[go: up one dir, main page]

JPH01129127A - Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature - Google Patents

Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature

Info

Publication number
JPH01129127A
JPH01129127A JP62288845A JP28884587A JPH01129127A JP H01129127 A JPH01129127 A JP H01129127A JP 62288845 A JP62288845 A JP 62288845A JP 28884587 A JP28884587 A JP 28884587A JP H01129127 A JPH01129127 A JP H01129127A
Authority
JP
Japan
Prior art keywords
core
optical fiber
temperature
optical
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288845A
Other languages
Japanese (ja)
Inventor
Toshinao Kokubu
利直 国分
Yutaka Katsuyama
豊 勝山
Katsunori Ukawa
宇川 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62288845A priority Critical patent/JPH01129127A/en
Publication of JPH01129127A publication Critical patent/JPH01129127A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To monitor a temperature precisely and inexpensively, by providing an optical coupling element in a part of a multicore optical fiber core wire and by covering its periphery with a material whose refractive index changes in accordance with the temperature. CONSTITUTION:A multicore optical fiber 3 comprising first and second cores 1a and 1b and a clad 2 surrounding these cores commonly is surrounded by a plastic coating 4 and a sheath 5, and thereby an optical fiber cable is constituted. A biconical taper region (optical coupling element) 6 is made in the optical fiber 3 and the periphery thereof is covered with a material 7 whose refractive index is dependent on temperature. The rate of a power P1 transmitted through the optical coupling element 6 and emitted to the other end of the first core 1a, in a power P0 of a light entering the core 1a at one end thereof, changes in accordance with the refractive index of the material 7. The temperature can be monitored by observing the power P1 of the transmitted light or the power of the back scattering light thereof. A power P2 of the light coupled from the core 1a to the core 1b is not dependent on the refractive index of the material 7 nearly at all, and therefore it is used for communication.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、温度変化を精度良く検知できる温度センサを
内蔵した少心光ファイバケーブル及び温度モニタ方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a small-core optical fiber cable with a built-in temperature sensor that can accurately detect temperature changes, and a temperature monitoring method.

(従来の技術とその問題点) 光ファイバの破断はガラス表面に存在する微小な傷の成
長により生じることが知られている。雰囲気の温度が上
昇するとファイバ表面傷の成長が促進される(H,C,
Chandan、and D、Kallsh。
(Prior art and its problems) It is known that optical fiber breakage occurs due to the growth of minute scratches existing on the glass surface. As the ambient temperature increases, the growth of fiber surface scratches is promoted (H, C,
Chandan, and D. Kallsh.

“’remperature dependence 
of 5tattc fatigueor optlc
al fibers coated with a U
V−curablepolyurethane aer
ylate ’ 、 J、Amer、 Cerm、 S
oc。
“'remperature dependence
of 5tattc fatigueor optlc
al fibers coated with a U
V-curable polyurethane aer
ylate', J, Amer, Cerm, S
oc.

65、p、l?1.1982 )。通常の設計では平均
温度10〜20℃程度であるが、不測の外的要因によっ
て40〜60℃などの高温に長期間さらされれば、ファ
イバが早期に破断する恐れがある。これを防ぐためには
、ケーブルの温度をモニタしておくことが必要である。
65, p, l? 1.1982). In a normal design, the average temperature is about 10 to 20 degrees Celsius, but if exposed to high temperatures such as 40 to 60 degrees Celsius for a long period of time due to unforeseen external factors, the fiber may break prematurely. To prevent this, it is necessary to monitor the temperature of the cable.

一般的な温度センサには、ゼーベック効果(熱起電力)
を利用した熱電対、金属抵抗の温度依存性を利用した抵
抗温度計、酸化物半導体・非酸化物半導体の抵抗の温度
依存性を利用した抵抗温度計、半導体−金属相転移を利
用したクリテジスタ(CTR) 、強誘電体圧電定数の
温度依存性を利用した水晶温度計、液晶における反射光
の波長分布の温度依存性を利用した温度計、気体・液体
の熱膨張を利用した気体温度計・水銀温度計などがあっ
たが、これらはケーブル本体とは離れて設置され、正確
にケーブル内の温度が検知できないという欠点があった
。また、ケーブル内に挿入するには大きすぎたり、形状
が適していないため困難であった。さらに遠隔モニタす
るためには、温度センサの制御、検知用信号を常に流。
General temperature sensors have the Seebeck effect (thermoelectromotive force)
thermocouples that utilize metal resistance, resistance thermometers that utilize the temperature dependence of metal resistance, resistance thermometers that utilize the temperature dependence of resistance of oxide and non-oxide semiconductors, and critegisters that utilize semiconductor-metal phase transition ( CTR), a crystal thermometer that uses the temperature dependence of the piezoelectric constant of a ferroelectric, a thermometer that uses the temperature dependence of the wavelength distribution of reflected light in a liquid crystal, a gas thermometer that uses the thermal expansion of gases and liquids, and mercury. There were thermometers, but these had the disadvantage that they were installed far away from the cable itself, making it impossible to accurately detect the temperature inside the cable. In addition, it was difficult to insert it into the cable because it was too large and the shape was not suitable. Furthermore, for remote monitoring, a constant flow of temperature sensor control and detection signals is required.

すための専用回線の建設、保守が別に必要となり、経済
的な線路構成ができないという欠点があった。
The disadvantage was that it required separate construction and maintenance of a dedicated line for this purpose, making it impossible to construct an economical line configuration.

他方、従来誘導ラマン散乱効果を用いた光ファイバによ
る温度センサ(J、P、DAKIN、D、J、PRAT
T:’Distributed 0ptical PH
+er RamanTeIlperature 5en
sor Uslng a  Semiconducto
rLight 5ource and Detecto
r ’ 、 ELECTRONIC8LETTER8,
Vol、21. No、11(June 1985))
があった。
On the other hand, conventional optical fiber temperature sensors using stimulated Raman scattering effects (J, P, DAKIN, D, J, PRAT
T:'Distributed 0ptical PH
+er RamanTeIlperature 5en
Sor Uslng a Semiconductor
rLight 5source and Detect
r', ELECTRONIC8LETTER8,
Vol, 21. No. 11 (June 1985))
was there.

この技術は、センサがファイバ形状であるため、ケーブ
ル内に挿入可能で、かつ、ケーブルの長さ方向の温度変
化が生じた位置をモニタできるため、優れた方法である
反面、モニタする誘導ラマンOT D R(Optic
al  Tll1e Domajn  Reflect
ometry  )には、通常の0TDRより大出力の
レーザや低損失・高分離度の光方向性結合器が必要など
測定装置が高価になり、温度センシングによる保守シス
テムのコスト低減化が図れないという欠点があった。ま
た、光信号伝送用のファイバ以外に温度センサ用のファ
イバが必要である。このファイバは、大コア径、高NA
にするなどの測定精度を向上させる対策が必要で通信用
ファイバと共用させることは困難であった。従って、通
信用ファイバが1心しか必要のない加入者端末への引き
込み線では、センサ用と合わせて2心となり、引き込み
線のコスト上昇は避けられない大きな欠点があった。環
境変化により、ケーブルが高温にさらされた時、ケーブ
ル内ファイバの温度上昇が大きいのは少心ケーブルの場
合である。このため、従来技術では、特に必要な少心ケ
ーブルでコスト上昇する欠点があった。
This technology is an excellent method because the sensor is in the form of a fiber, so it can be inserted into the cable and can monitor the location where temperature changes occur along the length of the cable. DR (Optic
Al Tll1e Domajn Reflect
ometry) requires a laser with higher output than a normal 0TDR and an optical directional coupler with low loss and high separation, making the measurement equipment expensive, and the drawback is that it is not possible to reduce the cost of the maintenance system using temperature sensing. was there. In addition to the optical signal transmission fiber, a temperature sensor fiber is also required. This fiber has a large core diameter and high NA
This made it difficult to use it in common with communication fibers, as it required measures to improve measurement accuracy, such as increasing the measurement accuracy. Therefore, in the drop-in line to the subscriber terminal, which requires only one fiber for communication, there are two fibers including the fiber for the sensor, which has a major disadvantage in that the cost of the drop-in line inevitably increases. When a cable is exposed to high temperatures due to environmental changes, the temperature of the fibers within the cable increases significantly in the case of a cable with a small number of cores. For this reason, the conventional technology has the disadvantage that the cost increases, especially due to the required small number of core cables.

本発明の目的は、上述の問題点を解決し、光ファイバケ
ーブルの温度を検出することが可能であリ、センシング
精度の良い低価格に構成できる温度センサ内蔵少心光フ
ァイバケーブル及びこの少心光ファイバケーブルを使用
した温度モニタ方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to detect the temperature of an optical fiber cable, and to provide a small-core optical fiber cable with a built-in temperature sensor that can be constructed at a low cost and with good sensing accuracy. An object of the present invention is to provide a temperature monitoring method using an optical fiber cable.

(問題点を解決するための手段) 上記目的を達成するため、第1の発明では光信号を伝送
するコアが複数心存在し、そのクラッドは該複数心コア
を共通に囲む形状であるマルチコア光ファイバから成る
マルチコア光ファイバ心−を少なくとも1本収容してい
る少心光ファイバケーブルにおいて、該マルチコア光フ
ァイバ心線にはその長手方向の任意場所の微小長部分に
光結合部を設け、かつ温度に依存しその屈折率が変化す
る材料で該光結合部の周囲を覆った部分を設けたことを
特徴とし、第2の発明では光信号を伝送するコアが複数
心存在し、そのクラッドは該複数心コアを共通に囲む形
状であるマルチコア光ファイバから成るマルチコア光フ
ァイバ心線を少なくとも1本収容している少心光ファイ
バケーブルの長手方向の任意場所で該マルチコア光ファ
イバ心線に光結合部を設け、かつ、温度に依存しその屈
折率が変化する材料で該結合部の周囲を被覆した部分が
存在する光ファイバケーブルにおいて、該ケーブルの一
端でマルチコア光ファイバのコア1心に通信用光信号を
入射し、前記光結合部で他の複数心コアに該光信号を結
合させて出射光を分離して取り出し可能とし、該出射光
のうち通信用光信号を入射したコアと同一のコアからの
出射光の強度変化から温度変化を検知することを特徴と
し、第3の発明では光信号を伝送するコアが複数心存在
し、そのクラッドは該複数心コアを共通に囲む形状であ
るマルチコア光ファイバから成るマルチコア光ファイバ
心線を少なくとも1本収容している゛少心光ファイバケ
ーブルの長手方向の任意場所で該マルチコア光ファイバ
心線に光結合部を設け、かつ、温度に依存しその屈折率
が変化する材料で該結合部の周囲を被覆した部分が存在
する光ファイバケーブルにおいて、該ケーブルの一端で
、マルチコア光ファイバのコア1心には通信用光信号を
入射しておき、同地の該光信号を入射したコアとは異な
るコアには温度検知用光パルスを入射し、該コアから戻
る後方散乱光の強度を検出し、温度変化にともなう該被
覆材料の屈折率変化により変化する、前記光結合部から
戻る後方散乱光の強度変化から温度変化を検知すること
を特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the first invention provides a multi-core optical system in which a plurality of cores for transmitting optical signals exist, and the cladding has a shape that commonly surrounds the plurality of cores. In a small-core optical fiber cable that accommodates at least one multi-core optical fiber core, the multi-core optical fiber core wire is provided with an optical coupling portion at a small length at an arbitrary location in the longitudinal direction, and is temperature-controlled. In the second invention, there is a plurality of cores for transmitting optical signals, and the cladding is made of a material whose refractive index changes depending on the optical coupling part. An optical coupling part to the multi-core optical fiber at any location in the longitudinal direction of a small-core optical fiber cable that accommodates at least one multi-core optical fiber having a shape that commonly surrounds a plurality of cores. In an optical fiber cable that has a part covered with a material whose refractive index changes depending on the temperature, the communication light is connected to one core of the multi-core optical fiber at one end of the cable. A signal is inputted to the core, and the optical coupling part couples the optical signal to another multi-core core so that the output light can be separated and taken out, and among the output lights, the core is the same as the core into which the communication optical signal is input. The third invention is characterized in that a temperature change is detected from a change in the intensity of light emitted from the multi-core. A small-core optical fiber cable containing at least one multi-core optical fiber is provided with an optical coupling part in the longitudinal direction of the multi-core optical fiber, and the optical coupling part is provided in the multi-core optical fiber at an arbitrary location in the longitudinal direction, and In an optical fiber cable that has a part covered around the coupling part with a material whose refractive index changes, a communication optical signal is input into one core of the multi-core optical fiber at one end of the cable, and the same A temperature detection optical pulse is input to a core different from the core into which the optical signal of the ground was input, and the intensity of the backscattered light returning from the core is detected, and the intensity changes due to changes in the refractive index of the coating material due to temperature changes. The temperature change is detected from the intensity change of the backscattered light returning from the optical coupling part.

(作用) 第1の発明によれば、光結合部の周囲において温度が変
化すると、この温度変化に伴って該光結合部の周囲を覆
った部分の屈折率が変化するため、該光結合部における
結合光のパワーに変化が生ずる。従ってこのパワー変化
から温度変化を検知できる。
(Function) According to the first invention, when the temperature changes around the optical coupling portion, the refractive index of the portion surrounding the optical coupling portion changes with this temperature change. A change occurs in the power of the coupled light at . Therefore, temperature changes can be detected from this power change.

第2の発明によれば、光ファイバケーブルの一端でマル
チコア光ファイバのコア1心に通信用光信号を入射し、
前記光結合部で他の複数心コアに該光信号を結合させて
出射光を分離して取り出し可能としておくことにより、
該光結合部の周囲に温度変化が生ずると、該周囲の材料
の屈折率変化に基づいて、該出射光のうち通信用光信号
を入射したコアと同一のコアからの出射光の強度変化が
生じ、これにより温度変化を検知することができる。
According to the second invention, a communication optical signal is input into one core of the multi-core optical fiber at one end of the optical fiber cable,
By coupling the optical signal to other multi-core cores at the optical coupling part and making it possible to separate and extract the emitted light,
When a temperature change occurs around the optical coupling part, based on the change in the refractive index of the surrounding material, the intensity of the outgoing light from the same core as the one into which the communication optical signal was input will change. This allows temperature changes to be detected.

第3の発明によれば、光ファイバケーブルの一端で、マ
ルチコア光ファイバのコア1心には通信用光信号を入射
しておき、同地の該光信号を入射したコアとは異なるコ
アには温度検知用光パルスを入射し、該コアから戻る後
方散乱光の強度を検出するようにしておくと、温度変化
にともなう該被覆材料の屈折率変化に基づいて前記光結
合部から戻る後方散乱光の強度変化が生じ、これにより
温度変化を検知することができる。
According to the third invention, at one end of the optical fiber cable, a communication optical signal is input into one core of the multi-core optical fiber, and a core different from the core into which the optical signal was input at the same location is By injecting a temperature detection optical pulse and detecting the intensity of the backscattered light returning from the core, the backscattered light returning from the optical coupling portion is detected based on the change in the refractive index of the coating material due to temperature change. A change in intensity occurs, which allows a temperature change to be detected.

(実施例) 以下、本発明による温度センサ内蔵光ファイバケーブル
の実施例を示す。
(Example) Hereinafter, an example of an optical fiber cable with a built-in temperature sensor according to the present invention will be shown.

第1図は本発明による温度センシング可能なマルチコア
光ファイバを収容した光ファイバケーブルの実施例を示
すものでありて、同図の1aは第1のコア、1bは第2
のコア、2はコア1a、   1bを共通に囲むクラッ
ド、3はコア2心を含むマルチコア光ファイバ、4はマ
ルチコア光ファイバ3を囲むプラスチック被覆部、5は
外被である。
FIG. 1 shows an embodiment of an optical fiber cable accommodating a multi-core optical fiber capable of temperature sensing according to the present invention, in which 1a is the first core, 1b is the second core, and 1b is the second core.
2 is a cladding that commonly surrounds the cores 1a and 1b, 3 is a multi-core optical fiber including two cores, 4 is a plastic coating that surrounds the multi-core optical fiber 3, and 5 is an outer jacket.

第2図は、第1図に示した2心マルチコア光ファイバ形
ケーブルに光結合部を作成し温度センサ部とした部分の
断面図であって、図中第1図と同一符号は同一構成部分
を示す。図中6は延伸後のパイコニカルテーバ領域で、
光結合部を構成する。
FIG. 2 is a cross-sectional view of a temperature sensor section formed by creating an optical coupling section in the two-core multi-core optical fiber cable shown in FIG. 1, and the same reference numerals as in FIG. shows. 6 in the figure is the piconical taber region after stretching,
Configures an optical coupling section.

7は屈折率の温度依存性のある材料で、テーバ領域(光
結合部)6の外周に設けられる。
Reference numeral 7 denotes a material whose refractive index is temperature dependent, and is provided around the outer periphery of the Taber region (optical coupling portion) 6 .

このような構成において、第1のコア1aを伝搬してい
る光は、テーバ領域6でコアla外に漏れ、外側のクラ
ッド層2と屈折率温度依存性材料7との界面で反射し第
2のコア1bに入射するか、あるいは内側のクラッドを
通して直接箱2のコア1bに入射する。実際には、後述
するように前者の場合が支配的であり、クラッド2の外
側の屈折率の変化が透過光あるいは結合光に大きな影響
を与えることになる。また光結合部6のテーバを設計す
ることにより、種々の結合比を得ることができる。本方
法では加熱延伸によりテーバ部を作製しているが、この
時ファイバをねじる必要がない。
In such a configuration, light propagating through the first core 1a leaks out of the core la at the Taber region 6, is reflected at the interface between the outer cladding layer 2 and the refractive index temperature-dependent material 7, and is transmitted to the second core 1a. or directly into the core 1b of the box 2 through the inner cladding. In reality, as will be described later, the former case is predominant, and a change in the refractive index on the outside of the cladding 2 has a large effect on transmitted light or coupled light. Furthermore, by designing the taper of the optical coupling section 6, various coupling ratios can be obtained. In this method, the tapered portion is produced by heating and drawing, but there is no need to twist the fiber at this time.

これは、対称とするファイバが第1図に示すようにマル
チコア光ファイバであり、予めクラッドの一部が融着さ
れているためである。即ち、共通りラッド2があるため
、単にマルチコアの一部を加熱延伸するのみでテーバ部
が形成される。また、マルチコア光ファイバは、第1図
に示すように、単心コア光ファイバを複数心平行に束ね
、その外接接触線が相互に融着され、非接触面はほぼも
との形状の曲線であるような断面形状が望ましい。
This is because the symmetrical fiber is a multi-core optical fiber as shown in FIG. 1, and a part of the cladding is fused in advance. That is, since there is a common rad 2, the tapered portion is formed simply by heating and stretching a part of the multi-core. As shown in Figure 1, multi-core optical fibers are made by bundling multiple single-core optical fibers in parallel, and their circumscribed contact lines are fused to each other, and the non-contact surfaces are curved almost in the original shape. A certain cross-sectional shape is desirable.

即ち、外周面の長さ方向に溝状部を有している。That is, it has a groove-like portion in the length direction of the outer circumferential surface.

このようなマルチコア光ファイバを加熱延伸すれば、溶
融したガラス部は、表面張力により円形に近付こうとす
るため、内部のコアを中心に集めようとする力が作用す
る。即ちテーバ部が効果的に作製できる。従来方法では
、多数の単心光ファイバを複数回ねじり合わせ加熱延伸
することにより形成している。この時、複数の光ファイ
バを溶融延伸するには、ファイバ相互が適切に接着する
必要がある。単に加熱延伸するだけでは、各々の光ファ
イバが軟化し、細くなるだけで、相互に溶融することは
困難である。このためにねじりを加えるが、この結果、
最適な光結合の条件を得るのが容易でない。即ち、溶融
部でコアは複雑な曲線を描くため、光結合を定める製造
条件を正確に設定することが困難になる。この様に、製
造条件として、加熱温度、延伸距離の他にねじりという
パラメータがひとつ増え、安定した再現性が得にくい。
When such a multi-core optical fiber is heated and drawn, the molten glass portion tends to approximate a circular shape due to surface tension, and a force acts to bring the internal cores to the center. That is, the tapered portion can be effectively produced. In the conventional method, a large number of single-core optical fibers are twisted together multiple times and heated and drawn. At this time, in order to melt and draw a plurality of optical fibers, the fibers must be properly bonded to each other. If the optical fibers are simply heated and stretched, each optical fiber will only become soft and thin, and it will be difficult to melt them together. For this purpose, a twist is added, and as a result,
It is not easy to obtain optimal optical coupling conditions. That is, since the core draws a complicated curve in the melted part, it becomes difficult to accurately set manufacturing conditions that determine optical coupling. In this way, in addition to the heating temperature and the stretching distance, twist is one more parameter added to the manufacturing conditions, making it difficult to obtain stable reproducibility.

これに対し、本発明で使用するマルチコア光ファイバ内
の結合部は、前記3つのパラメータの中のねじりという
パラメータがないため、製造条件を把握しやすく、再現
性が良い。即ち、加熱温度を設定すれば、後は光ファイ
バをそのままの形で溶融延伸すればよいので極めて容易
に作成でき、光結合を定める製造条件のコントロールも
容易である。さらに、マルチコア光ファイバを使用して
いるため、光結合部作製には高度な加工技術は不要で、
しかも現場での作製を容易に行うことができる。
On the other hand, the coupling part in the multi-core optical fiber used in the present invention does not have the twist parameter among the three parameters, so the manufacturing conditions are easy to understand and the reproducibility is good. That is, once the heating temperature is set, the optical fiber can be melted and drawn as it is, so it can be produced extremely easily, and the manufacturing conditions that determine optical coupling can be easily controlled. Furthermore, since multi-core optical fibers are used, advanced processing technology is not required to create the optical coupling part.
Moreover, it can be easily manufactured on-site.

第3図は、第1図に示したマルチコア光ファイバに第2
図に示したパイコニカルテーバ領域6を作製し、その周
囲を温度により屈折率が変化する材料7で覆い、第1の
コア1aに光パワーPOを入射し、他端の第1のコア1
a及び第2のコア1bから出射されるパワーを各々PL
、P2とした時の各々のパワーの屈折率依存性を測定し
た結果を示した図である。ここで、Plは透過光、P2
は結合光である。但し、使用したマルチコア光ファイバ
の各コアのモードフィールド径8.3μm、カットオフ
波長1.12μm、外径長軸160μ■、外径短軸80
μ−である。また、材料7としては、出射光の屈折率依
存性の測定を容易にするために、ベンゼンとエチルアル
コールの混合溶液とした。その混合比を変えることによ
り、屈゛折率を1.37〜1.50の範囲で選択した。
Figure 3 shows the multi-core optical fiber shown in Figure 1 with a second
The piconical taber region 6 shown in the figure is fabricated, its periphery is covered with a material 7 whose refractive index changes depending on the temperature, the optical power PO is input to the first core 1a, and the first core 1 at the other end is
a and the power emitted from the second core 1b are respectively PL
, P2 is a diagram showing the results of measuring the refractive index dependence of each power. Here, Pl is transmitted light, P2
is the combined light. However, the mode field diameter of each core of the multi-core optical fiber used was 8.3 μm, the cutoff wavelength was 1.12 μm, the long axis of the outer diameter was 160 μm, and the short axis of the outer diameter was 80 μm.
μ-. Further, as material 7, a mixed solution of benzene and ethyl alcohol was used in order to facilitate measurement of the refractive index dependence of emitted light. By changing the mixing ratio, the refractive index was selected within the range of 1.37 to 1.50.

この図より、結合光P2はほとんど変化していないが、
透過光Plは屈折率依存性を示しており、1.45付近
で最大パワーが生じているのがわかる。ここで、例えば
常温で屈折率的1.45を有するプラスチック材料を光
結合部の周囲に覆っておくと、透過光P1は最大パワー
となる。一般にプラスチツり材料は高温になるほどその
屈折率が低下するので、前記光ファイバ結合部の周囲が
高温になると、透過光P1の出力は減少する。図かられ
かるように屈折率が1.44付近まで小さくなると、そ
れにともないパワーP1も急激に低下する。このパワー
低下を検知することにより周囲が高温になったことをす
ばやく察知できる。また、この間のパワーレベルをモニ
ターしておけば、常温から高温までの温度を精度良く検
知することが可能となる。
From this figure, the coupled light P2 has hardly changed, but
It can be seen that the transmitted light Pl shows refractive index dependence, and the maximum power occurs near 1.45. For example, if the optical coupling part is covered with a plastic material having a refractive index of 1.45 at room temperature, the transmitted light P1 will have maximum power. Generally, the refractive index of a plastic material decreases as the temperature increases, so when the temperature around the optical fiber coupling section increases, the output of the transmitted light P1 decreases. As can be seen from the figure, when the refractive index decreases to around 1.44, the power P1 also decreases rapidly. By detecting this power drop, it is possible to quickly sense that the surrounding temperature has become high. Additionally, by monitoring the power level during this time, it becomes possible to accurately detect temperatures from room temperature to high temperatures.

これとは逆に、常温で屈折率的1.44の材料を用いれ
ば、周囲温度が低温になると、その材料の屈折率が大き
くなるので、急激にパワーptが大きくなり低温になっ
たことが検知される。即ち低温側の温度センサとして機
能する。前記方法は、常温から高温側へあるいは常温か
ら低温側へある設定温度を越えた場合に出力パワーがh
激に変わることを利用した温度センシングである。これ
に対して、第3図において、温度により屈折率が約1.
38〜1.43の範囲では、透過光Plは屈折率に対し
ほぼ直線的に変化している。従って、温度変化によりこ
の範囲で屈折率が変化し、しかも常温でこの屈折率範囲
の中央値を有する材料を選択すれば、透過光のパワーP
iをモニターすることにより、常温をはさんだ温度範囲
でセンシングが可能となる。ここで使用できる材料7と
しては、比較的低屈折率の値(1,3〜1.42 )を
有するフッ素樹脂や、比較的高屈折率の値(1,46〜
1.51 )を有するエチルセルロース、アセテート繊
維などの繊維素誘導樹脂、ポリエチレン等がある。以上
の実施例の説明は、光結合部を通過する透過光パワーの
みの検出による温度モニタ方法である。
On the contrary, if a material with a refractive index of 1.44 is used at room temperature, the refractive index of the material will increase when the ambient temperature becomes low, so the power pt will suddenly increase and the temperature will decrease. Detected. That is, it functions as a temperature sensor on the low temperature side. In the above method, when the temperature exceeds a certain set point from normal temperature to the high temperature side or from normal temperature to the low temperature side, the output power changes to h.
This is temperature sensing that takes advantage of rapid changes. On the other hand, in FIG. 3, the refractive index varies by about 1.
In the range of 38 to 1.43, the transmitted light Pl changes almost linearly with respect to the refractive index. Therefore, if we select a material whose refractive index changes within this range due to temperature changes and which has the median value of this refractive index range at room temperature, the power of transmitted light P
By monitoring i, sensing is possible in a temperature range beyond room temperature. Materials 7 that can be used here include fluororesins with relatively low refractive index values (1.3 to 1.42) and relatively high refractive index values (1.46 to 1.42).
1.51), cellulose-derived resins such as ethyl cellulose and acetate fibers, and polyethylene. The above embodiment is a temperature monitoring method by detecting only the power of transmitted light passing through an optical coupling section.

上記の方法は、本発明による温度センサ内蔵少心光ファ
イバケーブルによる温度モニタ方法の原理的なものであ
る。実用的には、透過光の変化を観測するより、公知の
後方散乱光を片端でモニタする方法がより有効である。
The above method is the principle of the temperature monitoring method using a small-core optical fiber cable with a built-in temperature sensor according to the present invention. Practically speaking, a known method of monitoring backscattered light at one end is more effective than observing changes in transmitted light.

第4図は、後方散乱光を利用して、片端でパワー変化を
モニタする方法を説明する実施例を示す図であって、1
aは第1のコア、1bは第2のコア、2は二つのコアに
共通なりラッド、3はコア2心を含むマルチコア光ファ
イバ、7は屈折率の温度依存性のあるプラスチック材料
、8はレーザ光源、9は光方向性結合器、10は受光器
、11は増幅・処理装置、12は波形表示装置であり、
8〜12を合わせて光パルス試験器13を構成している
。第3図に示すように、結合光P2は透過光Plに比ベ
パワーが大きく、かつ屈折率依存性が小さい。従って、
第4図に示すように、光信号通信用にこのパワーP2を
使用する。即ち、コア1aに入射した光信号は光結合部
6にてコア1bに結合させ、前記完結合部以降のコア1
bを伝搬する結合光を主信号として検知する。一方、温
度検知用として、コア1bから光パルスPsOを入射し
たときの、結合部での光結合特性は、結合部構造の対称
性から、コア1aより光パワPOを入射した場合の結合
特性と同じである。即ち、入射光パルスPsOは光結合
部にて透過光Pggl(コア1bを伝搬)と、結合光P
d(コア1aを伝搬)に分かれる。ここで、透過光Pa
lは前述の対称性から材料7の屈折率変化に依存して変
化する。これに伴って、方向性結合器9により受光器1
0に入射される反射光P ml’も変化し、観測される
波形にレベル変化が生じる。
FIG. 4 is a diagram showing an embodiment for explaining a method of monitoring power changes at one end using backscattered light,
a is the first core, 1b is the second core, 2 is common to the two cores, 3 is a multi-core optical fiber including two cores, 7 is a plastic material whose refractive index is temperature dependent, 8 is a plastic material whose refractive index is temperature dependent. A laser light source, 9 a light directional coupler, 10 a light receiver, 11 an amplification/processing device, 12 a waveform display device,
8 to 12 together constitute an optical pulse tester 13. As shown in FIG. 3, the combined light P2 has a larger power compared to the transmitted light Pl, and has a smaller dependence on the refractive index. Therefore,
As shown in FIG. 4, this power P2 is used for optical signal communication. That is, the optical signal incident on the core 1a is coupled to the core 1b at the optical coupling section 6, and the optical signal that enters the core 1a after the complete coupling section is
The combined light propagating through b is detected as the main signal. On the other hand, due to the symmetry of the structure of the coupling part, the optical coupling characteristics at the coupling part when the optical pulse PsO is input from the core 1b for temperature detection are similar to those when the optical power PO is input from the core 1a. It's the same. That is, the incident light pulse PsO is divided into the transmitted light Pggl (propagated through the core 1b) and the coupled light Pggl at the optical coupling part.
d (propagates through core 1a). Here, the transmitted light Pa
l changes depending on the change in the refractive index of the material 7 due to the symmetry described above. Along with this, the directional coupler 9 connects the light receiver 1.
The reflected light P ml' incident on 0 also changes, causing a level change in the observed waveform.

このように温度変化にともなう光結合部でのレイリー後
方散乱光の検出波形のレベル変化を光パルス試験器13
を使用して観測することにより、通信回線に影響を与え
ることなく、リアルタイムに光結合部周囲の温度を検出
することができる。以上のセンシング方法により、常用
の信号回線とセンシング用回線を同じ光ファイバ心線内
に設定できるので、センシング専用のファイバを他に設
ける必要がなく、経済的に保守システムを構成すること
ができる。
In this way, the optical pulse tester 13 measures changes in the level of the detected waveform of Rayleigh backscattered light at the optical coupling section due to temperature changes.
By observing the temperature using , it is possible to detect the temperature around the optical coupling part in real time without affecting the communication line. With the above sensing method, the regular signal line and the sensing line can be set up in the same optical fiber, so there is no need to provide another fiber exclusively for sensing, and the maintenance system can be configured economically.

(゛発明の効果) 以上説明したように、本発明による温度センサ内蔵少心
光ファイバケーブルによれば、センシング精度が高くし
かも低価格で構成できる。また本発明による温度モニタ
方法によれば、温度検知部は現場作製が容易で、広範囲
の温度を精度良く測定でき、しかも、使用する通信回線
に影響を与えることなくセンシングが可能である。この
ため、建設後のケーブルであっても、所要の場所に容易
に作製することができ、経済的に温度検知が可能な線路
保守システムを構成することができる。また、本発明で
使用する光ファイバ心線は、一般に多く使用されている
石英系ファイバの適用が可能であり、ラマン増幅を利用
する温度検知用特殊ファイバを用いる必要がない。
(Effects of the Invention) As explained above, according to the optical fiber cable with a small number of cores with a built-in temperature sensor according to the present invention, the cable can be constructed with high sensing accuracy and at a low cost. Further, according to the temperature monitoring method of the present invention, the temperature detection section can be easily manufactured on-site, can accurately measure temperature over a wide range, and can perform sensing without affecting the communication line used. Therefore, even after the cable has been constructed, it can be easily manufactured at a required location, and a track maintenance system that can economically detect temperature can be configured. Further, the optical fiber used in the present invention can be a commonly used quartz fiber, and there is no need to use a special fiber for temperature detection that uses Raman amplification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による温度センサ内蔵中心光ファイバケ
ーブルの断面図、第2図は本発明によるセンサ部を示す
断面図、第3図は本発明を実施したセンサ部内光結合部
の透過光及び結合光の出力パワーの屈折率依存性を測定
した実験結果を示す図、第4図は本発明の温度モニタ方
法の実施例を示す図である。 la、lb・・・コ ア 2・・・クラッド 3・・・マルチコア光ファイバ 4・・・プラスチック被覆 5・・・外 被 6・・・パイコニカルテーバ部 7・・・屈折率が温度依存性のある材料8・・・レーザ
光源 9・・・光方向性結合器 10・・・受光器 11・・・増幅・処理装置 12・・・波形表示装置 13・・・光パルス試験器 特許出願人 日本電信電話株式会社
FIG. 1 is a cross-sectional view of a central optical fiber cable with a built-in temperature sensor according to the present invention, FIG. 2 is a cross-sectional view showing a sensor section according to the present invention, and FIG. FIG. 4 is a diagram showing the experimental results of measuring the refractive index dependence of the output power of the coupled light, and FIG. 4 is a diagram showing an embodiment of the temperature monitoring method of the present invention. la, lb...Core 2...Clad 3...Multi-core optical fiber 4...Plastic coating 5...Sheath 6...Piconical tapered portion 7...Refractive index is temperature dependent Material 8... Laser light source 9... Optical directional coupler 10... Light receiver 11... Amplification/processing device 12... Waveform display device 13... Optical pulse tester Patent applicant Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)光信号を伝送するコアが複数心存在し、そのクラ
ッドは該複数心コアを共通に囲む形状であるマルチコア
光ファイバから成るマルチコア光ファイバ心線を少なく
とも1本収容している少心光ファイバケーブルにおいて
、該マルチコア光ファイバ心線にはその長手方向の任意
場所の微小長部分に光結合部を設け、かつ温度に依存し
その屈折率が変化する材料で該光結合部の周囲を覆った
部分を設けたことを特徴とする温度センサ内蔵少心光フ
ァイバケーブル。
(1) A small-core optical fiber containing at least one multi-core optical fiber consisting of a multi-core optical fiber having a plurality of cores for transmitting optical signals, the cladding of which has a shape that commonly surrounds the plurality of cores. In the fiber cable, the multi-core optical fiber core is provided with an optical coupling part at a small length at any location in the longitudinal direction, and the optical coupling part is covered with a material whose refractive index changes depending on the temperature. A small-core optical fiber cable with a built-in temperature sensor.
(2)マルチコア光ファイバの断面外周形状が、円形コ
ア、円形クラッドの単心コア光ファイバを複数心平行に
束ね、該単心コア光ファイバの外接接触線が相互に融着
され、非接触面がほぼもとの形状のままであり、各々の
隣接するコアはほぼ等間隔に位置することを特徴とする
特許請求の範囲第(1)項に記載の温度センサ内蔵少心
光ファイバケーブル。
(2) The cross-sectional outer circumferential shape of the multi-core optical fiber is such that a plurality of single-core optical fibers with a circular core and a circular cladding are bundled in parallel, and the circumscribed contact lines of the single-core optical fibers are fused to each other, and the non-contact surface The small-core optical fiber cable with a built-in temperature sensor according to claim 1, wherein the cores remain substantially in their original shape, and the adjacent cores are located at substantially equal intervals.
(3)光信号を伝送するコアが複数心存在し、そのクラ
ッドは該複数心コアを共通に囲む形状であるマルチコア
光ファイバから成るマルチコア光ファイバ心線を少なく
とも1本収容している少心光ファイバケーブルの長手方
向の任意場所で該マルチコア光ファイバ心線に光結合部
を設け、かつ、温度に依存しその屈折率が変化する材料
で該結合部の周囲を被覆した部分が存在する光ファイバ
ケーブルにおいて、該ケーブルの一端でマルチコア光フ
ァイバのコア1心に通信用光信号を入射し、前記光結合
部で他の複数心コアに該光信号を結合させて出射光を分
離して取り出し可能とし、該出射光のうち通信用光信号
を入射したコアと同一のコアからの出射光の強度変化か
ら温度変化を検知することを特徴とする温度モニタ方法
(3) A small-core optical fiber having a plurality of cores for transmitting optical signals, the cladding of which accommodates at least one multi-core optical fiber consisting of a multi-core optical fiber having a shape that commonly surrounds the plurality of cores. An optical fiber in which an optical coupling part is provided in the multi-core optical fiber core at any location in the longitudinal direction of the fiber cable, and a part is coated around the coupling part with a material whose refractive index changes depending on temperature. In a cable, a communication optical signal is inputted into one core of a multi-core optical fiber at one end of the cable, and the optical signal is coupled to other multi-core cores at the optical coupling part, so that the output light can be separated and extracted. A temperature monitoring method characterized in that a temperature change is detected from a change in the intensity of the emitted light from the same core as the core into which the communication optical signal is input.
(4)光信号を伝送するコアが複数心存在し、そのクラ
ッドは該複数心コアを共通に囲む形状であるマルチコア
光ファイバから成るマルチコア光ファイバ心線を少なく
とも1本収容している少心光ファイバケーブルの長手方
向の任意場所で該マルチコア光ファイバ心線に光結合部
を設け、かつ、温度に依存しその屈折率が変化する材料
で該結合部の周囲を被覆した部分が存在する光ファイバ
ケーブルにおいて、該ケーブルの一端で、マルチコア光
ファイバのコア1心には通信用光信号を入射しておき、
同端の該光信号を入射したコアとは異なるコアには温度
検知用光パルスを入射し、該コアから戻る後方散乱光の
強度を検出し、温度変化にともなう該被覆材料の屈折率
変化により変化する、前記光結合部から戻る後方散乱光
の強度変化から温度変化を検知することを特徴とする温
度モニタ方法。
(4) A small-core optical fiber containing at least one multi-core optical fiber consisting of a multi-core optical fiber having a plurality of cores for transmitting optical signals, the cladding of which has a shape that commonly surrounds the plurality of cores. An optical fiber in which an optical coupling part is provided in the multi-core optical fiber core at any location in the longitudinal direction of the fiber cable, and a part is coated around the coupling part with a material whose refractive index changes depending on temperature. In the cable, a communication optical signal is input into one core of the multi-core optical fiber at one end of the cable,
A temperature detection optical pulse is input to a core different from the core into which the optical signal is input at the same end, and the intensity of the backscattered light returning from the core is detected, and the refractive index change of the coating material due to temperature change is detected. A temperature monitoring method characterized in that a temperature change is detected from a change in the intensity of backscattered light returning from the optical coupling section.
JP62288845A 1987-11-16 1987-11-16 Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature Pending JPH01129127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288845A JPH01129127A (en) 1987-11-16 1987-11-16 Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288845A JPH01129127A (en) 1987-11-16 1987-11-16 Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature

Publications (1)

Publication Number Publication Date
JPH01129127A true JPH01129127A (en) 1989-05-22

Family

ID=17735490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288845A Pending JPH01129127A (en) 1987-11-16 1987-11-16 Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature

Country Status (1)

Country Link
JP (1) JPH01129127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200755B3 (en) * 2017-01-18 2018-03-08 Leoni Kabel Gmbh Sensor line, measuring arrangement and method for detecting an environment variable
JP2018536162A (en) * 2015-11-19 2018-12-06 コーニング インコーポレイテッド Distributed fiber sensor and system using multi-core fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536162A (en) * 2015-11-19 2018-12-06 コーニング インコーポレイテッド Distributed fiber sensor and system using multi-core fiber
DE102017200755B3 (en) * 2017-01-18 2018-03-08 Leoni Kabel Gmbh Sensor line, measuring arrangement and method for detecting an environment variable
US10416528B2 (en) 2017-01-18 2019-09-17 Leoni Kabel Gmbh Sensor line, measuring arrangement and method for detecting an ambient variable

Similar Documents

Publication Publication Date Title
US3756688A (en) Metallized coupler for optical waveguide light source
US6301420B1 (en) Multicore optical fibre
US3832028A (en) Coupler for optical waveguide light source
JP7333822B2 (en) Optical fiber assembly and method of use
JPS6156449B2 (en)
US5903685A (en) Sensor arrangement
US7603009B2 (en) Double-ended distributed temperature sensing systems
US5627934A (en) Concentric core optical fiber with multiple-mode signal transmission
US20220334007A1 (en) Broad bandwidth graded index multimode optical fiber for distributed temperature sensing in the 1550 nm region
CN108267241B (en) High-sensitivity optical fiber temperature sensor based on hybrid double peanut knots
CN105928469A (en) High-sensitivity fiber curvature sensor capable of discriminating bending direction and free of cross temperature sensitivity
CN111025477A (en) A single-mode fiber and capillary fiber coupler and preparation method thereof
CN107219198B (en) Refractive index sensor, preparation method thereof and refractive index detection device
CN207114428U (en) Index sensor and refractivity tester
JPH04253002A (en) Optical-fiber communication network
CN204630604U (en) A kind of SMS type parallel multiplex multiplex optical fibre sensor
CN112414581A (en) Temperature sensor based on multicore optic fibre
GB2122337A (en) Fibre optic sensing device
JPH01129127A (en) Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature
CN114111857A (en) Vernier effect based optical fiber FPI cascaded MI sensing device
Hartog et al. Remote measurement of temperature distribution using an optical fibre
GB1582768A (en) Temperature sensitive optical fibre
Tongam et al. Study of Bending Effect of G652 and G657 Optical Fibers on Power Transmission Losses
JP2009052964A (en) Fiber-optic temperature sensor and temperature detection system using it
CN216386772U (en) An Optical Fiber MZI Refractive Index Sensor and System Based on S-shaped Peanut Structure