is changed by the dividing plate (27) to the outer passage (29).
), while the outlet width of the outer passageway (29) is about twice the outlet width of the inner passageway (28);
The ventilation volume of both evaporators (14) and (15) in a non-frosted state is kept constant.
前記第1仕切板(4)及び分割板(27)には共に同じ
方向に傾斜部(21)(30)が形成されている関係上
、第1乃至第3各蒸発器(14)(15)(19)の配
置状態を平面的に見ると、第3蒸発器(19)の前半分
に第2蒸発器(15)の後半分が重なり、第2蒸発器(
15)の前半分に第1蒸発器(14)の後半分が重なる
ことになり、3個の蒸発器(14>(15)(19)が
配置されているにもかへわらず、実質上2個の蒸発器(
14)(19)の配置スペースで3個の蒸発器(14>
(15)(19)を配置できる構成となっている。Since the first partition plate (4) and the dividing plate (27) are both formed with inclined portions (21) and (30) in the same direction, each of the first to third evaporators (14) and (15) (19) when viewed in plan, the rear half of the second evaporator (15) overlaps the front half of the third evaporator (19), and the second evaporator (19) overlaps the front half of the second evaporator (19).
The rear half of the first evaporator (14) overlaps the front half of the first evaporator (15), and even though three evaporators (14>(15) and (19)) are arranged, 2 evaporators (
14) Three evaporators (14>) in the installation space of (19)
(15) and (19) can be arranged.
(37)は前記第1蒸発器(14)の前面に配置された
ステンレス等金属製の第3仕切板で、この仕切板の配置
に伴ない、前記第2仕切板(5)の背壁(38)下部と
の間に上部が開口し、下部が閉本された側路(39)が
形成される。(40)は前記背壁(38)下部に形成さ
れ、前記側路(39)と貯蔵室(9)の下部区域とを連
通させる多数の通孔である。(37) is a third partition plate made of metal such as stainless steel and placed in front of the first evaporator (14). Along with the arrangement of this partition plate, the back wall ( 38) A side passage (39) is formed between the lower part and the upper part to be open and the lower part to be closed. Numerous holes (40) are formed in the lower part of the back wall (38) and communicate the side passage (39) with the lower area of the storage chamber (9).
第1図は前記低温ショーケース(1)を冷却するための
冷凍装置を示し、この冷凍装置は冷媒圧縮機(41)、
空冷式凝縮器(42)、受液器(43)、乾燥器(44
)、サイトグラス(45)、第1乃至第3各電磁弁(4
6)(47)(48)、減圧装置である第1乃至第3各
膨張弁(49)(50)(51)、前記第1乃至第3各
蒸発器(14>(15)(19)、気液分離器(52)
を高圧ガス管(53)、高圧液管(54)、この高圧液
管に入口が接続される3本の高圧液枝管(55バ56)
(57)、3本の低圧液管(58)(59)(60)、
3本の低圧ガス枝管(61)(62) (63)、この
各低圧ガス枝管の出口が接続される低圧ガス管(64)
を環状に接続することにより、前記第1乃至第3各蒸発
器(14)(15)(19)が対応する第1乃至第3各
電磁弁(46)(47)(48)及び膨張弁(49)(
50)(51)と直列関係をなし、且つ相互に並列関係
をなす閉回路として構成されている。FIG. 1 shows a refrigeration system for cooling the low-temperature showcase (1), and this refrigeration system includes a refrigerant compressor (41),
Air-cooled condenser (42), liquid receiver (43), dryer (44)
), sight glass (45), first to third solenoid valves (4
6) (47) (48), each of the first to third expansion valves (49), (50), and (51) that are pressure reducing devices, each of the first to third evaporators (14>(15) (19), Gas-liquid separator (52)
A high pressure gas pipe (53), a high pressure liquid pipe (54), and three high pressure liquid branch pipes (55 bar 56) whose inlets are connected to this high pressure liquid pipe.
(57), three low pressure liquid pipes (58) (59) (60),
Three low-pressure gas branch pipes (61), (62), and (63), and a low-pressure gas pipe (64) to which the outlet of each low-pressure gas branch pipe is connected.
By connecting the first to third evaporators (14), (15), and (19) in an annular manner, the first to third electromagnetic valves (46), (47), and expansion valves (46), (47, and 49)(
50) and (51), and are configured as closed circuits that are in a parallel relationship with each other.
第2図は冷凍装置の他の実施例を示し、上記第1図で示
した第1乃至第3各電磁弁(46)(47)(48)及
び第1乃至第3各膨張弁(49)(50)(51)の代
わりに開閉機能及び減圧機能を備えステッピングモータ
により弁軸を上下方向進退自在となす第1乃至第3各電
子膨張弁(65)(66)(67)を用いてもよい。FIG. 2 shows another embodiment of the refrigeration system, in which the first to third electromagnetic valves (46), (47), and (48) and the first to third expansion valves (49) shown in FIG. Instead of (50) and (51), it is also possible to use the first to third electronic expansion valves (65), (66), and (67), which have an opening/closing function and a pressure reducing function, and whose valve shafts can be moved up and down by a stepping motor. good.
第4図は前記冷凍装置を作動させるための電気回路で、
3相200v電源のR,S、T各相には後述する圧縮機
用電磁接触器(52C)の接点(52Ca)を介して圧
縮機モータ(CM)が接続されている。前記S相には運
転スイッチ(SW)が接続きれ、又R9S両相間にはデ
ユーティサイクル用(以下り用という)タイマ(T)が
接続されている。このD用タイマ(T)は例えば30分
用のサイクルタイマであって、駆動開始から25分間そ
の接点(Ta)を閉じ、残りの5分間前記接点(Ta)
を開き、この5分が経過すると初期状態にリセット詐れ
る機構となっている。尚、前記接点(Ta)の閉、間両
時間は制御対象となる貯蔵室(9)の設定温度に応じて
その長さを任意に変更できる。(TI)は前記貯蔵室(
9)の温度を制御するサーモスフ・/ト等の温度スイッ
チで、前記接点(Ta)及びリレー(X)と直列回路を
構成する一方、前記り用タイマ(T)に並列接続されて
いる。この温度スイッチ(TI)は例えば−6℃〜+5
℃の範囲で±0.5℃のディファレンシャルをもって開
閉される機構となっているが、温度スイッチ(TI)の
特性から冷気温度の変化に即座に追従できない関係上、
設定温度を一3°C(下限設定温度−3,5℃、上限設
定温度−2,5℃)としても実際は一4℃で開動作、−
1°Cで閉動作を行ない、貯蔵室(9)を約−3°Cの
平均温度に制御する。(52C)は圧縮機モータ(CM
)を駆動させるための電磁接触器で、前記冷凍装置の高
圧、低圧両スイッチ(631)(63L)と直列回路を
構成する一方、前記り用タイマ(T)に対して並列接続
されている。FIG. 4 shows an electric circuit for operating the refrigeration device,
A compressor motor (CM) is connected to each of the R, S, and T phases of the three-phase 200V power supply via a contact (52Ca) of a compressor electromagnetic contactor (52C), which will be described later. An operation switch (SW) is connected to the S phase, and a duty cycle timer (T) is connected between both phases of R9S. This D timer (T) is, for example, a 30-minute cycle timer, which closes its contact (Ta) for 25 minutes from the start of driving, and closes its contact (Ta) for the remaining 5 minutes.
It is a mechanism that resets to the initial state after 5 minutes have passed. Incidentally, the length of both the closing time and the interval time of the contact point (Ta) can be arbitrarily changed depending on the set temperature of the storage chamber (9) to be controlled. (TI) is the storage room (
9) A temperature switch such as a thermos cloth for controlling the temperature constitutes a series circuit with the contact (Ta) and the relay (X), and is connected in parallel to the above-mentioned timer (T). This temperature switch (TI) is for example -6℃ to +5℃
It is a mechanism that opens and closes with a differential of ±0.5℃ in the range of ℃, but due to the characteristics of the temperature switch (TI), it cannot immediately follow changes in cold air temperature.
Even if the set temperature is -3°C (lower limit set temperature -3.5°C, upper limit set temperature -2.5°C), it actually opens at -4°C, -
The closing operation is performed at 1°C and the storage chamber (9) is controlled to an average temperature of approximately -3°C. (52C) is the compressor motor (CM
), which constitutes a series circuit with both the high-voltage and low-voltage switches (631) (63L) of the refrigeration system, and is connected in parallel to the above-described timer (T).
(ST)は霜取用(以下S用という)タイマで、第1乃
至第4各常開接点(STa+)(STa、)(STa、
)(STa、)と、第1.第2両市閉接点(STb I
) (STb * )とを備えている。このS用タイマ
(ST)は例えば6時間タイマからなるもので、駆動開
始から2時間45分経過すると、15分間第1常閉接点
(STb、)を開、第1、第3内需間接点(STa r
) (STa s )を閉とする第1出力を出し、駆
動開始から5時間45分経過すると、15分間第2常閉
接点(STb、)を開、第2.第4各常開接点(STa
=)(STa、)を閉とする第2出力を出し、6時間経
過すると初期状態にリセットされ、以降同様に第1.第
2両出力を出す機構となっている。前記第1電磁弁(4
6)は前記S用タイマ(ST)の第1常閉接点(srb
+)及び前記リレー(X)の常閉接点(Xa)と直列回
路を構成しており、又前記第2電磁弁(47)は前記S
用タイマ(ST)の第2常閉接点(STh、)と直列接
続されると共に、前記第1常閉接点(STb、)及び第
1電磁弁(46)に対して並列接続されている。又前記
第3電磁弁(48)は前記リレー(X)の常閉接点(X
b)と直列接続されている。この常閉接点(Xb)には
前記S用タイマ(ST)の第3.第4両市間接点(ST
a s ) (STa = )が並列接続されている。(ST) is a timer for defrosting (hereinafter referred to as S use), and the first to fourth normally open contacts (STa+) (STa, ) (STa,
) (STa,) and the first. 2nd both side closing contact (STb I
) (STb*). This S timer (ST) is composed of, for example, a 6-hour timer, and when 2 hours and 45 minutes have passed from the start of operation, it opens the first normally closed contact (STb,) for 15 minutes, and the first and third domestic contact points (STb, ) are opened for 15 minutes. STa r
) (STa s ) is output, and when 5 hours and 45 minutes have elapsed from the start of driving, the second normally closed contact (STb, ) is opened for 15 minutes, and the second normally closed contact (STb, ) is closed. 4th each normally open contact (STa
=) (STa, ) is output to close the second output, and when 6 hours have elapsed, it is reset to the initial state, and from then on, the first output. It is a mechanism that outputs the second output. The first solenoid valve (4
6) is the first normally closed contact (srb) of the S timer (ST).
+) and the normally closed contact (Xa) of the relay (X) constitute a series circuit, and the second solenoid valve (47)
It is connected in series with the second normally closed contact (STh, ) of the timer (ST), and in parallel with the first normally closed contact (STb, ) and the first solenoid valve (46). Further, the third solenoid valve (48) is connected to the normally closed contact (X) of the relay (X).
b) are connected in series. This normally closed contact (Xb) is connected to the third point of the S timer (ST). The 4th intercity point (ST
a s ) (STa = ) are connected in parallel.
又、前記第1電気ヒータ(16)は前記S用タイマ(S
T)の第1常間接点(STa I)及び第1蒸発器(1
4)の温度乃至はこの蒸発器(14)を通過した空気の
温度に基づいて開閉される第1高温復帰サーモスイツチ
CDI’l)と直列接続され、又前記第2電気ヒータ(
17)は前記S用タイマ(ST)の第2常間接点(ST
a*)及び第2蒸発器(15)の温度乃至はこの蒸発器
を通過した空気の温度に基づいて開閉される第2高温復
帰サーモスイツチ(DTx)と直列接続されている。前
記第1.第2両高温復帰サーモスイッチ(DT、)(o
’rz)は5℃以上で開となって第1.第2両電気ヒー
タ(16)(17)を遮断状態とし、又5°C未満で閉
となって第1.第2両電気ヒータ(16)(17)を通
電可能状態となすものである。尚、前記第1、第2両送
風ファン(18)(20)は運転スイッチ(S賢)の投
入に伴ない連続運転されるように接続されている。Further, the first electric heater (16) is connected to the S timer (S
T)'s first regular contact point (STa I) and the first evaporator (1
4) or the temperature of the air that has passed through the evaporator (14).
17) is the second constant contact point (ST) of the S timer (ST).
a*) and a second high temperature return thermoswitch (DTx) which is opened and closed based on the temperature of the second evaporator (15) or the temperature of the air that has passed through this evaporator. Said 1st. 2nd high temperature return thermo switch (DT, ) (o
'rz) becomes open at 5°C or higher and becomes the first. Both the second electric heaters (16) and (17) are cut off, and the first and second electric heaters are closed when the temperature is lower than 5°C. Both second electric heaters (16) and (17) are enabled to be energized. Incidentally, both the first and second blower fans (18) and (20) are connected to be operated continuously when the operation switch (S-ken) is turned on.
次に第1図乃至第4図を参照して低温ショーケース(1
)の運転について説明する。Next, referring to Figures 1 to 4, the low temperature showcase (1
) operation will be explained.
運転スイッチ<SW>を閉じると、D用タイマ(T)及
びS用タイマ(Sl’)が駆動されることに併わせ、電
磁接触器(52C)が励磁され、更に第1.第2両送風
ファン(18)(20)が運転きれる。前記電磁接触器
(52C)の励磁に伴ない接点(52Ca)が閉じて圧
縮機モータ(CM)が駆動されて圧縮機(41)が運転
され、冷媒循環が開始される。又、前記Dタイマ(T)
への通電と同時に接点(Ta)が閉じ、この接点(Ta
)及び温度スイッチ(TI)を通してリレー(X)が励
磁されて常閉接点(Xa)が閉じると共に、常閉接点(
Xb)が開き、第1.第2両電磁弁(46)(47)は
第1゜第2両電磁弁点(srb t > (srb t
)及び常閉接点(Xa)を通して通電開放されると共
に、第3電磁弁(48)は非通電となって閉鎖される。When the operation switch <SW> is closed, the D timer (T) and the S timer (Sl') are driven, and at the same time, the electromagnetic contactor (52C) is excited, and the first... Both the second blower fans (18) and (20) are now fully operational. As the electromagnetic contactor (52C) is energized, the contact (52Ca) closes, the compressor motor (CM) is driven, the compressor (41) is operated, and refrigerant circulation is started. Also, the D timer (T)
The contact (Ta) closes at the same time as the current is applied to the contact (Ta).
) and temperature switch (TI), the relay (X) is energized to close the normally closed contact (Xa), and the normally closed contact (
Xb) opens and the first. The second two solenoid valves (46) and (47) have the first and second solenoid valve points (srb t > (srb t
) and the normally closed contact (Xa), and the third solenoid valve (48) is de-energized and closed.
前記第1.第2両電磁弁(46)(47)の開放に伴な
い第1.第2両蒸発器(14)(15)の冷却運転即ち
第1モードが開始され、第1.第2両膨張弁(49)(
50)を夫々通して第1゜第2両蒸発器(14)(15
)に減圧液冷媒が供給されて内層(6)を強制循環され
ている冷気流と熱交換される。この熱交換を繰り返すこ
とにより冷気流の温度は徐々に下がり、この冷気流によ
り第3図に示す如く開口(2)に形成されるエアーカー
テン(CA)も冷たくなる。尚、第3蒸発器(19)に
は減圧液冷媒が供給されていないので、外層(7)を強
制循環されている保護気流は、前記エアーカーテン(C
A)の外側にガードエアーカーテン(GA)として形成
されたときに前記冷気流の影響により若干温度を引き下
げられることになる。前記第1.第2両蒸発器(14)
(15)の冷却運転中、冷気温度が温度スイッチ(TH
)の下限設定値に達して温度スイッチ(TH)が開とな
るサーモオフ時間のとき、又はD用タイマ(T)のデユ
ーティオフ時間となって接点(Ta)が開となった第2
モードのときには、リレー(X)が非励磁となって常閉
接点(Xa)が開、常閉接点(Xb)が閑となり、この
開閉動作に伴ない第1.第2両電磁弁(46)(47)
が非通電となって共に閉鎖される一方、第3電磁弁(4
8)は常閉接点(Xb)を通して通電開放される。前記
第1.第2両電磁弁(46)(47)の閉鎖に伴ない第
1.第2両蒸発器(14)(15)への減圧液冷媒の供
給が中断され、代わりに第3蒸発器(19)に減圧液冷
媒が供給されて外層(7)を強制循環されている保護気
流と熱交換される。この熱交換をサーモオフ時間又はデ
ユーティオフ時間の間、繰り返すことにより保護気流の
温度は徐々に下がり、この保護気流でもって形成される
ガードエアーカーテン(GA)も冷たくなり、冷気流に
よるエアーカーテン(CA)の温度に近づくことになる
。Said 1st. As both the second solenoid valves (46) and (47) open, the first solenoid valve (46) and (47) open. The cooling operation, that is, the first mode, of both the second evaporators (14) and (15) is started, and the first mode. Second double expansion valve (49) (
50) to the first and second evaporators (14) and (15), respectively.
) is supplied with reduced pressure liquid refrigerant and exchanges heat with the cold air flow that is forcedly circulated through the inner layer (6). By repeating this heat exchange, the temperature of the cold air stream gradually decreases, and the air curtain (CA) formed in the opening (2) also becomes cold due to this cold air stream, as shown in FIG. Incidentally, since the reduced pressure liquid refrigerant is not supplied to the third evaporator (19), the protective air flow forced to circulate through the outer layer (7) is not supplied to the third evaporator (19).
When a guard air curtain (GA) is formed outside of A), the temperature will be lowered slightly due to the influence of the cold air flow. Said 1st. Second double evaporator (14)
(15) During the cooling operation, the cold air temperature changes to the temperature switch (TH).
) is reached and the temperature switch (TH) is opened during the thermo-off time, or when the duty-off time of the D timer (T) is reached and the contact (Ta) is opened.
In mode, the relay (X) is de-energized, the normally closed contact (Xa) is open, and the normally closed contact (Xb) is idle, and along with this opening/closing operation, the first. Second solenoid valve (46) (47)
are de-energized and closed together, while the third solenoid valve (4
8) is energized and opened through the normally closed contact (Xb). Said 1st. As both the second solenoid valves (46) and (47) close, the first solenoid valve (46) and (47) close. Protection in which the supply of reduced pressure liquid refrigerant to both second evaporators (14) and (15) is interrupted, and reduced pressure liquid refrigerant is instead supplied to the third evaporator (19) and forcedly circulated through the outer layer (7). Heat is exchanged with the airflow. By repeating this heat exchange during the thermo-off time or duty-off time, the temperature of the protective air stream gradually decreases, and the guard air curtain (GA) formed by this protective air stream also becomes cold, resulting in an air curtain (CA) formed by the cold air stream. The temperature will approach .
この間、第1.第2両蒸発器(14)(15)は第1送
風フアン(18)によって強制循環される冷気流でもっ
てオフサイクル除霜される。尚、第3蒸発器(19)に
伸管した霜はサーモオン時間及びデユーティオン時間に
保護気流によってオフサイクル除霜される。そして冷気
温度が温度スイッチ(TI)の上限設定値に達して温度
スイッチ(TH)が閉となり、且つデユーティオン時間
となって接点(Ta)が閉となったときには、リレー(
X)が励磁され常閉接点(Xa)が閉、常閉接点(Xb
)が開となって第1.第2両電磁弁(46)(47)が
通電開放される一方、第3電磁弁(48)が非通電閉鎖
され、上述した第1.第2両蒸発器(14)(15)に
よる冷却運転即ち第1モードに復帰する。尚、この冷却
運転中にも上述した第2モード即ちサーモオフ時間又は
デユーティオフ時間が数回とられる。During this time, the 1st. Both second evaporators (14, 15) are off-cycle defrosted with a forced circulation of cold air by the first blower fan (18). Note that the frost expanded into the third evaporator (19) is defrosted in the off-cycle by the protective air flow during the thermo-on time and the duty-on time. When the cold air temperature reaches the upper limit set value of the temperature switch (TI), the temperature switch (TH) is closed, and the duty-on time has come and the contact (Ta) is closed, the relay (
X) is energized, the normally closed contact (Xa) is closed, and the normally closed contact (Xb
) becomes open and the first. Both the second solenoid valves (46) and (47) are energized and opened, while the third solenoid valve (48) is de-energized and closed. The cooling operation using the second evaporators (14) and (15) returns to the first mode. It should be noted that during this cooling operation, the above-mentioned second mode, that is, the thermo-off time or duty-off time is taken several times.
冷却運転が進行して第1.第2両蒸発器(14)(15
)の冷却運転の開始、即ち前記S用タイマ(ST)の駆
動から2時間45分経過すると、S用タイマ(5丁)か
ら15分間第1.第3内需間接点(STa 、 ) (
STa、)を閉、第1常閉接点(sTb+)を開とする
第1出力が出され、第1電気ヒータ(16)が通電され
ると共に、第3常間接点(STas)を通して第3電磁
弁(48)が通電開放される反面、第1電磁弁(46)
が非通電閉鎖となって第1蒸発器(14)への減圧液冷
媒の供給が中断され、第1蒸発器(14)の除霜運転即
ち第3モードとなる。この除霜運転の間、D用タイマ(
I’)の動作に関係なく第3電磁弁(48)が開放され
て第3蒸発器(19)が冷却運転されると共に、引き続
き第2蒸発器(15)も冷却運転され、外層(7)を強
制循環されている保護気流と、内層(6)の外側路(2
9)を通過中の冷気流とが冷却され、又、第1蒸発器(
14)の配置された内層(6)の内側路(28)を通過
中の冷気流は第1電気ヒータ(16)の加熱によって徐
々に昇温する。即ち第1蒸発器(14)の除霜運転に伴
ない、第2.第3両蒸発器(15)(19)が冷却運転
されることになり、この間、D用タイマ(T)の開動作
は有効に作用しない。As the cooling operation progresses, the first Both second evaporators (14) (15
), that is, after 2 hours and 45 minutes have elapsed since the S timer (ST) was started, the first 1. Third domestic demand contact point (STa, ) (
STa, ) is closed and the first normally closed contact (sTb+) is opened.The first output is output, which energizes the first electric heater (16) and connects the third electromagnetic through the third normal contact (STas). While the valve (48) is energized and opened, the first solenoid valve (46)
is de-energized and the supply of reduced pressure liquid refrigerant to the first evaporator (14) is interrupted, and the first evaporator (14) enters a defrosting operation, that is, a third mode. During this defrosting operation, the D timer (
Regardless of the operation of I'), the third solenoid valve (48) is opened and the third evaporator (19) is operated for cooling, and the second evaporator (15) is also operated for cooling, and the outer layer (7) Protective airflow is forced to circulate through the outer channel (2) of the inner layer (6).
The cold air stream passing through the first evaporator (9) is cooled and the first evaporator (
The cold air flow passing through the inner channel (28) of the inner layer (6) in which the inner layer (6) is arranged is gradually heated by heating by the first electric heater (16). That is, with the defrosting operation of the first evaporator (14), the second. Both the third evaporators (15) and (19) are operated for cooling, and during this period, the opening operation of the D timer (T) does not work effectively.
この第1蒸発器(14)の除霜運転が進行して第1蒸発
器(14)を通過した冷気流の温度が5°Cに達すると
、第1高温復帰サーモスイツチ(DTs)が開となって
第1電気ヒータ(16)が非通電となり、この後の除霜
終了時刻迄はドレンを排出するための水切り時間となる
。設定された除霜時間が過ぎると、第1蒸発器(14)
に減圧液冷媒が供給され、第1、第2両蒸発器(14)
<15>双方の冷却運転即ち第1モードとなる一方で、
第3蒸発器(19)は減圧液冷媒の供給を中断されるこ
とになり、第3蒸発器(19)に付着した霜はサーモオ
ン及びデユーティオン時間中に保護気流によってオフサ
イクル除霜されることになる。尚、この冷却運転中にも
上述した第2モード即ちサーモオフ又はデユーティオフ
時間が数回とられることになる。When the defrosting operation of the first evaporator (14) progresses and the temperature of the cold air flow passing through the first evaporator (14) reaches 5°C, the first high temperature return thermoswitch (DTs) is opened. As a result, the first electric heater (16) is de-energized, and the time until the end of defrosting is a draining time for draining the condensate. After the set defrosting time has passed, the first evaporator (14)
A reduced pressure liquid refrigerant is supplied to both the first and second evaporators (14).
<15> While both cooling operations are in the first mode,
The supply of vacuum liquid refrigerant to the third evaporator (19) will be interrupted, and the frost adhering to the third evaporator (19) will be defrosted in the off-cycle by the protective air flow during the thermo-on and duty-on periods. Become. It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.
更に冷却運転が進行して第1.第2両蒸発器(14)(
15)の冷却運転の開始、即ち前記S用タイマ(5丁)
の駆動から5時間45分経過すると、S用タイ?(ST
)から15分間第2.第4両市間接点(SIa、)<S
la、)を閉、第2常閉接点(SIbz)を開とする第
2出力が出され、第2電気ヒータ(17)が通電される
と共に、第4常開接点(STa a )を通して第3電
磁弁(48)が通電開放される反面、第2電磁弁(47
)が非通電閉鎖となって第2蒸発器(15)への減圧液
冷媒の供給が中断され、第2蒸発器(15)の除霜運転
即ち第4モードとなる。この除霜運転の間、D用タイマ
(T)の動作に関係なく第3電磁弁(48)が開放され
て第3蒸発器(19)が冷却運転されると共に、引き続
き第1蒸発器(14)も冷却運転され、外層(7)を強
制循環されている保護気流と、内層(6)の内側路(2
8)を通過中の冷気流とが冷却され、又、第2蒸発器(
15)の配置された内層(6)の外側路(29)を通過
中の冷気流は第2電気ヒータ(17)の加熱によって徐
々に昇温する。即ち第2蒸発器(15)の除霜運転に伴
ない、第1.第3両蒸発器(14)(19)が冷却運転
きれることになり、この間、D用タイマ(T)の開動作
は有効に作用しない。The cooling operation further progresses to the first stage. Both second evaporators (14) (
15) Start of the cooling operation, that is, the S timer (5 units)
After 5 hours and 45 minutes have passed since the drive of the S tie? (ST
) for 15 minutes. 4th intercity point (SIa,) <S
A second output is output that closes the terminal (la, ) and opens the second normally closed contact (SIbz), energizes the second electric heater (17), and connects the third normally closed contact (STa a ) to While the solenoid valve (48) is energized and opened, the second solenoid valve (47)
) is de-energized and the supply of the reduced pressure liquid refrigerant to the second evaporator (15) is interrupted, and the second evaporator (15) enters the defrosting operation, that is, the fourth mode. During this defrosting operation, the third solenoid valve (48) is opened regardless of the operation of the D timer (T), the third evaporator (19) is operated for cooling, and the first evaporator (14) is continuously operated. ) is also in cooling operation, with protective air being forcedly circulated through the outer layer (7) and the inner passage (2) of the inner layer (6).
The cold air stream passing through the second evaporator (
The cold air flow passing through the outer channel (29) of the inner layer (6) in which the structure (15) is arranged is gradually heated by the second electric heater (17). That is, with the defrosting operation of the second evaporator (15), the first. Both the third evaporators (14) and (19) have completed their cooling operation, and during this time, the opening operation of the D timer (T) does not work effectively.
この第2蒸発器(15)の除霜運転が進行して第2蒸発
器(15)を通過した冷気流の温度が5°Cに達すると
、第2高温復帰サーモスイツチ(D丁、)が開となって
第2電気ヒータ(17)が非通電となり、この後の除霜
終了時刻迄はドレンを排出するための水切り時間となる
。設定された除霜時間が過ぎると、第2蒸発器(15)
に減圧液冷媒が供給され、第1、第2両蒸発器(14)
(15)双方の冷却運転即ち第1モードとなる一方で、
第3蒸発器(19)は減圧液冷媒の供給を中断きれるこ
とになり、第3蒸発器(19)に付着した霜はサーモオ
ン及びデユーティオン時間中に保護気流によってオフサ
イクル除霜されることになる。尚、この冷却運転中にも
上述した第2モード即ちサーモオフ又はデユーティオフ
時間が数回とられることになる。When the defrosting operation of the second evaporator (15) progresses and the temperature of the cold air flow passing through the second evaporator (15) reaches 5°C, the second high temperature return thermoswitch (D) is activated. When the second electric heater (17) is opened, the second electric heater (17) is de-energized, and the time until the end of defrosting is a draining time for draining the condensate. After the set defrosting time has passed, the second evaporator (15)
A reduced pressure liquid refrigerant is supplied to both the first and second evaporators (14).
(15) While both cooling operations are in the first mode,
The supply of vacuum liquid refrigerant to the third evaporator (19) can be interrupted, and the frost adhering to the third evaporator (19) will be defrosted in the off-cycle by the protective airflow during the thermo-on and duty-on periods. . It should be noted that during this cooling operation, the above-mentioned second mode, that is, thermo-off or duty-off time will be taken several times.
第2蒸発器(15)の除霜時間が終了すると、S用タイ
マ(ST)が初期状態にリセットされ、上述した第1モ
ード、第3モード、第1モード、第4モードの繰り返し
が行なわれ、第1モードの中で第2モードが行なわれ、
第5図に示すタイムチャートとなる。When the defrosting time of the second evaporator (15) ends, the S timer (ST) is reset to the initial state, and the above-mentioned first mode, third mode, first mode, and fourth mode are repeated. , the second mode is performed within the first mode,
The time chart is shown in FIG.
前記低温ショーケース(1)の周囲温度27°C1周囲
湿度70%の条件下で、第1.第2両蒸発器(14)(
15)の冷媒蒸発温度を一13°C1第3蒸発器(19
)の冷媒蒸発温度を一8°C5貯蔵室(9)の設定温度
を一3°C(上限設定温度−2,5°C1下限設定温度
−3,5°C)として運転すると、第1モードでは各蒸
発器(14)(15)(19)の蒸発温度は第6図に示
す特性となる。即ち、第1.第2両蒸発器(14)(1
5)は減圧液冷媒が供給されているサーモオン及びデユ
ーティオン時間には−136C迄引き下げられる反面、
減圧液冷媒の供給が中断されるサーモオフ又はデユーテ
ィオン時間には一2℃迄上昇する。一方、第3蒸発器(
19)は減圧液冷媒が供給されているサーモオフ及びデ
ユーティオフ時間には一8°C迄引き下げられる反面、
減圧液冷媒の供給が中断されるサーモオン及びデユーテ
ィオン時間には+1.5℃迄上昇する。Under the conditions of the ambient temperature of the low temperature showcase (1) of 27° C. and the ambient humidity of 70%, the first. Both second evaporators (14) (
15) refrigerant evaporation temperature to -13°C1 third evaporator (19
) When operating with the refrigerant evaporation temperature set at -8°C, and the set temperature of the storage chamber (9) set at -3°C (upper limit set temperature -2,5°C, lower limit set temperature -3,5°C), the first mode Then, the evaporation temperatures of each evaporator (14), (15), and (19) have the characteristics shown in FIG. That is, 1st. Second double evaporator (14) (1
5) is lowered to -136C during thermo-on and duty-on times when reduced pressure liquid refrigerant is supplied, but on the other hand,
During the thermo-off or duty-on time when the supply of vacuum liquid refrigerant is interrupted, the temperature rises to -12°C. On the other hand, the third evaporator (
19) is lowered to 18°C during thermo-off and duty-off times when reduced pressure liquid refrigerant is supplied;
During the thermo-on and duty-on times when the supply of vacuum liquid refrigerant is interrupted, the temperature rises to +1.5°C.
前記第3蒸発器(19)は第1.第2両蒸発器(14)
(15)に比べ蒸発温度を高く設定されることに併わせ
、第3蒸発器(19)への減圧液冷媒の供給時間が第1
.第2両蒸発器(14)(15)への減圧液冷媒の供給
時間よりも短かくなっている関係上、第1.第2両蒸発
器(14)(15)の蒸発温度よりも第3蒸発器(19
)の蒸発温度が低くなることはないが、仮に第3蒸発器
(19)の蒸発温度が第1.第2両蒸発器(14)(1
5)の蒸発温度よりも低くなったとしても第3蒸発器(
19)が外層(7)に配置されており、外層(7)を通
過する保護気流の温度を引き下げる点から見れば好まし
い状態となる。The third evaporator (19) is the first evaporator (19). Second double evaporator (14)
In addition to setting the evaporation temperature higher than in (15), the supply time of reduced pressure liquid refrigerant to the third evaporator (19) is
.. Since the supply time of the reduced pressure liquid refrigerant to both the second evaporators (14) and (15) is shorter than the supply time of the reduced pressure liquid refrigerant to the second evaporators (14) and (15), the first. The evaporation temperature of the third evaporator (19) is higher than that of the second evaporators (14) and (15).
) will not become lower, but if the evaporation temperature of the third evaporator (19) is lower than that of the first evaporator (19). Second double evaporator (14) (1
5) Even if it becomes lower than the evaporation temperature of the third evaporator (
19) is arranged in the outer layer (7), which is a favorable situation from the point of view of lowering the temperature of the protective air flow passing through the outer layer (7).
第7図は前述した周囲温度27°C1周囲湿度70%の
条件下における第3モード、即ち第1蒸発器(14)の
除霜時の空気温度特性を示し、(A)は貯蔵室(9)の
空気温度、(B)は第1蒸発器(14)を通過直後の空
気温度、(C)は第2蒸発器(15)を通過直後の空気
温度、(D)は第3蒸発器(19)を通過して開口(2
)に吹き出された空気温度である。図によれば空気温度
(A)及び(B)は第3モードの開始前には第1.第2
両蒸発器(14)(15)が冷却作用をなす第1モード
であるため一5℃であるが、第3モードの開始に伴ない
第1電気ヒーク(16)の加熱によって空気温度(A)
のみが急激に上昇するが、内側路(28)を通過するこ
とにより第1電気ヒータ(16)で加熱され温度上昇し
た空気と、外側路(29)を通過することにより第2蒸
発器(15)で冷却され温度低下した空気とが内層(6
)内で合流する関係上、エアーカーテン(CA)として
開口(2)に吹き出される冷気流の温度は第3モードの
初期から中期にかけて0°C以下に抑制されるので空気
温度(A)も0°C以下に抑制される。又、第3モード
の中期から後期にかけて第3蒸発器(19)を通過した
空気が0℃以下の冷気流として開口(2)に吹き出きれ
てエアーカーテン(CA)の温度を引き下げるガードエ
アーカーテン(GA)として作用する関係上、空気温度
(A)の上昇を0°Cを跨がる温度−1°C〜1°Cに
抑制できる。Figure 7 shows the air temperature characteristics during defrosting of the first evaporator (14) in the third mode under the above-mentioned conditions of ambient temperature 27°C and ambient humidity 70%, and (A) shows the air temperature characteristics during defrosting of the first evaporator (14). ), (B) is the air temperature immediately after passing through the first evaporator (14), (C) is the air temperature immediately after passing through the second evaporator (15), (D) is the air temperature in the third evaporator ( 19) through the opening (2
) is the temperature of the air blown out. According to the figure, the air temperatures (A) and (B) are the same as the first mode before starting the third mode. Second
Since both evaporators (14) and (15) are in the first mode with cooling effect, the temperature is -5°C, but with the start of the third mode, the air temperature (A) is increased by heating by the first electric heater (16).
However, by passing through the inner passage (28), the air heated by the first electric heater (16) and having a raised temperature, and by passing through the outer passage (29), the air is heated by the second evaporator (15). ) and the air whose temperature has decreased by being cooled in the inner layer (6
), the temperature of the cold air flow blown out to the opening (2) as an air curtain (CA) is suppressed to below 0°C from the beginning to the middle of the third mode, so the air temperature (A) is also The temperature is kept below 0°C. In addition, from the middle to the late stage of the third mode, the air that has passed through the third evaporator (19) is blown out into the opening (2) as a cold air flow of 0°C or less, and a guard air curtain (CA) lowers the temperature of the air curtain (CA). GA), the increase in air temperature (A) can be suppressed to a temperature of -1°C to 1°C, which is over 0°C.
即ち、第1電気ヒータ(16)の潜熱は第3モードの初
期から中期にかけて第1蒸発器(14)の霜を解かずた
めに多く費やされる反面、内側路(28)を通過する空
気を加熱するための量は僅かであることに加え、霜が流
路抵抗となるために内側路(28)を通過する空気の量
は外側路(29)を通過する空気の量に比べて少ない関
係上、内側路(28)を通過した空気と、外側路(29
)を通過した空気とを内M(6)で合流させることによ
り、0℃以下の冷気流とできるので、空気温度(A)を
0°C以下に抑制できる。又、第1電気ヒータ(16)
の潜熱は第3モードの中期から後期にかけて第1蒸発器
(14)の霜を解かず量よりも第1蒸発器(14)を通
過する空気を暖める量の方が徐々に多くなることに併わ
せ、霜が徐々に解けることに伴ない内側路(28)を通
過する空気の量が徐々に増す関係上、外側路(29)を
通過した空気を合流させることにより、内層(6)を通
電する冷気流の温度の上昇を初期から中期程に抑制でき
ないが、外層(7)から開口(2)に吹き出されガード
エアーカーテン(GA)を形成する保護気流が0℃以下
であるために開口(2)においてエアーカーテン(CA
)を冷却できるためにエアーカーテン(CA)で冷却さ
れる貯蔵室(9)の空気温度(A)の上昇を抑制するこ
とができる。That is, while the latent heat of the first electric heater (16) is largely used to defrost the first evaporator (14) from the beginning to the middle of the third mode, it also heats the air passing through the inner passage (28). In addition, the amount of air passing through the inner passage (28) is small compared to the amount of air passing through the outer passage (29) because frost acts as a flow path resistance. , the air passing through the inner passage (28) and the outer passage (29).
) by merging it with the air that has passed through M(6), a cold air flow of 0°C or lower can be created, so the air temperature (A) can be suppressed to 0°C or lower. Moreover, the first electric heater (16)
The latent heat of the 3rd mode is due to the fact that the amount of warming the air passing through the first evaporator (14) gradually becomes larger than the amount of defrosting the first evaporator (14) from the middle to the late stage of the third mode. As the frost gradually melts, the amount of air passing through the inner layer (28) gradually increases, so the inner layer (6) is energized by merging the air that has passed through the outer layer (29). Although it is not possible to suppress the rise in temperature of the cold air flow from the initial to middle stage, the temperature of the protective air blown out from the outer layer (7) to the opening (2) and forming the guard air curtain (GA) is below 0°C. In 2) air curtain (CA
), it is possible to suppress the rise in air temperature (A) in the storage room (9) cooled by the air curtain (CA).
又、内層(6)内に内側路(28)と外側路(29)と
が夫々独立して形成され、この内側路、外側路を通過し
た空気の合流区域の上流側に第1.第2両高温復帰サー
モスイッチ(DTI)(D’I’、)が設けられている
関係上、第3モードの後期において第1高温復帰サーモ
スイツチ(o’r+)が5°Cに達して開となり第1電
気ヒータ(16)の通電を遮断した時には、内層(6)
から吹き出される冷気流の温度は第1高温復帰サーモス
イツチ(DTI)の温度より低く、従って第1モードに
復帰した場合には、貯蔵室(9)の温度を設定温度に引
き下げる迄の時間が早くなる。Further, an inner passage (28) and an outer passage (29) are formed independently in the inner layer (6), and a first passageway (28) and an outer passage (29) are formed on the upstream side of the confluence area of the air that has passed through the inner passage and the outer passage. Since both second high temperature return thermoswitches (DTI) (D'I', ) are provided, the first high temperature return thermoswitch (o'r+) reaches 5°C and opens in the latter half of the third mode. Therefore, when the first electric heater (16) is de-energized, the inner layer (6)
The temperature of the cold air flow blown out from the DTI is lower than the temperature of the first high-temperature return thermoswitch (DTI), so when the first mode is returned, it takes a short time to lower the temperature of the storage chamber (9) to the set temperature. It gets faster.
尚、第2蒸発器(15)が除霜される第4モードの際も
第7図で示す温度特性と同様の特性が得られる。Note that the same temperature characteristics as shown in FIG. 7 can be obtained also in the fourth mode in which the second evaporator (15) is defrosted.
上述した本発明では、第1.第2両蒸発器(14)(1
5)に減圧液冷媒を供給して2個の蒸発器(14)(1
5)が冷却作用しているときと、第1蒸発器(14)が
除霜作用、第2.第3両蒸発器(15)(19)が冷却
作用をしているとき、及び第2蒸発器(15)が除霜作
用、第1.第3両蒸発器(14)(19)が冷却作用を
しているときとは、共に2個の蒸発器に常に減圧液冷媒
が供給されている関係上、冷凍装置における減圧液冷媒
の供給量が略一定となり、その結果、1個の蒸発器が除
霜作用、2個の蒸発器が冷却作用しているときにおいて
も冷却作用中の蒸発器に極端な冷媒蒸発温度の低下及び
この冷媒蒸発温度の低下が起因する着霜の大幅な増加を
未然に回避できる。In the present invention described above, 1. Second double evaporator (14) (1
5) to supply vacuum liquid refrigerant to the two evaporators (14) and (1).
5) has a cooling effect, the first evaporator (14) has a defrosting effect, and the second evaporator (14) has a defrosting effect. When both the third evaporators (15) and (19) are performing the cooling function, and when the second evaporator (15) is performing the defrosting function, the first evaporator (15) is performing the defrosting function. When both the third evaporators (14) and (19) are performing a cooling action, the reduced pressure liquid refrigerant is constantly supplied to both evaporators, so the supply amount of the reduced pressure liquid refrigerant in the refrigeration system is becomes approximately constant, and as a result, even when one evaporator is defrosting and two evaporators are cooling, there is an extreme drop in refrigerant evaporation temperature and this refrigerant evaporation occurs in the evaporator that is cooling. A significant increase in frost formation caused by a drop in temperature can be avoided.
(ト)発明の効果
上述した本発明によれば、3個の蒸発器を備えた冷凍装
置において、第1.第2両蒸発器に減圧液冷媒を供給し
て2個の蒸発器が冷却作用しているときと、第1蒸発器
が除霜作用、第2.第3両蒸発器が冷却作用をしている
とき、及び第2蒸発器が除霜作用、第1.第3両蒸発器
が冷却作用をしているときとは、共に2個の蒸発器に常
に減圧液冷媒が供給されている関係上、冷凍装置におけ
る減圧液冷媒の供給量が略一定となり、その結果、1個
の蒸発器が除霜作用、2個の蒸発器が冷却作用している
ときにおいても冷却作用中の蒸発器に極端な冷媒蒸発温
度の低下及びこの冷媒蒸発温度の低下が起因する着霜の
大幅な増加を未然に回避でき、冷凍装置の除霜回数を軽
減できる。(G) Effects of the Invention According to the present invention described above, in the refrigeration system equipped with three evaporators, the first evaporator. When both the second evaporators are supplied with reduced pressure liquid refrigerant and the two evaporators are performing a cooling action, the first evaporator is performing a defrosting action, and the second evaporator is performing a defrosting action. When both the third evaporators are performing a cooling action, the second evaporator is performing a defrosting action, and the first evaporator is performing a defrosting action. When both the third evaporators are performing a cooling action, since the reduced pressure liquid refrigerant is always supplied to both evaporators, the supply amount of the reduced pressure liquid refrigerant to the refrigeration system is approximately constant. As a result, even when one evaporator is performing a defrosting function and two evaporators are performing a cooling function, an extreme decrease in the refrigerant evaporation temperature occurs in the evaporator that is performing the cooling function, and this decrease in refrigerant evaporation temperature is caused. A significant increase in frost formation can be avoided, and the number of times the refrigeration equipment must be defrosted can be reduced.
第1図乃至第7図は本発明冷凍装置にかへる実施例を示
し、第1図は冷媒回路図、第2図は他の実施例を示す冷
媒回路図、第3図は冷凍装置を具備した低温ショーケー
スの縦断側面図、第4図は電気回路図、第5図は運転タ
イムチャート、第6図は冷媒蒸発温度を示す特性図、第
7図は1個の蒸発器を除霜、2個の蒸発器を冷却とした
ときにおける低温ショーケースの空気温度を示す特性図
、第8図は第6図に対応する従来技術の特性図である。
(14)・・・第1蒸発器、 (15)・・・第2蒸発
器、 (19)・・・第3蒸発器。Figures 1 to 7 show embodiments of the refrigeration system of the present invention, Figure 1 is a refrigerant circuit diagram, Figure 2 is a refrigerant circuit diagram showing another embodiment, and Figure 3 is a diagram of the refrigeration system. A vertical side view of the low-temperature showcase equipped, Fig. 4 is an electric circuit diagram, Fig. 5 is an operation time chart, Fig. 6 is a characteristic diagram showing the refrigerant evaporation temperature, and Fig. 7 is a defrosting diagram of one evaporator. , a characteristic diagram showing the air temperature of the low-temperature showcase when two evaporators are cooled, and FIG. 8 is a characteristic diagram of the prior art corresponding to FIG. 6. (14)...first evaporator, (15)...second evaporator, (19)...third evaporator.
Claims (1)
第1蒸発器が冷媒供給を停止され除霜されているときに
は、第2、第3両蒸発器が冷却作用をなし、第2蒸発器
が冷媒供給を停止され除霜されているときには第1、第
3両蒸発器が冷却作用をなす冷凍装置。1. Equipped with first to third evaporators connected in parallel to each other,
When the refrigerant supply to the first evaporator is stopped and the defrosting is being performed, both the second and third evaporators perform a cooling action, and when the refrigerant supply to the second evaporator is stopped and the defrosting is being performed, the first and third evaporators perform a cooling action. A refrigeration system in which both the third evaporator performs the cooling action.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28970787A JPH01131879A (en) | 1987-11-17 | 1987-11-17 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28970787A JPH01131879A (en) | 1987-11-17 | 1987-11-17 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01131879A true JPH01131879A (en) | 1989-05-24 |
Family
ID=17746711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28970787A Pending JPH01131879A (en) | 1987-11-17 | 1987-11-17 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01131879A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105526773A (en) * | 2014-10-21 | 2016-04-27 | 株式会社鹭宫制作所 | Control device and control method of refrigerated storage |
-
1987
- 1987-11-17 JP JP28970787A patent/JPH01131879A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105526773A (en) * | 2014-10-21 | 2016-04-27 | 株式会社鹭宫制作所 | Control device and control method of refrigerated storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3103796A (en) | Refrigeration system | |
US4474026A (en) | Refrigerating apparatus | |
JPH09505879A (en) | Cooling exchanger, control method thereof, and refrigerating apparatus incorporating the same | |
JPH02101368A (en) | Method of operating low temperature show case | |
JP2000161835A (en) | Cooling devices | |
JPH08254385A (en) | Defrosting method for refrigerated showcases | |
JPH01131879A (en) | Refrigerator | |
JPH01131880A (en) | Method of operating low-temperature showcase | |
CN213713605U (en) | Refrigeration defrosting system and refrigeration equipment | |
JPS6327629B2 (en) | ||
JP2573005B2 (en) | How to operate a low-temperature showcase | |
JPH01131876A (en) | Low-temperature showcase | |
JPH01131881A (en) | Method of operating low-temperature showcase | |
JPH01131875A (en) | Method of operating low-temperature showcase | |
JPH01131877A (en) | Method of cooling low-temperature showcase | |
JPH01131874A (en) | Low-temperature showcase | |
JP2547926B2 (en) | How to defrost a frozen / refrigerated open showcase | |
JP2005076961A (en) | Refrigeration system | |
JPH01131878A (en) | Method of operating low-temperature showcase | |
JPS62217080A (en) | Method of operating cryogenic showcase | |
JP3013296B2 (en) | Multiple showcase cooling system | |
JPH0570073B2 (en) | ||
JPS6255592B2 (en) | ||
JPS6340770Y2 (en) | ||
JPH05118707A (en) | Cold air circulation type cool case cooler |