JPH01116062A - Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material - Google Patents
Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base materialInfo
- Publication number
- JPH01116062A JPH01116062A JP27393187A JP27393187A JPH01116062A JP H01116062 A JPH01116062 A JP H01116062A JP 27393187 A JP27393187 A JP 27393187A JP 27393187 A JP27393187 A JP 27393187A JP H01116062 A JPH01116062 A JP H01116062A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- plating
- vapor
- alloy
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims description 58
- 230000007797 corrosion Effects 0.000 title claims description 36
- 238000005260 corrosion Methods 0.000 title claims description 36
- 239000000463 material Substances 0.000 title claims description 12
- 238000007740 vapor deposition Methods 0.000 claims description 18
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 239000010953 base metal Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000010422 painting Methods 0.000 description 10
- 229910009369 Zn Mg Inorganic materials 0.000 description 9
- 229910007573 Zn-Mg Inorganic materials 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000003973 paint Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は裸耐食性および塗装後の耐食性にも優れた効果
を発揮するZn系複層蒸着めっき材料に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a Zn-based multilayer vapor-deposited plating material that exhibits excellent bare corrosion resistance and post-painting corrosion resistance.
[従来の技術]
自動車や家庭電化製品の外板用等としては、従来より冷
延鋼板が汎用されているが、最近の防錆性要求は更に高
くなっており、これに応えるべく防錆効果のより高い各
種めっきを施した鋼板や、さらに塗装被覆を施した鋼板
が使用されている。[Conventional technology] Cold-rolled steel sheets have been widely used for exterior panels of automobiles and home appliances, but recently the requirements for rust prevention have become even higher, and in order to meet these demands, the rust prevention effect has been improved. Steel plates coated with various types of plating with higher levels of corrosion resistance, as well as steel plates coated with paint, are used.
ところで防錆効果に優れためっき鋼板としてはZn電気
めっき鋼板が最も一般的に用いられてきたが未だ十分と
はいえない。そこでより高い耐食性を得る最も容易な方
法としてめっき付着量を増加させるという方法に頼るこ
とも考えられるが、めっき付着量が増すとプレス加工時
のパウダリング性やスポット溶接性等の劣化およびめっ
きコストの上昇といった問題が生じてくる。したがって
めっき付着量は必要限度において少ない方が望ましく、
耐食性改善のための別の手段としてZn合金めっきが検
討されており、例えばZn合金電気めっきとしてZn−
Ni系、Zn−Fe系、Zn−Mn系等の単層めっきや
F e −Z n / Z n −Fe系、Fe−Zn
、/Zn−N i系等の積層めっきが研究開発されてい
る。By the way, Zn electroplated steel sheets have been most commonly used as plated steel sheets with excellent rust prevention effects, but this is still not sufficient. Therefore, increasing the amount of plating may be the easiest way to obtain higher corrosion resistance, but increasing the amount of plating may cause deterioration in powdering properties during press forming, spot weldability, etc., and increase the cost of plating. Problems such as the rise in Therefore, it is desirable that the amount of plating deposited is as small as possible.
Zn alloy plating is being considered as another means to improve corrosion resistance. For example, Zn-alloy electroplating
Single-layer plating of Ni-based, Zn-Fe-based, Zn-Mn-based, etc., Fe-Zn/Zn-Fe-based, Fe-Zn
, /Zn-Ni based laminated plating has been researched and developed.
[発明が解決しようとする問題点]
しかしながら前記した様なZn合金電気めっきを施した
材料でも、近年の過酷な使用条件下での耐食性はまだ十
分とはいえない。[Problems to be Solved by the Invention] However, even materials electroplated with Zn alloy as described above still cannot be said to have sufficient corrosion resistance under the severe usage conditions of recent years.
そこで本発明においては従来のZn系めっき材料では得
られなかった様な高い裸耐食性および塗装耐食性を有す
るZn合金系蒸着めっき材料について検討した。Therefore, in the present invention, we investigated a Zn alloy-based vapor-deposited plating material that has high bare corrosion resistance and coated corrosion resistance that cannot be obtained with conventional Zn-based plating materials.
[問題点を解決するための手段]
上記問題点を解決することのできた本発明とは素地金属
上に0.5〜40%のMgを含有するZn合金蒸着めっ
きを施し、さらにその上へZn蒸着めっきまたはNi、
Co、Mn、Fe、Cr。[Means for Solving the Problems] The present invention, which has solved the above problems, involves applying a Zn alloy vapor deposition plating containing 0.5 to 40% Mg on a base metal, and further depositing Zn on the base metal. Vapor deposition plating or Ni,
Co, Mn, Fe, Cr.
Mo、Cuの1種以上を20%以下含有するZn合金蒸
着めっきを施したものであることを構成要旨とするもの
である。The gist of the structure is that it is coated with a Zn alloy vapor deposition plating containing 20% or less of one or more of Mo and Cu.
[作用]
本発明者らは高耐食性を有するZn系めっき材料を得る
目的で、そのめフき組成およびめっき方法について種々
検討したところZn−Mg合金蒸着めっきをしたものは
裸耐食性が優れ、さらにその上にZn蒸着めっきまたは
Zn合金蒸着めっきを施したものは塗装後耐食性にも優
れているという知見を得た。[Function] In order to obtain a Zn-based plating material with high corrosion resistance, the present inventors conducted various studies on the coating composition and plating method, and found that the material coated with Zn-Mg alloy vapor deposition has excellent bare corrosion resistance. It has been found that those coated with Zn vapor deposition plating or Zn alloy vapor deposition plating have excellent post-painting corrosion resistance.
次に上記知見を得るに至フた経過について述べる。Next, I will describe the process that led to the above knowledge.
まずめっき方法としては後に詳述する様に蒸着めっきが
優れている。しかしZn−Mg合金の単層蒸着めっきで
は、裸耐食性は良くなるにもかかわらずMg添加量が増
えるにつれて塗装後塗膜に傷等ができたときに偏部周辺
から塗膜ふくれ等が生じ易くなり、塗装耐食性に難点が
あることがわかった。First, as a plating method, vapor deposition plating is superior as will be detailed later. However, with single-layer vapor deposition plating of Zn-Mg alloy, although the bare corrosion resistance is improved, as the amount of Mg added increases, when the paint film is scratched after painting, blistering of the paint film tends to occur from around uneven parts. It was found that there was a problem with paint corrosion resistance.
この理由は、たとえば塗膜にクロスカット等の傷付けを
おこなって腐食環境下に曝した場合、偏部がアノードと
なる一方、偏部周辺の塗膜下はカソードになり、カソー
ド部では逃02◆H,O+2e−→20H−の反応によ
ってpH10〜12の強アルカリ性になるため、耐アル
カリ性に劣るめっき層では腐食が発生・進行することに
なる為であると考えられる。即ちZn−Mg合金蒸着め
っきにおいてMgの添加量が増すにつれて塗装後耐食性
が劣ってくるのは、Mgの増加によって耐アルカリ性が
劣ってくるためである。The reason for this is that, for example, if the paint film is damaged by cross-cutting or the like and exposed to a corrosive environment, the uneven part becomes an anode, while the area under the paint film around the uneven part becomes a cathode, and the cathode part becomes 02◆ This is thought to be because the reaction of H, O+2e-→20H- makes the coating highly alkaline with a pH of 10 to 12, which causes corrosion to occur and progress in a plating layer with poor alkali resistance. That is, in Zn--Mg alloy vapor deposition plating, as the amount of Mg added increases, the corrosion resistance after coating deteriorates because the alkali resistance deteriorates as the amount of Mg increases.
そこでめっき層を耐アルカリ性に優れたものにすればカ
ソード部における前述の反応が進行しても塗装後耐食性
・耐塗膜剥離性が悪化することはない。Therefore, if the plating layer is made to have excellent alkali resistance, the corrosion resistance and peeling resistance after coating will not deteriorate even if the above-mentioned reaction at the cathode progresses.
上記観点から塗装後耐食性の優れたZn系めっき材料を
得る目的でさらに検討した結果、Zn−Mg合金蒸着め
っき層の上にZn蒸着めっき層あるいはNi、Co、M
n、Fe、Cr、Mo。As a result of further investigation with the aim of obtaining a Zn-based plating material with excellent corrosion resistance after painting from the above viewpoint, we found that a Zn vapor-deposited plating layer or Ni, Co, M
n, Fe, Cr, Mo.
Cuよりなる群から選ばれた1fffi以上を含むZn
合金蒸着めっき層で被覆したものは、前述の意味におい
て耐アルカリ性を発揮するので塗装後耐食性にも優れて
いるという結論に達した。Zn containing 1fffi or more selected from the group consisting of Cu
It was concluded that those coated with a vapor-deposited alloy plating layer exhibit alkali resistance in the sense mentioned above, and therefore also have excellent corrosion resistance after painting.
この際下層Zn−Mg合金蒸着めっき層におけるMg含
有量は0.5%以上になると裸耐食性および塗装後耐食
性が特に優れたものとなり、0.5%未溝および40%
を超えたものは裸耐食性や塗装後耐食性が低下する。At this time, when the Mg content in the lower Zn-Mg alloy vapor-deposited plating layer is 0.5% or more, the bare corrosion resistance and post-painting corrosion resistance are particularly excellent.
If it exceeds this value, the bare corrosion resistance and the corrosion resistance after painting will decrease.
また上層の蒸着めりき層はZn単独層でも塗装後耐食性
が改善されるが、Ni、Co、Mn。In addition, even if the upper vapor-deposited plated layer is a single Zn layer, the corrosion resistance after coating is improved, but Ni, Co, and Mn.
Fe、Cr、Mo、Cuの合金化元素を1種以上含有す
るZn合金蒸着めっきを施したものは改善効果が更に高
い。またこれら合金化元素の添加によって耐アルカリ性
が向上するばかりでなく、燐酸塩処理性も向上する。上
記合金化元素の添加量は少量でもその効果を発揮するの
で下限値は定めなかったが、特に0.5%以上の添加に
よって添加に見合った効果が出はじめ、20%でその効
果が飽和に達する。The improvement effect is even higher in those coated with Zn alloy vapor deposition plating containing one or more alloying elements of Fe, Cr, Mo, and Cu. Furthermore, addition of these alloying elements not only improves alkali resistance but also improves phosphate treatment properties. We did not set a lower limit for the above-mentioned alloying elements because they exhibit their effects even in small amounts; however, when they are added at 0.5% or more, they begin to produce effects commensurate with the addition, and at 20%, the effects reach saturation. reach
各蒸着めっき層の厚さは限定されないが、特に上層のZ
n蒸着めっき層あるいはZn合金蒸着めっき層の厚さが
0.1μm未満では下層Zn−Mg蒸着めっき層に対す
る被覆が不完全でめっきピンホール等の為、さほどの効
果が得られない。The thickness of each vapor-deposited plating layer is not limited, but especially the upper layer Z
If the thickness of the n-evaporated plating layer or the Zn alloy vapor-deposited plating layer is less than 0.1 μm, the lower layer Zn--Mg vapor-deposited plating layer is incompletely covered, resulting in plating pinholes, etc., and no significant effect can be obtained.
これに対し0.1μm以上であれば防食能効果を十分発
揮し、2μmを超えるとコストアップを招く割に耐食性
がそれ以上向上する訳ではないので0.1〜2μmが好
ましい。On the other hand, if the thickness is 0.1 μm or more, the anticorrosion effect will be sufficiently exhibited, and if it exceeds 2 μm, the corrosion resistance will not be improved any further, although the cost will increase, so 0.1 to 2 μm is preferable.
めっき方法としては均質な微細めっき構造を形成すると
いう点で、減圧下にZnとMgを別個のるつぼから蒸発
させてZn−Mg合金めっき層を形成させ、次いでZn
単独あるいはZnと合金化元素を別個のるつぼから蒸発
させてZn層あるいはZn合金層を形成させる蒸着めっ
きが特に好ましい。これに対し、下層Zn−Mg合金層
を蒸着めっき以外の方法、たとえば溶融めっきにより形
成させた場合は、溶融めっきに際してめっき浴温をそれ
ぞれの金属の融点以上に上げなくてはならず、このよう
な高温めっきでは、素地金属とめっき金属からなる金属
間化合物が生成して加工性を損う、また電気めつきおよ
び化学めっきでは水溶液からのZn−MgあるいはZn
あるいはZn合金の析出は不可能である。尚原理的には
非水溶液めっきでも可能であるが、電流密度が小さくめ
っき効率が悪い、さらにめっき液の不安定さおよび製造
コスト等からも工業的に適用するのは難しい。The plating method is to form a homogeneous fine plating structure, so Zn and Mg are evaporated from separate crucibles under reduced pressure to form a Zn-Mg alloy plating layer, and then Zn
Particularly preferred is vapor deposition plating in which the Zn layer or Zn alloy layer is formed by evaporating the alloying element alone or with Zn from a separate crucible. On the other hand, if the lower Zn-Mg alloy layer is formed by a method other than vapor deposition plating, such as hot-dip plating, the plating bath temperature must be raised above the melting point of each metal during hot-dip plating. In high-temperature plating, an intermetallic compound consisting of the base metal and the plating metal is formed, impairing workability, and in electroplating and chemical plating, Zn-Mg or Zn
Alternatively, precipitation of Zn alloys is not possible. In principle, non-aqueous solution plating is also possible, but it is difficult to apply it industrially due to the low current density and poor plating efficiency, the instability of the plating solution, and the manufacturing cost.
上記したこれらの効果は対象となる素地金属の如何を問
わず発揮され、素地金属としては鋼、ステンレス鋼、A
t%AI合金、Cu、Cu合金、さらにTi、Tt合金
等種類を問わず使用でき、形状も板、棒、形材等制限は
ない。These effects described above are exhibited regardless of the target base metal, and the base metals include steel, stainless steel, and A.
Any type of material such as t%AI alloy, Cu, Cu alloy, Ti, Tt alloy, etc. can be used, and the shape is not limited to plate, bar, shape, etc.
[実施例]
厚さ0.8amの冷延鋼板を電解脱脂により清浄にした
後、予熱温度200℃、真空度I X 10−”Tor
rの下でZn−Mg合金蒸着めっきを施し、各種組成の
Zn−Mg合金蒸着めっき鋼板を作製し、後述する各評
価試験を行なった。結果を第1表に示す。[Example] A cold-rolled steel plate with a thickness of 0.8 am was cleaned by electrolytic degreasing, and then heated at a preheating temperature of 200°C and a vacuum degree of I x 10-” Tor.
Zn-Mg alloy vapor deposition plating was performed under the following conditions to produce Zn-Mg alloy vapor deposition plated steel sheets of various compositions, and each evaluation test described below was conducted. The results are shown in Table 1.
第1表から明らかなようにZn−Mg合金蒸着めっき層
において、Mg添加によって裸耐食性は向上するがMg
が増加すると塗装後耐食性は低下する。As is clear from Table 1, in the Zn-Mg alloy vapor-deposited plating layer, bare corrosion resistance is improved by Mg addition, but Mg
As the amount increases, the corrosion resistance after painting decreases.
更にZn−Mg合金蒸着めっき鋼板のZn−Mg合金蒸
着めっき層の上にZn蒸看めっきあるいはNi、Co、
Mn、Fa、Cr、Mo、Cuのfai以上を含有する
Zn合金蒸着めっきを施してZn系複層めっき鋼板を作
製し、後述する各評価試験を行なった。結果を第2表に
示す。Furthermore, Zn evaporation plating or Ni, Co,
A Zn-based multilayer plated steel sheet was prepared by vapor deposition plating of a Zn alloy containing Mn, Fa, Cr, Mo, and Cu at fai or higher, and various evaluation tests described below were conducted. The results are shown in Table 2.
第2表から明らかなようにNo、2〜17は本発明に係
るZn系複層蒸着めっき鋼板であり優れた裸耐食性およ
び塗装後耐食性を有する。As is clear from Table 2, Nos. 2 to 17 are Zn-based multilayer vapor-deposited steel sheets according to the present invention, and have excellent bare corrosion resistance and post-painting corrosion resistance.
評価試験
(1)裸耐食性(赤錆発生時間で評価)浸漬(5%Na
C1,50℃、5時間)乾燥(50℃、3時間)
湿′I4(湿度98%、50℃、16時間)(2)電着
塗装後の耐食性
燐酸塩処理後カチオン電着塗装(20μm)を施し塗膜
にクロスカットを入れ、塩水噴霧試験800時間後にお
けるクロスカット部の塗膜ふくれ状態で評価した。Evaluation test (1) Bare corrosion resistance (evaluated by red rust generation time) Immersion (5% Na)
C1, 50℃, 5 hours) drying (50℃, 3 hours) wet 'I4 (humidity 98%, 50℃, 16 hours) (2) Corrosion resistance after electrodeposition coating After phosphate treatment, cationic electrodeposition coating (20μm) A cross-cut was made in the coating film, and the blistering state of the coating film at the cross-cut portion was evaluated after 800 hours of a salt spray test.
(3)3層塗装後の耐食性
燐酸塩処理した後、カチオン電着塗装(20μm)、中
塗り塗装(35μm)および上塗り塗装(35μm)を
施し、塗膜にクロスカットを入れ、(1)で行なった試
験を1サイクルとして、該試験を30サイクル実施した
後、クロスカット部に粘着テープを粘着してテープ剥離
を行い、塗膜剥離幅で評価した。(3) Corrosion resistance after 3-layer coating After phosphate treatment, cationic electrodeposition coating (20μm), intermediate coating (35μm) and topcoat (35μm) were applied, cross cuts were made in the coating film, and in (1) After 30 cycles of the test, each test was considered as one cycle, an adhesive tape was applied to the cross-cut portion, the tape was peeled off, and the peeled width of the coating film was evaluated.
[発明の効果]
本発明は以上のように構成されているので本発明のZn
系複層蒸着めっき材料は裸耐食性および塗装後耐食性に
優れたものとなる。[Effect of the invention] Since the present invention is configured as described above, the Zn of the present invention
The multilayer vapor-deposited plating material has excellent bare corrosion resistance and post-painting corrosion resistance.
Claims (1)
)のMgを含有するZn合金蒸着めっきを施し、さらに
その上へZn蒸着めっきまたはNi、Co、Mn、Fe
、Cr、Mo、Cuの1種以上を20%以下含有するZ
n合金蒸着めっきを施したものであることを特徴とする
裸耐食性および塗装耐食性に優れたZn系複層蒸着めっ
き材料。Zn alloy vapor deposition plating containing 0.5 to 40% (weight %, the same applies hereinafter) of Mg is applied on the base metal, and then Zn vapor deposition plating or Ni, Co, Mn, Fe is applied on top of that.
Z containing 20% or less of one or more of , Cr, Mo, and Cu
A Zn-based multilayer vapor-deposited plating material having excellent bare corrosion resistance and painted corrosion resistance, characterized in that it is subjected to n-alloy vapor deposition plating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27393187A JPH01116062A (en) | 1987-10-28 | 1987-10-28 | Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27393187A JPH01116062A (en) | 1987-10-28 | 1987-10-28 | Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01116062A true JPH01116062A (en) | 1989-05-09 |
Family
ID=17534567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27393187A Pending JPH01116062A (en) | 1987-10-28 | 1987-10-28 | Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01116062A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100311796B1 (en) * | 1997-12-20 | 2001-11-15 | 이구택 | Manufacturing method of iron vapor deposition alloyed hot dip galvanized steel sheet |
US20150013409A1 (en) * | 2010-12-17 | 2015-01-15 | Arcelormittal Investigación Y Desarrollo Sl | Steel Sheet including a Multilayer Coating and Methods |
US9744743B2 (en) | 2012-12-26 | 2017-08-29 | Posco | Zn—Mg alloy plated steel sheet, and method for manufacturing same |
JP2020504781A (en) * | 2016-12-26 | 2020-02-13 | ポスコPosco | Multi-layer zinc alloy plated steel with excellent spot weldability and corrosion resistance |
JP2020509218A (en) * | 2016-12-26 | 2020-03-26 | ポスコPosco | Zinc alloy plated steel with excellent spot weldability and corrosion resistance |
-
1987
- 1987-10-28 JP JP27393187A patent/JPH01116062A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100311796B1 (en) * | 1997-12-20 | 2001-11-15 | 이구택 | Manufacturing method of iron vapor deposition alloyed hot dip galvanized steel sheet |
US20150013409A1 (en) * | 2010-12-17 | 2015-01-15 | Arcelormittal Investigación Y Desarrollo Sl | Steel Sheet including a Multilayer Coating and Methods |
US9670576B2 (en) * | 2010-12-17 | 2017-06-06 | Arcelormittal Investigación Y Desarrollo Sl | Steel sheet including a multilayer coating and methods |
US9744743B2 (en) | 2012-12-26 | 2017-08-29 | Posco | Zn—Mg alloy plated steel sheet, and method for manufacturing same |
JP2020504781A (en) * | 2016-12-26 | 2020-02-13 | ポスコPosco | Multi-layer zinc alloy plated steel with excellent spot weldability and corrosion resistance |
JP2020509218A (en) * | 2016-12-26 | 2020-03-26 | ポスコPosco | Zinc alloy plated steel with excellent spot weldability and corrosion resistance |
US11208716B2 (en) | 2016-12-26 | 2021-12-28 | Posco | Multi-layered zinc alloy plated steel having excellent spot weldability and corrosion resistance |
US11649542B2 (en) | 2016-12-26 | 2023-05-16 | Posco Co., Ltd | Multi-layered zinc alloy plated steel having excellent spot weldability and corrosion resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4963440A (en) | Al-Cr alloy vapor-deposited material | |
JPH03138389A (en) | Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production | |
JPH01116062A (en) | Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material | |
JPH01139755A (en) | Surface treated steel sheet having superior press formability | |
JPS59211591A (en) | Zn-fe-p alloy electroplated steel sheet with superior corrosion resistance | |
CN113227437B (en) | Heterogeneous plated steel sheet excellent in workability and corrosion resistance and method for producing same | |
JP2936651B2 (en) | Galvanized multi-layer steel sheet with excellent spot weldability | |
JP2575719B2 (en) | High corrosion resistant Zn-Mg alloy plated metal material for forming | |
JPS6343479B2 (en) | ||
JPH01312081A (en) | Surface-treated metallic material | |
JPH04218660A (en) | High corrosion resistant zn-si vapor deposition plated metallic material | |
JPH0536516B2 (en) | ||
JPH02173249A (en) | Multilayered plated steel sheet having excellent flaking resistance | |
JP3189561B2 (en) | Manufacturing method of Al alloy plated metal material | |
JPS5923894A (en) | Plated steel plate with excellent corrosion resistance and its manufacturing method | |
JPH04136199A (en) | Surface treated steel sheet excellent in corrosion resistance after being coated | |
JPH0633263A (en) | Galvanized steel sheet excellent in corrosion resistance | |
JPS59211590A (en) | Zn-p alloy electroplated steel sheet with superior corrosion resistance | |
CN101238241A (en) | Environment-friendly surface-treated steel sheet for electronic components excellent in solder wettability, whisker resistance, and stability over time, and method for producing the same | |
KR100198048B1 (en) | Alloy coating sheet with sn-mn | |
JPH07292461A (en) | Cu-added high-strength Zn-Ti plated steel sheet for automobiles | |
JPH055905B2 (en) | ||
JPS60110861A (en) | Steel sheet coated with al or al-zn alloy by hot dipping and provided with superior suitability to chemical conversion treatment | |
JPH06280087A (en) | Three-layer plated-steel sheet excellent in corrosion resistance | |
JPH0474437B2 (en) |