JPH01131354A - Precise vibration isolating device - Google Patents
Precise vibration isolating deviceInfo
- Publication number
- JPH01131354A JPH01131354A JP29950787A JP29950787A JPH01131354A JP H01131354 A JPH01131354 A JP H01131354A JP 29950787 A JP29950787 A JP 29950787A JP 29950787 A JP29950787 A JP 29950787A JP H01131354 A JPH01131354 A JP H01131354A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- magnets
- active
- damper
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002955 isolation Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 5
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000013016 damping Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/03—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は精密光学機器、精密計量機器等を載置するN
密除振装置に関する。。[Detailed Description of the Invention] [Industrial Application Field] This invention provides a
Regarding a dense vibration isolator. .
[従来の技術]
従来より電子顕微禁やホログラフィ−装置等の精密機器
、あるいはLSI製造に用いられる縮小投影露光装置等
は、その使用時にきわめて微小な振動や変位が生じても
その作業に支障をきたし、・あるいは製品が不良品とな
る恐れがあり、また効率が悪くなる。[Prior Art] Conventionally, precision equipment such as electron microscopes and holography equipment, or reduction projection exposure equipment used in LSI manufacturing, do not interfere with the work even if extremely small vibrations or displacements occur during use. Otherwise, the product may become defective or the efficiency may deteriorate.
このような振動等の影響を除去するため、これら精密機
器類は、一般に除振装置上に載置し使用される。このよ
うな精密除振装置として、除振台に加わる振動を空気ば
ね、コイルばね等の振動吸収手段によって吸収減衰させ
る装R(受動除振装置)と、除振台に取付けられた振動
センサの信号に応答してカアクチュエータを作動し、除
振台に生じた振動と逆位相の振動を与え積極的に除振す
る装置(能動除振装置)があり、後者の代表的なものと
して特開昭61−224015号公報の能動振動制御装
置がある。In order to eliminate the influence of such vibrations, these precision instruments are generally placed on a vibration isolator. Such precision vibration isolators include a system R (passive vibration isolator) that absorbs and attenuates vibrations applied to the vibration isolator using vibration absorbing means such as air springs and coil springs, and a vibration sensor installed on the vibration isolator. There is a device (active vibration isolator) that operates an actuator in response to a signal and actively isolates vibrations by applying vibrations that are in the opposite phase to the vibrations generated in the vibration isolator table. There is an active vibration control device disclosed in Japanese Patent No. 61-224015.
[発明が解決しようとする問題点コ
ところで、カアクチュエータを用いた除振装置において
、第7図に示すように除振台に加えられた加振力Fを振
動センサで検知し、その出方を位相調整、増幅し、カア
クチュエータを駆動し制振力Fcを発生する場合、制振
力Fcは加振力Fに対し逆位相で且つゲインが1以下と
なるように加えられなければならないが、一般に位相及
びゲインは振動の周波数によって変化し、特に系の固有
振動数近傍では除振台の振動と逆位相で且つゲインが1
以下の割振力を付与するようにカアクチュエータを制御
することは困難であった。[Problems to be Solved by the Invention] By the way, in a vibration isolating device using an actuator, as shown in Fig. 7, the excitation force F applied to the vibration isolating table is detected by a vibration sensor, and its output is measured. When the phase is adjusted and amplified to drive the actuator to generate the damping force Fc, the damping force Fc must be applied in the opposite phase to the excitation force F and with a gain of 1 or less. In general, the phase and gain change depending on the frequency of vibration, and especially near the natural frequency of the system, the phase and gain are opposite to the vibration of the vibration isolation table and the gain is 1.
It was difficult to control the actuator to apply the following allocation force.
また、従来のカアクチュエータを用いた除振装置におい
ては、カアクチュエータ(能動制動子)として通常リニ
アモータ等の垂直力アクチュエータを用いているため、
−個の能動制動子について一方向のダンピングしか行え
ない、このため、能動制動子が除振台の運動の各自由度
毎に1個ずつ必要となり1通常6の自由度に対し最低6
個を要し、装置が大型化、複雑化していた0本発明は上
記従来の問題点を解決し、少ない能動制動子で能動的制
動を行うことができ、しかも割振力の制御が容易である
精密除振台を提供することを目的とする。In addition, in conventional vibration isolators using actuators, a vertical force actuator such as a linear motor is usually used as the actuator (active brake).
- damping can only be done in one direction for each active damper, so one active damper is required for each degree of freedom of motion of the vibration isolator;
The present invention solves the above-mentioned conventional problems, and allows active braking to be performed with a small number of active brakes, and also makes it easy to control the allocated force. The purpose is to provide a precision vibration isolation table.
[問題を解決するための手段]
このような目的を達成する本発明の精密除振装置は支持
台に受動制動子によって支持される除振台と、該除振台
の振動を検出するセンサと、該センサの出力を信号処理
し、増幅して制御信号を出力する回路部と、該制御信号
によって作動し前記振動を制御する能動制動子とから成
る精密除振装置において、前記受動制動子及び前記駆動
制動子はそれぞれ互いに反発するよう対向配置された磁
石の対から成ると共に、前記能動制動子は前記磁石の一
方が前記制御信号によって制御さ五る電磁石であること
を特徴とし、更に能動制動子として。[Means for Solving the Problem] The precision vibration isolator of the present invention that achieves the above object includes a vibration isolator supported by a passive damper on a support base, and a sensor that detects vibrations of the vibration isolator. , a precision vibration isolator comprising a circuit unit that processes and amplifies the output of the sensor and outputs a control signal, and an active damper that is activated by the control signal and controls the vibration, the passive damper and The drive brake is characterized in that each pair of magnets is arranged opposite to each other so as to repel each other, and the active brake is characterized in that one of the magnets is an electromagnet controlled by the control signal; As a child.
一方が円錐面又は角錐面を有し、他方が該円錐面又は角
錐面に対応する凹面を有する磁石の対を用い、それらの
ずれ方向にもダンピング力を付与することによって除振
台の振動を実質的に相殺することを特徴とする。By using a pair of magnets, one of which has a conical or pyramidal surface and the other of which has a concave surface corresponding to the conical or pyramidal surface, damping force is also applied in the direction of deviation of the magnets, thereby suppressing the vibration of the vibration isolating table. It is characterized by substantially canceling out each other.
[作用]
永久磁石a□、a2の対及び永久磁石biと電磁石b2
の対で荷重Wを支持する系において、微小振動を考える
とするとその固有振動数fnは次式で近似できる。[Function] Pair of permanent magnets a□ and a2, and permanent magnet bi and electromagnet b2
Considering minute vibrations in a system in which a load W is supported by a pair of , the natural frequency fn can be approximated by the following equation.
2π W
ay y
但し、μは透磁率、Sは支持面積、ATは全励磁アンペ
アターンであり、yは磁石間のギャップで、全簡単のた
めに磁石a1、a2のギャップと磁石b工、b2のギャ
ップは等しいものとする。2π W ay y However, μ is the magnetic permeability, S is the supporting area, AT is the total excitation ampere turn, and y is the gap between the magnets. For simplicity, the gap between magnets a1 and a2, the magnet b work, and b2 The gaps are assumed to be equal.
つまり、アンペアターンATを変えればバネ定数kが変
わり、固有振動数fnが変化する。In other words, if the ampere turn AT is changed, the spring constant k changes, and the natural frequency fn changes.
このような振動系は比較的高い固有振動数fnを有する
ので励磁エネルギー(アンペアターンAT)を調整する
ことにより適切なfn?iF域へもって行くことができ
る。Since such a vibration system has a relatively high natural frequency fn, appropriate fn? can be obtained by adjusting the excitation energy (ampere turn AT). You can take it to the iF area.
すなおち、安定した割振力のゲイン及び位相が得られる
ように外振の振動数と固有振動数との比を調整すること
ができる。このような振動系において外から付与された
振動を速度型のセンサで検出した場合、ダンピング力は
+90°〜−1800の間で位相vR整し、ゲインが1
未満となるよう制御信号(電流)を電磁石b8に印加す
ればよい。In other words, the ratio between the external vibration frequency and the natural frequency can be adjusted so that a stable gain and phase of the allocated force can be obtained. In such a vibration system, when the vibration applied from the outside is detected by a speed sensor, the damping force has a phase vR adjustment between +90° and -1800, and a gain of 1.
A control signal (current) may be applied to the electromagnet b8 so that the current is less than the current.
次にずれ方向のダンピングの原理について説明する。Next, the principle of damping in the direction of deviation will be explained.
第1図Ca)に示すように間隔上〇で対向配置された両
極性の磁気部材A及び磁気部材Bとの間の反発力Fは次
式で与えられる。As shown in FIG. 1 (Ca), the repulsive force F between the bipolar magnetic members A and B, which are disposed facing each other with an interval of 0, is given by the following equation.
t0
すなわち、力Fはギャップの体積の磁気エネルギーEm
と間隔t0の微分に比例する。t0 That is, the force F is the magnetic energy Em of the volume of the gap
is proportional to the differential of the interval t0.
磁気部材Aと磁気部材Bとの軸がずれが生じない場合は
軸に直角方向の力Fcosθは相殺され軸方向の力F
sinθのみとなり、磁気部材A(又は磁気部材B)に
対し、軸方向のカが作用する。If the axes of magnetic member A and magnetic member B are not misaligned, the force F cos θ in the direction perpendicular to the axis is canceled out, and the force F in the axial direction
only sin θ, and an axial force acts on the magnetic member A (or magnetic member B).
但し、θは部材Aの外周と凹面内壁とのなす角度である
。However, θ is the angle between the outer periphery of member A and the concave inner wall.
一方、同図(b)に示すように磁気部材Aと磁気部材B
の中心がずれると、間隔t工、t2とギャップの体積の
磁気エネルギの差によって各反発力はF z > F
zとなり、 (F、−F2) cosθがセンタリン
グ力、すなわちずれ方向のダンピング力となって作用す
る。したがって、θを調整することにより、また間隔t
0を適当に選択することにより系の特性を安定化できる
。On the other hand, as shown in the same figure (b), magnetic member A and magnetic member B
When the center of deviates, each repulsive force becomes Fz > F due to the difference in magnetic energy between the interval t, t2 and the volume of the gap.
z, and (F, -F2) cos θ acts as a centering force, that is, a damping force in the direction of deviation. Therefore, by adjusting θ, the interval t
By appropriately selecting 0, the characteristics of the system can be stabilized.
[実施例] 以下1本発明の一実施例を図面に基き説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.
第2図に示す精密除振装置は主として除振されるべき機
器が載置される除振台1、除振台1を永久磁石の反発力
で支持する受動制動子2、除振台1の振動を外乱及び自
励を含めて検知するセンサ3、センサ3の出力を信号処
理し制御信号を送出する回路部4及び除振台1の振動に
対し逆位相の出力を付与することにより能動的に除振す
る能動制動子5から成る。The precision vibration isolator shown in Fig. 2 mainly consists of a vibration isolator 1 on which the equipment to be isolated is mounted, a passive damper 2 that supports the vibration isolator 1 with the repulsive force of a permanent magnet, and a vibration isolator 2 that supports the vibration isolator 1 with the repulsive force of a permanent magnet. A sensor 3 that detects vibrations including disturbances and self-excitation, a circuit section 4 that processes the output of the sensor 3 and sends out control signals, and an anti-vibration table 1 that provide an output with an opposite phase to the vibrations. It consists of an active damper 5 that isolates vibrations.
受動制動子2は例えば4組の永久磁石21.22の対か
ら成り、一方の永久磁石21は除振台1側に、他方の永
久磁石22は支持体6側に固定されると共に永久磁石2
1及び22は互いに同極性側が対向するように配置され
、その反発力(4組の合計)で除振台の荷重のほぼ80
%を支持している。更に永久磁石22はその形状が円錐
面又は角錐面を成しており、一方永久磁石21は永久磁
石22の円錐面又は角錐面に対応する凹面を成し、スラ
スト荷重が受けられるようになっている。The passive brake 2 consists of, for example, four pairs of permanent magnets 21 and 22, one permanent magnet 21 is fixed to the vibration isolation table 1 side, the other permanent magnet 22 is fixed to the support body 6 side, and the permanent magnet 2
1 and 22 are arranged so that the same polarity sides face each other, and their repulsive force (total of 4 pairs) can absorb approximately 80% of the load of the vibration isolation table.
% support. Furthermore, the permanent magnet 22 has a conical or pyramidal shape, while the permanent magnet 21 has a concave surface corresponding to the conical or pyramidal surface of the permanent magnet 22, so that it can receive a thrust load. There is.
センサ3は、圧電型、電磁量等任意適宜の型式のものを
除振台1の制御すべき方向1本実施例においてはZ軸方
向の加速度を検知するように除振台1に取り付けて使用
する。The sensor 3 is of any suitable type, such as a piezoelectric type or an electromagnetic type, and is attached to the vibration isolation table 1 to detect the acceleration in the Z-axis direction in which the vibration isolation table 1 is to be controlled. do.
このセンサ3は1例えば除振台1に外乱が作用し除振台
4が振動すれば、この振動を加速度の状態または変位の
状態で検出するものである。For example, when a disturbance acts on the vibration isolation table 1 and the vibration isolation table 4 vibrates, the sensor 3 detects this vibration in the state of acceleration or displacement.
回路部4は第3図にブロック図で示すようにフィルター
41と位相・ゲイン調整回路42及びパワーアンプ43
からなり、センサ3からの出力を信号処理し、除振台の
加速度又は加振力と逆位相で且つゲインが1以下になる
ように制御電流を能動制動子5に印加する。As shown in the block diagram in FIG. 3, the circuit section 4 includes a filter 41, a phase/gain adjustment circuit 42, and a power amplifier 43.
The output from the sensor 3 is subjected to signal processing, and a control current is applied to the active brake 5 so that it is in the opposite phase to the acceleration or excitation force of the vibration isolation table and has a gain of 1 or less.
例えば、センサ3として速度センサを用いた場合、積分
回路で90’位相がずれて変位が得られる(第4図)。For example, when a speed sensor is used as the sensor 3, displacement is obtained with a 90' phase shift in the integrating circuit (FIG. 4).
制振力は速度に逆位相に加えれば良いので位相・ゲイン
調整回路42は得られた変位に対し90’位相がずれた
信号Icを出力するようにする。振動の周波数の高い所
、すなわち、受動制動子の減衰特性の良い所ではむしろ
能動制動子5は働かせない方が好ましいのでフィルター
41によってゲインを制限する。Since the damping force can be applied in a phase opposite to the velocity, the phase/gain adjustment circuit 42 is configured to output a signal Ic having a phase shift of 90' with respect to the obtained displacement. In areas where the vibration frequency is high, that is, where the passive damper has good damping characteristics, it is preferable that the active damper 5 not work, so the gain is limited by the filter 41.
能動制動子5は、本実施例においては、2個を1組とし
て2組(4個)設置されており、その1個は第5図に示
すように除振台1に永久磁石51を介して接続されるヘ
ッド52と電磁石53に固定されたポール54とから構
成される。電磁石53は磁性体のコア55と駆動兼線5
6から成り、コア55は支持体6側に固定される。ポー
ル54はその形状が円錐面又は角錐面を成しており、−
方ヘッド52はポール54、円錐面又は角錐面に対応す
る凹面を有している。そしてヘッド52とポール54の
互いに対向する側は同極性になるように駆動巻線56に
定常電流(直流)が流れているものとする。この定常電
流によって定められるヘッド52とポール54との反発
力で除振台1の荷重のほぼ20%(受動制御子2が支持
する力の残り)を支持する。更に能動制動子5は磁路が
外に漏れないように外周に磁気遮蔽板57を備え、また
、コア55及び駆動巻線56を冷却するための空気流5
8が形成されているものとする。一般に精密除振装置は
クリーンルーム内で使用されるものであるから、空冷用
の空気流58は吸引により形成するのが好ましい。In this embodiment, two sets (four active brakes) of active brakes 5 are installed, one set of two being installed, and one of them is mounted on the vibration isolating table 1 through a permanent magnet 51 as shown in FIG. It consists of a head 52 that is connected to the pole 54 and a pole 54 that is fixed to an electromagnet 53. The electromagnet 53 has a magnetic core 55 and a driving line 5
6, and the core 55 is fixed to the support 6 side. The pole 54 has a conical or pyramidal shape, and -
The head 52 has a concave surface corresponding to the pole 54, a conical surface or a pyramidal surface. It is assumed that a steady current (direct current) flows through the drive winding 56 so that the opposite sides of the head 52 and the pole 54 have the same polarity. Approximately 20% of the load of the vibration isolation table 1 (the remainder of the force supported by the passive controller 2) is supported by the repulsive force between the head 52 and the pole 54 determined by this steady current. Furthermore, the active brake 5 is equipped with a magnetic shielding plate 57 on the outer periphery to prevent the magnetic path from leaking to the outside, and also has an air flow 5 for cooling the core 55 and the drive winding 56.
8 is formed. Since the precision vibration isolator is generally used in a clean room, it is preferable that the air flow 58 for air cooling is formed by suction.
このように構成される能動制動子5は駆動巻線56には
通常は除振台支持用の定常電流Io(第6図)が印加さ
れており、ヘッド52及びポール54は所定の間隔に保
たれているが、今、振動によってヘッド62及びポール
64との間隔が変動すると、その間の磁気エネルギ7の
変動によって駆動巻線56に電流が生じ、その内部抵抗
によってブレーキ力が発生すると共にセンサ3が振動を
検出しセンサ3の出力を回路部4が信号処理した制御電
流Ic(Ic(Io)が印加される。制御電流Icは前
述のように除振台1に加えられた加振力を逆位相で且つ
ゲインが1以下となるように制御されている。In the active brake 5 configured as described above, a steady current Io (Fig. 6) for supporting the vibration isolation table is normally applied to the drive winding 56, and the head 52 and the pole 54 are maintained at a predetermined interval. However, when the distance between the head 62 and the pole 64 changes due to vibration, a current is generated in the drive winding 56 due to the change in the magnetic energy 7 during that time, and its internal resistance generates a braking force and the sensor 3 detects vibration, and the circuit unit 4 processes the output of the sensor 3 to apply a control current Ic (Ic(Io)). They are controlled to have opposite phases and a gain of 1 or less.
このようにヘッド62に加振力と逆位相の制動力が加え
られると、ヘッド52及びポール54の配列方向、すな
わち垂直方向のダンピング力が生ずると共にヘッド52
及びポール54の形状によって生じるずれ方向のダンピ
ング力によって、ヘッド52に固定される除振台1の振
動を実直的に相殺することができる。When a braking force having a phase opposite to the excitation force is applied to the head 62 in this manner, a damping force is generated in the direction in which the head 52 and the poles 54 are arranged, that is, in the vertical direction, and a damping force is generated in the head 52 and the pole 54.
The vibration of the vibration isolation table 1 fixed to the head 52 can be canceled out in a practical manner by the damping force in the direction of deviation caused by the shape of the pole 54.
尚、ヘッド52とポール54とのギャップは振動のリミ
ッタとしても作用する。このような働きのためにヘッド
52及び/又はポール54に衝撃を吸収するためゴムな
どのM筒材を張り付けておくことも有効である。又、セ
ンサ3及び回路部4は各能動制動子毎に取付けるのが良
く、振動の検出は上下方向のみで行う。Note that the gap between the head 52 and the pole 54 also acts as a vibration limiter. For this purpose, it is also effective to attach an M tube material such as rubber to the head 52 and/or the pole 54 to absorb shock. Further, the sensor 3 and the circuit section 4 are preferably attached to each active brake, and vibrations are detected only in the vertical direction.
[発明の効果]
以上の説明からも明らかなように、本発明の精密除振装
置においては、除振台を磁石の反発力によって支持する
ので、固有振動数を適正に調整し、能動的制御を容易に
することができ、また力アクチュエータ(能動制動子)
として特定の形状のものを用いることにより垂直方向と
同時に水平方向のダンピングを行なうことができるので
、少ない設置数で除振台に生じた振動を効果的に除振す
ることができ、装置の簡素化を図ることができる。[Effects of the Invention] As is clear from the above explanation, in the precision vibration isolator of the present invention, the vibration isolator is supported by the repulsive force of the magnet, so the natural frequency can be appropriately adjusted and active control is possible. It can also facilitate force actuators (active brakes)
By using a specific shape for damping in the horizontal direction at the same time as in the vertical direction, vibrations generated in the vibration isolation table can be effectively isolated with a small number of installations, and the equipment can be simplified. It is possible to aim for
第1図(a)、(b)はそれぞれ本発明の詳細な説明す
る図、第2図は本発明の精密除振装置の一実施例を示す
概略図、第3図は本発明一実施例の回路部のブロック図
、第4図は各信号の波形を示す図、第5図は本発明一実
施例の能動制動子を示す図、第6図は制御電流を示す図
、第7図は能動除振装置の概略図である6
1・・・・・・・除振台
2・・・・・・・受動制動子
21.22・・・・・・・永久磁石
3・・・・・・・センサ
4・・・・・・・回路部
5・・・・・・・能動制動子
51・・・・・永久磁石
53・・・・・電磁石
6・・・・・・・支持台
代理人 弁理士 守 谷 −離
落1図
(a) (b)
第2図
第3図
第4図
第5図Figures 1 (a) and (b) are diagrams explaining the present invention in detail, Figure 2 is a schematic diagram showing an embodiment of the precision vibration isolator of the present invention, and Figure 3 is an embodiment of the present invention. 4 is a diagram showing the waveforms of each signal, FIG. 5 is a diagram showing an active brake according to an embodiment of the present invention, FIG. 6 is a diagram showing the control current, and FIG. 7 is a diagram showing the control current. 6 which is a schematic diagram of an active vibration isolator 1...Vibration isolation table 2...Passive damper 21.22...Permanent magnet 3... ...Sensor 4...Circuit part 5...Active brake 51...Permanent magnet 53...Electromagnet 6...Support stand substitute Person Patent Attorney Moritani - Drifting Figure 1 (a) (b) Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
該除振台の振動を検出するセンサと、該センサの出力を
信号処理し、増幅して制御信号を出力する回路部と、該
制御信号によって作動し前記振動を制御する能動制動子
とから成る精密除振装置において、前記受動制動子及び
前記駆動制動子はそれぞれ互いに反発するよう対向配置
された磁石の対から成ると共に、前記能動制動子は前記
磁石の一方が前記制御信号によって制御される電磁石で
あることを特徴とする精密除振装置。 2、前記能動制動子は前記対向配置された磁石の対のう
ち一方が円錐面又は角錐面を有し、他方が該円錐面又は
角錐面に対応する凹面を有し、前記振動に対応して前記
除振台に前記磁石の配列方向及びずれ方向の力を付与し
て前記振動を実質的に相殺することを特徴とする特許請
求の範囲第1項記載の精密除振装置。[Claims] 1. A vibration isolation table supported by a passive damper on a support body;
Consisting of a sensor that detects the vibration of the vibration isolation table, a circuit section that processes and amplifies the output of the sensor and outputs a control signal, and an active brake that is activated by the control signal and controls the vibration. In the precision vibration isolator, the passive damper and the drive damper each include a pair of magnets that are arranged opposite to each other so as to repel each other, and the active damper includes an electromagnet in which one of the magnets is controlled by the control signal. A precision vibration isolator characterized by: 2. In the active brake, one of the pair of magnets arranged opposite to each other has a conical surface or a pyramidal surface, and the other has a concave surface corresponding to the conical surface or pyramidal surface, and the active brake is configured to respond to the vibration. 2. The precision vibration isolator according to claim 1, wherein the vibration is substantially canceled by applying forces to the vibration isolator in the direction in which the magnets are arranged and in the direction of displacement of the magnets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29950787A JPH01131354A (en) | 1987-08-27 | 1987-11-27 | Precise vibration isolating device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21323787 | 1987-08-27 | ||
JP62-213237 | 1987-08-27 | ||
JP29950787A JPH01131354A (en) | 1987-08-27 | 1987-11-27 | Precise vibration isolating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01131354A true JPH01131354A (en) | 1989-05-24 |
Family
ID=26519678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29950787A Pending JPH01131354A (en) | 1987-08-27 | 1987-11-27 | Precise vibration isolating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01131354A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385217A (en) * | 1991-05-20 | 1995-01-31 | Ebara Corporation | Vibration eliminating apparatus for elminating vibration of an installation floor |
US5487533A (en) * | 1993-06-04 | 1996-01-30 | Shinko Electric Co., Ltd. | Automatic transport vehicle with three-axis motion sensing and vibration damping |
EP0740141A3 (en) * | 1995-04-27 | 1997-11-19 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Electromagnetic rotary vibration for rotary body and damper using the same rotary body |
JP2017502227A (en) * | 2013-12-23 | 2017-01-19 | コリア エアロスペース リサーチ インスティトゥートKorea Aerospace Research Institute | Vibration reduction device using magnet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51121356A (en) * | 1975-04-17 | 1976-10-23 | Akira Yamamura | Anti-vibration bench device |
-
1987
- 1987-11-27 JP JP29950787A patent/JPH01131354A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51121356A (en) * | 1975-04-17 | 1976-10-23 | Akira Yamamura | Anti-vibration bench device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385217A (en) * | 1991-05-20 | 1995-01-31 | Ebara Corporation | Vibration eliminating apparatus for elminating vibration of an installation floor |
US5487533A (en) * | 1993-06-04 | 1996-01-30 | Shinko Electric Co., Ltd. | Automatic transport vehicle with three-axis motion sensing and vibration damping |
EP0740141A3 (en) * | 1995-04-27 | 1997-11-19 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Electromagnetic rotary vibration for rotary body and damper using the same rotary body |
JP2017502227A (en) * | 2013-12-23 | 2017-01-19 | コリア エアロスペース リサーチ インスティトゥートKorea Aerospace Research Institute | Vibration reduction device using magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5285995A (en) | Optical table active leveling and vibration cancellation system | |
US5765800A (en) | Vibration damping apparatus | |
US8352086B2 (en) | Combined motion sensor for use in feedback control systems for vibration isolation | |
US5433422A (en) | Active vibration control through sensing and controlling forces on an intermediate body | |
Hoque et al. | Development of a three-axis active vibration isolator using zero-power control | |
JPH0585778B2 (en) | ||
JPS60579B2 (en) | Horizontal stabilizer for vertically supported objects | |
JPH10259851A (en) | Active vibration isolation device | |
JP2539906B2 (en) | Magnetic anti-vibration device | |
JPH02118225A (en) | Method of actively controlling vibration generated in fixing section of rotary machine and magnetic controller for structure vibration | |
JPH05340444A (en) | Anti-vibration device and control method thereof | |
US5487533A (en) | Automatic transport vehicle with three-axis motion sensing and vibration damping | |
JPH01131354A (en) | Precise vibration isolating device | |
JP4421130B2 (en) | Vibration isolation method and apparatus | |
JPH0143177B2 (en) | ||
JPH04272538A (en) | Device for holding object | |
JP2000234646A (en) | Vibration control device | |
JPH09112628A (en) | Magnetic levitation vibration isolation device | |
JPH08270725A (en) | Repulsion type magnetic damper, repulsion type magnetic actuator and repulsion type magnetic vibration proof base | |
JPH07310779A (en) | Active vibration isolation device | |
JP3042763B2 (en) | Anti-vibration device | |
JP2001200886A (en) | Active vibration removing device | |
JPH0874928A (en) | Vibration damping device and vibration isolating base | |
JPH06294444A (en) | Vibration resisting device | |
JPH09134876A (en) | Vibration absorbing device and aligner |