[go: up one dir, main page]

JPH01119662A - Manufacturing method of organic thin film - Google Patents

Manufacturing method of organic thin film

Info

Publication number
JPH01119662A
JPH01119662A JP27352387A JP27352387A JPH01119662A JP H01119662 A JPH01119662 A JP H01119662A JP 27352387 A JP27352387 A JP 27352387A JP 27352387 A JP27352387 A JP 27352387A JP H01119662 A JPH01119662 A JP H01119662A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
organic matter
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27352387A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujikawa
裕之 藤川
Koichi Iwata
岩田 幸一
Hideo Takahashi
英雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27352387A priority Critical patent/JPH01119662A/en
Publication of JPH01119662A publication Critical patent/JPH01119662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a thin film of organic matter free from pinholes and having superior adhesive strength to a substrate by forming a film of an organic matter on a substrate by a vacuum vapor deposition method and then heating the resulting film under specific conditions. CONSTITUTION:In a vacuum chamber of <=about 10<-2>Torr, preferably about 10<-6>-10<-2>Torr, degree of vacuum, an organic matter 1 (e.g. PTFE, PPS) material held in an evaporation cell 2 is heated to the prescribed temp. by means of a heater 3, by which the above organic matter 1 is evaporated and deposited onto the surface of a substrate 4 disposed in a manner to be opposed to the evaporation cell 2 to undergo film formation. At this time, it is desirable that film formation is carried out while keeping the temp. of the above substrate 4 at room temp. so as to prevent the reevaporation of the thin vapor-deposited film. The resulting thin film of <=1mum thickness formed on the substrate 4 is heated under >=10<-4>Torr pressure within a temp. range of (the melting point of the above organic matter 1) + or -50 deg.C. By this method, the dense thin film of organic matter excellent in adhesive strength to the substrate 4 and free from pinholes can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空蒸着法を利用して有機物薄膜を製造する
方法に関し、さらに詳しくは、金属、セラミックス、そ
の他の無機物質または有機物質等の基板上に所望の特性
を持ち、かつ基板との密着性に優れた有機物の薄膜を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing organic thin films using vacuum evaporation, and more particularly, to methods for producing organic thin films on substrates such as metals, ceramics, other inorganic materials, or organic materials. The present invention relates to a method for producing a thin film of an organic material that has desired properties and excellent adhesion to a substrate.

従来の技術 固体表面に各種有機物質材料の薄い被膜を形成し、該有
機物質と同様の表面特性を与えることはよく知られた技
術である。従来、基板上に有機物質の薄膜を形成する方
法として、溶液塗布法、溶射法、プラズマ重合法、電界
離脱法、真空蒸着法、真空蒸着法をさらに改変したスパ
ッタリング法やイオンブレーティング法など各種の方法
が知られている。これらの方法は、それぞれ特有の利点
を有するが、他方、欠点も多く、かつ技術的に解決すべ
き研究課題が数多く残されている。
BACKGROUND OF THE INVENTION It is a well-known technique to form thin coatings of various organic materials on solid surfaces to provide surface properties similar to those of the organic materials. Conventionally, various methods have been used to form a thin film of organic material on a substrate, such as solution coating method, thermal spraying method, plasma polymerization method, electric field separation method, vacuum evaporation method, sputtering method that is a further modification of vacuum evaporation method, and ion blating method. method is known. Although each of these methods has its own unique advantages, on the other hand, there are many drawbacks, and many research problems remain to be solved technically.

例えば、溶液塗布法は、高分子物質の溶液を基板上に塗
布した後、溶媒を乾燥除去して高分子物質の被膜を形成
する方法であり、従来から行なわれてきた簡単な方法で
あるが、溶剤の乾燥という後処理が必要であること、ま
た、溶剤の蒸発に伴なう環境衛生上の問題があること、
発泡、アバタ等の膜厚のむらが生じやすいこと、しかも
基板との密着性を改善することが難しいことなどの欠点
がある。
For example, the solution coating method is a method in which a solution of a polymeric substance is applied onto a substrate and then the solvent is dried and removed to form a film of the polymeric substance, and is a simple method that has been used in the past. , the need for post-treatment of drying the solvent, and the environmental hygiene problems associated with evaporation of the solvent;
There are drawbacks such as the tendency to cause uneven film thickness such as foaming and avatars, and furthermore, it is difficult to improve the adhesion to the substrate.

溶剤を用いない方法としては、熱可塑性樹脂を高電圧ア
ーク火花で溶融させ、基板上に吹き付けて被覆層を形成
させる溶射法があるが、成膜中にピンホールを含みやす
く、緻密な膜を形成することが難しいという欠点がある
As a method that does not use solvents, there is a thermal spraying method in which thermoplastic resin is melted with high-voltage arc sparks and sprayed onto the substrate to form a coating layer, but this method tends to contain pinholes during film formation and does not produce a dense film. The disadvantage is that it is difficult to form.

プラズマ重合法は、原料物質としてモノマーガスをプラ
ズマ雰囲気中に供給し、基板上に重合膜を形成させる方
法であり、例えば、プラズマ反応室内部の電極上に基板
を載置し、0.2〜0.47orrの圧力でテトラフル
オロエチレン(TFE)七ツマ−を流しながら、該電極
と対電極との間に高周波を印加すると、TFEは励起さ
れプラズマを生成し基板表面にポリマーを形成する。こ
のプラズマ重合法は、比較的接着強度の高い薄膜を形成
することができるけれども、重合反応の制御が難しく、
また、分子構造が規則正しい高分子物質を形成すること
ができないという欠点がある。
The plasma polymerization method is a method in which a monomer gas is supplied as a raw material into a plasma atmosphere to form a polymer film on a substrate. For example, the substrate is placed on an electrode inside a plasma reaction chamber, When a high frequency wave is applied between the electrode and the counter electrode while flowing tetrafluoroethylene (TFE) at a pressure of 0.47 orr, the TFE is excited to generate plasma and form a polymer on the substrate surface. Although this plasma polymerization method can form a thin film with relatively high adhesive strength, it is difficult to control the polymerization reaction.
Another drawback is that it is not possible to form a polymer substance with a regular molecular structure.

最近、これらの薄膜製造技術の欠点を克服するために、
原料の有機物質の分解を制御しながら、これを粒子状と
して取り出す電界離脱法を利用してVJ膜を形成する方
法が提案されているが、この方法で有機物質を基板上に
析出させたものは、基板との密着性が十分ではないとい
う欠点がある。
Recently, to overcome the shortcomings of these thin film manufacturing techniques,
A method has been proposed to form a VJ film using an electric field separation method that extracts the organic material as particles while controlling the decomposition of the organic material as a raw material. has the disadvantage of insufficient adhesion to the substrate.

ところで、気相中で薄膜を作製する方法として真空蒸着
法が知られている。真空蒸着法は、真空室中で、材料を
加熱して蒸発させ、薄膜として基板上に沈着・させる方
法である。この方法を有機物材料からの薄膜形成に適用
するにあたって、基板との密着性を高めるために基板を
加熱しておく方法があるが、基板を加熱しながら成膜す
ると、析出物の再蒸発が起こり成膜速度が遅くなるとい
う欠点がある。
Incidentally, a vacuum evaporation method is known as a method for producing a thin film in a gas phase. The vacuum evaporation method is a method in which a material is heated and evaporated in a vacuum chamber, and deposited as a thin film on a substrate. When applying this method to forming thin films from organic materials, there is a method of heating the substrate in order to improve adhesion to the substrate, but if the film is formed while heating the substrate, re-evaporation of precipitates may occur. There is a drawback that the film formation rate is slow.

発明が解決しようとする問題点 本発明の目的は、従来技術における有機物薄膜の形成方
法の欠点を改良し、ピンホールがなく、しかも基板との
密着性の良好な有機物質の薄膜を製造する方法を提供す
ることにある。
Problems to be Solved by the Invention The purpose of the present invention is to improve the shortcomings of conventional methods for forming organic thin films, and to provide a method for producing organic thin films that are free from pinholes and have good adhesion to a substrate. Our goal is to provide the following.

さらに具体的には、真空蒸着法を利用して有機物薄膜を
基板上に形成させ、その成膜を真空中あるいは加圧下で
加熱溶融させ、基板との密着性を向上させるとともに、
ピンホールのない緻密な有機物薄膜を製造する方法を提
供することにある。
More specifically, an organic thin film is formed on a substrate using a vacuum evaporation method, and the formed film is heated and melted in a vacuum or under pressure to improve adhesion to the substrate.
The object of the present invention is to provide a method for manufacturing a dense organic thin film without pinholes.

問題点を解決するための手段 すなわち1本発明の要旨は、真空蒸着法により原料の有
機物質を基板上に成膜した後、10−4τart以上の
圧力下で該有機物質の融点から上下50℃の範囲内の温
度で加熱することを特徴とする有機物薄膜の製造法にあ
る。
The gist of the present invention is to form a film of a raw material organic material on a substrate by a vacuum evaporation method, and then heat the organic material at a temperature of 50°C above or below the melting point of the organic material under a pressure of 10-4τart or more. A method for producing an organic thin film characterized by heating at a temperature within the range of .

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

(真空蒸着法) 本発明で利用する真空蒸着法とは、真空中で原料を加熱
し、蒸発させ基板上にその原料を膜状に析出させる方法
であり、それ自体はよく知られた公知の方法である1例
えば、ポリテトラフルオロエチレン(以下、PTFEと
略称する。)を1×10−6〜10−4Torrの圧力
で500℃以上に加熱すると、PTFEは解重合して蒸
発し、その蒸気は系内の冷基板上で再重合して0.1〜
0.5Pm程度の厚さの薄膜を形成する。このように、
真空蒸着法は、材料を原子や分子の形で分散させ。
(Vacuum evaporation method) The vacuum evaporation method used in the present invention is a method in which a raw material is heated in a vacuum, evaporated, and deposited in the form of a film on a substrate. Method 1: For example, when polytetrafluoroethylene (hereinafter abbreviated as PTFE) is heated to 500°C or higher at a pressure of 1 x 10-6 to 10-4 Torr, PTFE depolymerizes and evaporates, and its vapor is is repolymerized on a cold substrate in the system to 0.1~
A thin film with a thickness of about 0.5 Pm is formed. in this way,
Vacuum deposition methods disperse materials in the form of atoms and molecules.

被膜を構成する方法である。また、真空蒸着法には、加
熱源により抵抗加熱蒸着、電子ビーム蒸着、レーザー蒸
着などの方法がある。
This is a method of forming a film. Further, vacuum evaporation methods include methods such as resistance heating evaporation, electron beam evaporation, and laser evaporation depending on the heating source.

本発明では、真空度としてI 0−27orτ以下が望
ましく、特に10−6〜10−2τartの範囲が適邑
である。
In the present invention, the degree of vacuum is desirably less than I 0-27 or τ, and a range of 10-6 to 10-2 τ is particularly suitable.

本発明においては、真空蒸着法を用いるため、有機物の
膜厚がlBm以下の薄膜を容易に製造することができる
In the present invention, since a vacuum evaporation method is used, a thin film of organic matter having a thickness of 1Bm or less can be easily manufactured.

そして、本発明では、真空蒸着法により得た成膜を大気
中または真空中で原料有機物質の融点の前後の温度まで
加熱し、溶融させることにより基板との密着性を向上さ
せ、かつピンホールのない緻密な薄膜とする。また、薄
膜の密着性を向上させるために、真空蒸着中に基板を加
熱する必要がないため、析出物の再蒸発が起こらず、成
膜速度が遅くなることがない。
In the present invention, the film obtained by the vacuum evaporation method is heated in the air or vacuum to a temperature around the melting point of the raw organic material to melt it, thereby improving the adhesion with the substrate and making it possible to form pinholes. Form a dense thin film with no cracks. Furthermore, since it is not necessary to heat the substrate during vacuum deposition in order to improve the adhesion of the thin film, re-evaporation of precipitates does not occur and the film formation rate does not slow down.

本発明の方法を図面を参照しながら、さらに具体−的に
説明する。
The method of the present invention will be explained in more detail with reference to the drawings.

第1図および第2図は、本発明の製造法に用いる装置の
例を模式的に表わした略図である。
FIGS. 1 and 2 are diagrams schematically showing an example of an apparatus used in the manufacturing method of the present invention.

第1図において、蒸発用セル(2)は原料有機物質(1
)を収納し、ヒーター(3)により加熱するようにしで
ある。基板(4)は蒸発用セルに対向してその上方に設
置しである。基板(4)は、適当な支持装置で保持し1
通常、有機物質から気相中へ蒸発し遊離した分子が析出
し易い位置に置く、これら蒸発用セルおよび基板などは
1図示していないが、真空室(真空チャンバー)内に置
く、この場合、真空室内は、前記したように10−2T
orr以下、好ましくはI X 10−6〜10−2T
orr程度の真空にしておく、また、基板の温度は、高
める必要はなく、室温でも十分である。
In Figure 1, the evaporation cell (2) is a raw material organic material (1
) is stored and heated by a heater (3). The substrate (4) is placed opposite to and above the evaporation cell. The substrate (4) is held by a suitable support device 1
Usually, these evaporation cells and substrates are placed in a position where the molecules evaporated from the organic substance into the gas phase and released are likely to precipitate.Although not shown in the figure, these evaporation cells and substrates are placed in a vacuum chamber.In this case, The inside of the vacuum chamber is 10-2T as mentioned above.
orr or less, preferably I x 10-6 to 10-2T
The vacuum is kept at about 10.0 m or more, and there is no need to raise the temperature of the substrate; room temperature is sufficient.

気相中へ蒸発し遊離した有機物質の分子は、基板上に析
出して薄膜を形成する。真空蒸着する時間は、基板上に
析出する有機物薄膜の所望の厚みにもよるが、通常、2
0〜60分程度である。もちろん、これらの操作条件は
、使用する有機物質の種類や所望の表面特性を得る等の
ために、°当業者であれば適宜変更し得るものである。
Molecules of the organic substance evaporated into the gas phase and liberated are deposited on the substrate to form a thin film. The time for vacuum deposition depends on the desired thickness of the organic thin film deposited on the substrate, but is usually 2.
It takes about 0 to 60 minutes. Of course, these operating conditions can be modified as appropriate by those skilled in the art, depending on the type of organic substance used, desired surface characteristics, etc.

次いで、基板上に析出した有機物質の析出物は、10−
4Torr以上の圧力下、好ましくは1o−4〜10i
Torr程度の圧力下で、加熱処理に付される。大気圧
下でもよい、 10−4Torr以上の圧力下で加熱処
理を行なう理由は、析出物の再蒸発を避けるためである
。加熱温度は、原料の有機物質の融点の上下50℃の範
囲内にあることが必要である。この範囲以下の低温では
、加熱処理による密着性付与効果が劣り、逆にあまり高
い温度であると、析出した有機物質が分解したり、再蒸
発するので、いずれも好ましくない、加熱処理の時間は
、1〜5分程度で十分である。
Next, the precipitate of organic material deposited on the substrate is 10-
Under a pressure of 4 Torr or more, preferably 1o-4 to 10i
It is subjected to heat treatment under a pressure of about Torr. The reason why the heat treatment is performed under a pressure of 10 −4 Torr or higher, which may be under atmospheric pressure, is to avoid re-evaporation of precipitates. The heating temperature needs to be within a range of 50° C. above and below the melting point of the raw organic substance. At low temperatures below this range, the effect of heat treatment on imparting adhesion will be poor, and at too high a temperature, the precipitated organic substances will decompose or re-evaporate, both of which are unfavorable. , about 1 to 5 minutes is sufficient.

本発明においては、この加熱処理により有機物質からな
る薄膜を基板上に焼付けて強固にi若させるのである。
In the present invention, this heat treatment is used to bake a thin film made of an organic substance onto the substrate and make it strong.

本発明の方法により、連続的に有機物薄膜を製造するこ
とができる。第2図は、有機物薄膜の連続的製造法を示
す例である。
By the method of the present invention, organic thin films can be continuously produced. FIG. 2 is an example showing a method for continuously producing an organic thin film.

第2図面に示す連続成膜装置は、成膜室(5)、加熱処
理(焼付)室(6)および差動排気室(13)からなり
、箔やシート、フィルムなどの形状の基板(lO)を巻
取機を用いて成膜室から焼付室へ連続的に供給するよう
に構成している。差動排気室(13)により、成膜室と
焼付室との真空度をそれぞれ所定の気圧となるように調
節している。蒸発用セル内に収納された有機物質(7)
は、ヒーター(9)により加熱される。蒸発した有機物
質は、基板(lO)の表面に析出する0次いで、焼付室
(6)に送られた有機物の薄膜を有する基板は、ヒータ
ー(12)により加熱処理される。
The continuous film forming apparatus shown in the second drawing consists of a film forming chamber (5), a heat treatment (baking) chamber (6), and a differential exhaust chamber (13). ) is configured to be continuously supplied from the film forming chamber to the baking chamber using a winder. A differential pumping chamber (13) adjusts the degree of vacuum in the film forming chamber and the baking chamber to a predetermined atmospheric pressure, respectively. Organic substances stored in the evaporation cell (7)
is heated by a heater (9). The evaporated organic substance is deposited on the surface of the substrate (lO).Then, the substrate with the thin film of organic substance sent to the baking chamber (6) is heated by a heater (12).

(有機物質) 本発明で使用する有機物質としては、従来から有機物の
薄膜を製造する際に用いられてきた多くのものが挙げら
れ、特に制限されるものではないが、加熱すると蒸発す
る有機物質に好適に適用できる。その中でも、特に耐熱
性に優れた高分子や撥水性、防湿性などに優れた高分子
、例えばポリフェニレンサルファイドやポリテトラフル
オロエチレン、ポリ−4−メチルペンテ″ンー1などを
用いれば、基板表面にそれらの有機物質が有する特性を
付与することができるので、好ましい。
(Organic Substance) The organic substance used in the present invention includes many substances that have been conventionally used in manufacturing thin films of organic substances, and is not particularly limited. It can be suitably applied to. Among them, if polymers with particularly excellent heat resistance, water repellency, and moisture resistance are used, such as polyphenylene sulfide, polytetrafluoroethylene, and poly-4-methylpentene-1, it is possible to coat them on the substrate surface. This is preferable because it can impart the characteristics that organic substances have.

(基板) 基板としては、各種固体物質が使用される0例えば、ス
テンレス板やアルミ箔などの各種金属類、プラスチック
などが挙げられる。基板の形状は特に制限されない。
(Substrate) Various solid materials may be used as the substrate, including various metals such as stainless steel plates and aluminum foil, and plastics. The shape of the substrate is not particularly limited.

(有機物薄膜) 本発明の製造法により基板上に得られる有機物S膜は、
厚さ0.1〜5pm程度のものであり、ピンホールや発
泡のない緻密な膜である。しかも、この薄膜は基板との
密着性に優れている。
(Organic substance thin film) The organic substance S film obtained on the substrate by the production method of the present invention is
It has a thickness of about 0.1 to 5 pm, and is a dense film without pinholes or bubbles. Moreover, this thin film has excellent adhesion to the substrate.

そして1例えば、ポリテトラフルオロエチレン(PTF
E)の薄膜を被覆した基板は、PTFEなみの撥水性を
示すようになり、また、緻密で防湿性が付与される。こ
のように、表面に有機物質の被膜を設けることによって
、その有機物質の有する特性を基板(各種固体物品)表
面に付与することができるので、本発明は、エレクトロ
ニクス、光学、精密機械、その他の広範な産業分野にお
いて利用することができる。
and 1, for example, polytetrafluoroethylene (PTF
The substrate coated with the thin film E) exhibits water repellency comparable to that of PTFE, and is dense and moisture-proof. As described above, by providing a film of an organic substance on the surface, the characteristics of the organic substance can be imparted to the surface of the substrate (various solid articles). It can be used in a wide range of industrial fields.

実施例 以下、実施例および比較例を挙げて本発明を具体的に説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples.

実施例1 第1図に示すように、原料の有機物質として融点が27
0℃のポリフェニレンスルフィド(以下、PPSと略称
する。)を用い、これを原料蒸発セル(2)に保持する
。真空チャンバー内を10−4Torrにした後、ヒー
ター(3)により原料蒸発セルを300℃に加熱する。
Example 1 As shown in Figure 1, the raw material organic material had a melting point of 27.
Polyphenylene sulfide (hereinafter abbreviated as PPS) at 0° C. is used and held in a raw material evaporation cell (2). After setting the inside of the vacuum chamber to 10 −4 Torr, the raw material evaporation cell is heated to 300° C. using a heater (3).

基板(4)であるアルミ箔(4)をこの原料蒸発セルに
対向して設置し、15分後後アルミ箔上膜厚5000A
のPPSの薄膜が得られた。
An aluminum foil (4), which is a substrate (4), was placed facing this raw material evaporation cell, and after 15 minutes, the film thickness on the aluminum foil was 5000A.
A thin film of PPS was obtained.

この基板を大気中に取り出し、ヒーター上で280℃に
加熱した後、ピーリングテープで密着性テストをしたと
ころ、はがれたものは0/100(個)であった、この
ように1本発明の薄膜は基板に対する密着性に優れてい
ることが分る。
This substrate was taken out into the atmosphere and heated to 280°C on a heater, and then an adhesion test was performed using a peeling tape, and the number of peeled pieces was 0/100 (pieces). It can be seen that the material has excellent adhesion to the substrate.

ここで、密着性テストは、次のようにして行なった。ま
ず、R膜にナイフあるいはカッター等で1mm角の基盤
目を100個作る。この基盤目全体にピーリングテープ
をしっかりと貼り、その後、そのテープをはがした際、
テープにより何個の基盤目がはがれたかを調べた。
Here, the adhesion test was conducted as follows. First, 100 base holes of 1 mm square are made on the R film using a knife or cutter. Apply peeling tape firmly to the entire base, and then remove the tape.
It was determined how many base layers were peeled off by the tape.

比較例1 大気中で加熱処理しなかったこと以外は、実施例1と全
く同様の条件でPPSの薄膜を作成した。この大気中で
の加熱前のPPS薄膜についてピーリングテープにて密
着性を調べたところ、その結果はZoo/Zoo(債)
であり、密着性が極めて劣るものであった。
Comparative Example 1 A PPS thin film was created under exactly the same conditions as in Example 1, except that no heat treatment was performed in the atmosphere. When the adhesion of this PPS thin film before heating in the atmosphere was examined using peeling tape, the results were as follows: Zoo/Zoo (bond)
The adhesion was extremely poor.

実施例2 第2図に示す連続成膜用の装置を用いて連続的に有機物
薄膜を製造した−0この装置は、前記したとおり成膜室
(5)と焼付室(6)を備えている。原料の有機物質と
して融点が315℃のポリテトラフルオロエチレン(以
下、PTFEと略称する。)を用い、これを原料蒸発セ
ル(8)に保持し、この原料蒸発セルをヒーター(9)
で450℃に加熱し、PTFEを蒸発させる。このとき
、基板(lO)であるアルミ箔は、原料蒸発セルと対向
して設置し、in/分の速度で移動させ、成膜室から焼
付室へ連続的に供給する。焼付室は、350℃に保って
おき、巻取機(11)によりアルミ箔を連続的に巻取っ
て行く、ここで、成膜室の真空度は、10−4Torr
とし、焼付室は10−3Torrにしておく、これによ
り作成したPTFEIIIは、約500OAの厚さであ
り、撥水性が良好で、基板との密着性も良好であった。
Example 2 An organic thin film was continuously produced using the continuous film forming apparatus shown in FIG. 2. This apparatus is equipped with a film forming chamber (5) and a baking chamber (6) as described above. . Polytetrafluoroethylene (hereinafter abbreviated as PTFE) with a melting point of 315° C. is used as the raw material organic material, and is held in a raw material evaporation cell (8), which is connected to a heater (9).
to evaporate the PTFE. At this time, the aluminum foil serving as the substrate (lO) is placed facing the raw material evaporation cell, moved at a speed of in/min, and continuously supplied from the film forming chamber to the baking chamber. The baking chamber is kept at 350°C, and the aluminum foil is continuously wound up by the winder (11).The vacuum degree of the film forming chamber is 10-4 Torr.
The temperature of the baking chamber was set at 10-3 Torr.The PTFE III thus produced had a thickness of about 500 OA, had good water repellency, and had good adhesion to the substrate.

発明の効果 本発明の有機物薄膜の製造法により、従来の方法に比べ
てはるかに基板との密着性に優れた、ピンホールのない
緻密な有機物薄膜を得ることができる。
Effects of the Invention By the method for producing an organic thin film of the present invention, it is possible to obtain a dense organic thin film without pinholes, which has much better adhesion to a substrate than conventional methods.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は1本発明の製造法に用いる装置の
例を模式的に表した略図である。 1、原料有機物質    8.蒸発用セル2、蒸発用セ
ル     9.ヒーター3、ヒーター      1
0.基板 4、基板        110巻取機5、成膜室  
     12.ヒーター8、焼付室       1
3.差動排気室7、原料有機物質
FIGS. 1 and 2 are diagrams schematically showing an example of an apparatus used in the manufacturing method of the present invention. 1. Raw material organic substance 8. Evaporation cell 2, evaporation cell 9. heater 3, heater 1
0. Substrate 4, substrate 110 winder 5, film forming chamber
12. Heater 8, baking chamber 1
3. Differential exhaust chamber 7, raw material organic material

Claims (2)

【特許請求の範囲】[Claims] (1)真空蒸着法により原料の有機物質を基板上に成膜
した後、10−4Torr以上の圧力下で該有機物質の
融点から上下50℃の範囲内の温度で加熱することを特
徴とする有機物薄膜の製造法。
(1) After forming a film of a raw material organic material on a substrate by a vacuum evaporation method, it is heated at a temperature within a range of 50° C. above and below the melting point of the organic material under a pressure of 10 −4 Torr or more. Method for producing organic thin films.
(2)成膜時の基板温度を室温に保持しておく特許請求
の範囲第(1)項に記載の有機物薄膜の製造法。
(2) The method for producing an organic thin film according to claim (1), wherein the substrate temperature during film formation is maintained at room temperature.
JP27352387A 1987-10-30 1987-10-30 Manufacturing method of organic thin film Pending JPH01119662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27352387A JPH01119662A (en) 1987-10-30 1987-10-30 Manufacturing method of organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27352387A JPH01119662A (en) 1987-10-30 1987-10-30 Manufacturing method of organic thin film

Publications (1)

Publication Number Publication Date
JPH01119662A true JPH01119662A (en) 1989-05-11

Family

ID=17529040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27352387A Pending JPH01119662A (en) 1987-10-30 1987-10-30 Manufacturing method of organic thin film

Country Status (1)

Country Link
JP (1) JPH01119662A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308766A (en) * 2001-12-12 2008-12-25 Semiconductor Energy Lab Co Ltd Deposition method
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP4880063B1 (en) * 2010-11-24 2012-02-22 藤倉ゴム工業株式会社 Golf club shaft and manufacturing method thereof
US8129077B2 (en) 2005-12-14 2012-03-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing fuel cell
WO2014129435A1 (en) * 2013-02-19 2014-08-28 株式会社ニデック Staining device
JP2014159648A (en) * 2013-02-19 2014-09-04 Nidek Co Ltd Dyeing equipment
JP2014159495A (en) * 2013-02-19 2014-09-04 Nidek Co Ltd Method for producing dyed resin body, and dyeing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308766A (en) * 2001-12-12 2008-12-25 Semiconductor Energy Lab Co Ltd Deposition method
US8129077B2 (en) 2005-12-14 2012-03-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing fuel cell
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP4880063B1 (en) * 2010-11-24 2012-02-22 藤倉ゴム工業株式会社 Golf club shaft and manufacturing method thereof
WO2014129435A1 (en) * 2013-02-19 2014-08-28 株式会社ニデック Staining device
JP2014159648A (en) * 2013-02-19 2014-09-04 Nidek Co Ltd Dyeing equipment
JP2014159495A (en) * 2013-02-19 2014-09-04 Nidek Co Ltd Method for producing dyed resin body, and dyeing apparatus
CN105008577A (en) * 2013-02-19 2015-10-28 尼德克株式会社 Staining device
KR20150120990A (en) * 2013-02-19 2015-10-28 가부시키가이샤 니데크 Staining device
US9988708B2 (en) 2013-02-19 2018-06-05 Nidek Co., Ltd. Dyeing method and apparatus for dyeing resin body by vaporization and deposition

Similar Documents

Publication Publication Date Title
US4756964A (en) Barrier films having an amorphous carbon coating and methods of making
CA1070263A (en) Preparation of dielectric coatings of variable dielectric constant by plasma polymerization
US4865711A (en) Surface treatment of polymers
JPH01119662A (en) Manufacturing method of organic thin film
WO1987005742A1 (en) Process for producing transparent conductive film
EP0310656B1 (en) Surface treatment of polymers
JPH08197676A (en) Method and device for producing a plastic film having a barrier layer
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
JPH01198642A (en) Humidity resistant thermoplastic film enhanced in adhesiveness to ink and metal layer
JPH0983134A (en) Flexible printed circuit board
JP4260907B2 (en) Film laminate
CA2365039A1 (en) Multilayer film and process for producing the same
RU2316613C1 (en) Zinc oxide films deposition method
JPH01119661A (en) Manufacturing method of organic thin film
US5672383A (en) Barrier films having carbon-coated high energy surfaces
JPH07122133B2 (en) Ion plating method and apparatus
JPS62222078A (en) Composite equipment for continuously coating strip
JP2778955B2 (en) Continuous multi-stage ion plating equipment
JPH08209329A (en) Roll-up type vapor deposition apparatus and CVD apparatus
US5009761A (en) Method of producing an optical component, and components formed thereby
JPH0326097B2 (en)
JPH04296337A (en) Production of polymer film
BARTELLA et al. O VSP 2001
CN109440066A (en) A kind of method and its application improving surface of plastic products PVD flash plating uniformity
RU2021139599A (en) Method for obtaining a layered composite material