[go: up one dir, main page]

JPH01115820A - Production of niobium hydroxide of tantalum hydroxide - Google Patents

Production of niobium hydroxide of tantalum hydroxide

Info

Publication number
JPH01115820A
JPH01115820A JP27310587A JP27310587A JPH01115820A JP H01115820 A JPH01115820 A JP H01115820A JP 27310587 A JP27310587 A JP 27310587A JP 27310587 A JP27310587 A JP 27310587A JP H01115820 A JPH01115820 A JP H01115820A
Authority
JP
Japan
Prior art keywords
hydroxide
niobium
tantalum
aqueous solution
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27310587A
Other languages
Japanese (ja)
Inventor
Hiromi Sasaki
広美 佐々木
Tadashi Tanaka
正 田中
Yasushi Muneno
宗野 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP27310587A priority Critical patent/JPH01115820A/en
Publication of JPH01115820A publication Critical patent/JPH01115820A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain niobium hydroxide or tantalum hydroxide having excellent filtering characteristics and a small content of fluorine, by blending an alkali aqueous solution containing CO2 with a specific amount of an aqueous solution of Nb or Ta fluoride to crystallize niobium hydroxide or tantalum hydroxide in an alkali side. CONSTITUTION:An alkali aqueous solution (e.g. ammonia water) containing CO2 is blended with an aqueous solution of niobium or tantalum fluoride (e.g. aqueous solution of niobium fluoride) or an aqueous solution of niobium or tantalum oxalate (e.g. aqueous solution of niobium oxalate) in the molar ratio of CO2/Nb or CO2/Ta of 0.1-3. Then crystallization is carried out at pH>=8 to give niobium hydroxide or tantalum hydroxide. The prepared niobium hydroxide or tantalum hydroxide has <=about 20ppm fluorine content and is preferably used as a raw material for wet synthesis for electric material or as a raw material for producing oxides.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、改良された水酸化ニオブまたは水酸化タンタ
ルの製造方法に関し、さらに詳しくは、電子材料の湿式
合成用の原料および酸化物製造用の原料として好適な、
フッ素含有量の少ない水酸化ニオブまたは水酸化タンタ
ルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improved method for producing niobium hydroxide or tantalum hydroxide, and more particularly, to a raw material for wet synthesis of electronic materials and for producing oxides. suitable as a raw material for
The present invention relates to a method for producing niobium hydroxide or tantalum hydroxide with low fluorine content.

[従来の技術] 酸化ニオブまたは酸化タンタルは、金属ニオブまたは金
属タンタル、炭化ニオブ、炭化タンタルなどの原料や、
光学レンズ用添加剤、電子材料用原料などに使用され、
原料として高純度品の要請が高まっている。一般に、酸
化ニオブまたは酸化タンタルは、原料鉱石を公知の方法
に従ってフン酸で分解し、ニオブまたはタンタルのフッ
化物錯塩溶液にアンモニアなどのアルカリを加えて、金
属水酸化物を沈殿させ、これを乾燥、焼成することによ
って金属酸化物が得られる。しかし、上記の方法では、
フッ素分が多く残留する。また、ニオブまたはタンタル
の水酸化物は、普通の方法では非常に微細であるため、
濾過、乾燥などの工程が複雑となり、高価な設備を要す
るという問題点があワた。
[Prior Art] Niobium oxide or tantalum oxide is a raw material such as niobium metal or tantalum metal, niobium carbide, tantalum carbide,
Used as additives for optical lenses, raw materials for electronic materials, etc.
Demand for high-purity products as raw materials is increasing. Generally, niobium oxide or tantalum oxide is produced by decomposing the raw material ore with hydrochloric acid according to a known method, adding an alkali such as ammonia to a fluoride complex salt solution of niobium or tantalum, precipitating the metal hydroxide, and drying this. , a metal oxide is obtained by firing. However, in the above method,
A large amount of fluorine remains. Also, since niobium or tantalum hydroxide is very fine by normal methods,
The problem was that the processes such as filtration and drying were complicated and required expensive equipment.

これらの問題点を改善する方法として、特公昭49−3
0354号公報では、ニオブまたはタンタルのフッ化物
錯塩溶液に炭酸アンモニウムまたは重炭酸アンモニウム
を添加し、ついで加熱して得られる沈殿物を常法に従っ
て焼成処理することを特徴とする、濾過性のよい水酸化
ニオブまたは水酸化タンタルの製造方法が開示されてい
る。しかし、この方法においては、濾過性は改善され、
フッ素含有量も減少してはいるものの、湿式処理段階で
は依然として数%のフッ素が含まれている。
As a way to improve these problems,
Publication No. 0354 discloses water with good filterability, which is characterized in that ammonium carbonate or ammonium bicarbonate is added to a fluoride complex salt solution of niobium or tantalum, and then the precipitate obtained by heating is calcined according to a conventional method. A method for producing niobium oxide or tantalum hydroxide is disclosed. However, in this method, the filterability is improved,
Although the fluorine content has also been reduced, the wet processing stage still contains several percent fluorine.

一方、特開昭51−10197号公報では、フッ化ニオ
ブまたはフッ化タンタル水溶液をアンモニアと反応させ
て水酸化物を得る際、PH9以上の条件で処理すること
により、前記水酸化物中のフッ素を除去することを特徴
とする水酸化ニオブまたは水酸化タンタルの製造方法が
開示されている。この方法におい2は、フッ素含を量が
0.6%まで低下しているが、水酸化物の粒子は微細で
濾過しにりく、また余りPHの高い領域で晶出を行った
場合、多量の希アンモニア水が排出されることになり経
済的でない。
On the other hand, in JP-A-51-10197, when a niobium fluoride or tantalum fluoride aqueous solution is reacted with ammonia to obtain a hydroxide, the fluorine in the hydroxide is treated under conditions of pH 9 or higher. Disclosed is a method for producing niobium hydroxide or tantalum hydroxide, which comprises removing niobium hydroxide or tantalum hydroxide. In this method 2, the fluorine content is reduced to 0.6%, but the hydroxide particles are fine and difficult to filter, and if crystallization is performed in an area with too high a pH, a large amount of fluorine will be produced. of dilute ammonia water is discharged, which is not economical.

[発明が解決しようとする問題点コ このように、フッ素を含有するフシ化ニオブまたはシェ
ラ化ニオブの水溶液から水酸化物を晶出させる場合、酸
性サイドでは粒子内にフッ素が含まれているため残留す
るフッ素量は殆ど変わらず、アルカリサイドでは洗浄に
よりフッ素量は減少するものの、生成’s、が微細でゲ
ル状となるため、洗浄自体が非常に難しくなる。
[Problems to be solved by the invention] As described above, when crystallizing hydroxide from an aqueous solution of fluorine-containing niobium fusilide or niobium shearate, fluorine is contained in the particles on the acidic side. The amount of residual fluorine hardly changes, and although the amount of fluorine decreases with washing in the case of alkaline side, the fluorine produced becomes fine and gel-like, making the washing itself very difficult.

本発明は、このような問題点を解決するために、アルカ
リサイドで晶出し、かつ濾過性のよい粒子を製造するこ
とを目的とする。
In order to solve these problems, the present invention aims to produce particles that are crystallized with alkaliside and have good filterability.

[問題点を解決するための手段] 上記目的を達成するため、本発明者らは鋭意検討を行っ
た結果、CO2を含有させたアルカリ水溶液を用い、こ
の溶液にニオブまたはタンタルのフッ化物水溶液または
シュウ酸塩水溶液を添加して、常にアルカリ性に溶液を
保ちながら水酸化物を晶出させることにより、濾過洗浄
し易(粒子中のフッ素含有量が200ppm以下と非常
に少ない水酸化ニオブまたは水酸化タンタルが得られる
ことを見いだし、本発明に到達したものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventors conducted intensive studies and found that an alkaline aqueous solution containing CO2 was used, and a niobium or tantalum fluoride aqueous solution or By adding an oxalate aqueous solution and crystallizing the hydroxide while always keeping the solution alkaline, it is easy to filter and wash (niobium hydroxide or hydroxide particles with a very low fluorine content of 200 ppm or less) It was discovered that tantalum can be obtained, and the present invention was achieved.

すなわち本発明は、CO2を含有させたアルカリ水溶液
に、COz/NbまたはCO2/Taのモル比が0.1
〜3.0になるように、ニオブまたはタンタルのフッ化
物水溶液またはシュウ酸塩水溶液を添加し、P)18以
上で晶出させることを特徴とする水酸化ニオブまたは水
酸化タンタルの製造方法である。
That is, in the present invention, the molar ratio of COz/Nb or CO2/Ta is 0.1 in an alkaline aqueous solution containing CO2.
A method for producing niobium hydroxide or tantalum hydroxide, which comprises adding a niobium or tantalum fluoride aqueous solution or an oxalate aqueous solution so that the niobium hydroxide or tantalum hydroxide is 3.0, and crystallizing at P) 18 or more. .

本発明は、バッチ法および半連続法の何れでも実施する
ことが可能である。
The present invention can be carried out either batchwise or semi-continuously.

半連続法においては、CO2を含有させたアルカリ水溶
液に、CO2/Nbまたは0口2 /Taのモル比が0
.1〜3.0になるようにニオブまたはタンタルのフッ
化物またはシュウ酸塩の水溶液とアルカリ水溶液を同時
に添加する。この方法においては、初期のPHを自由に
設定できるとともに、PHの変動を最小限におさえるこ
とができるので均一で濾過性のよい粒子となる。
In the semi-continuous method, a molar ratio of CO2/Nb or 0/Ta is added to an alkaline aqueous solution containing CO2.
.. An aqueous solution of fluoride or oxalate of niobium or tantalum and an aqueous alkali solution are added at the same time so that the ratio is 1 to 3.0. In this method, the initial pH can be set freely and fluctuations in pH can be minimized, resulting in particles that are uniform and have good filterability.

一方、バッチ法においては、CO2を含有させたアルカ
リ水溶液に、COz/NbまたはCO2/Taのモル比
が0.1’−3,0になるようにニオブまたはタンタル
のフン化物またはシュウ酸塩の水溶液を添加して、PH
8以上で水酸化物の晶出を行う。
On the other hand, in the batch method, niobium or tantalum fluoride or oxalate is added to an alkaline aqueous solution containing CO2 so that the molar ratio of COz/Nb or CO2/Ta is 0.1'-3.0. Add aqueous solution to pH
8 or higher to crystallize hydroxide.

この場合は、始め水溶液のPHは高く、反応するに従っ
てPHが下がってくるため、粒子の均一性については半
連続法と多少差があるが、脱フッ素の効果はほとんど変
わらない。
In this case, the pH of the aqueous solution is initially high, and as the reaction progresses, the pH decreases, so the uniformity of the particles is somewhat different from that of the semi-continuous method, but the defluorination effect is almost the same.

ここで、PH8以上で脱フッ素の効果が上がる理由の1
つとして、例えば酸性サイドでニオブとフッ素は強く結
合して (NHa ) Nb0F 6などが生成してい
ると考えられ、このような化合物がアルカリサイドでは
分解して、フッ素イオンになるためと考えられる。
Here, one of the reasons why defluorination is more effective at pH 8 or higher
One reason is that, for example, niobium and fluorine combine strongly on the acidic side, producing (NHa)Nb0F6, and it is thought that such compounds decompose on the alkaline side to become fluorine ions. .

また、アルカリ溶液中で、CO□を含んだ場合水酸化物
の溶解炭が上がり、また晶出速度も減少するため水酸化
物がゆっくり晶出し、粒子が大きくなると考えられる。
Furthermore, when CO□ is included in an alkaline solution, the amount of dissolved carbon in the hydroxide increases and the crystallization rate also decreases, so the hydroxide crystallizes slowly and the particles become larger.

この際、添加溶液が充分に分散して局部的に酸性になら
ないよう、添加速度、および攪拌速度に充分注意する必
要がある。
At this time, it is necessary to pay close attention to the addition rate and stirring rate so that the added solution is sufficiently dispersed and does not become locally acidic.

本発明におけるCO2の吹き込み量は、CO2/Nbま
たはCO2/Taのモル比で0.1〜3,0、好ましく
は0.2〜2.0である。0.1以下では、粒子粗大化
の効力はほとんどなく、3.0を越えた場合、水酸化ニ
オブまたは水酸化タンタルの溶解量が増加し、未晶出物
の量が多くなるため経済的でなく好ましくない。
The amount of CO2 blown in the present invention is in the molar ratio of CO2/Nb or CO2/Ta from 0.1 to 3.0, preferably from 0.2 to 2.0. If it is less than 0.1, there is almost no effect on coarsening the particles, and if it exceeds 3.0, the amount of dissolved niobium hydroxide or tantalum hydroxide increases and the amount of uncrystallized substances increases, making it uneconomical. I don't like it.

また、晶出時のP旧よ8以上であればよいが、余り高い
値に設定した場合、アンモニア等のアルカリが多量に必
要となるため経済的に不利であり、より好ましい範囲は
PH8,5〜1165である。
In addition, P at the time of crystallization should be 8 or more, but if it is set too high, a large amount of alkali such as ammonia will be required, which is economically disadvantageous, so the more preferable range is PH8.5. ~1165.

[実施例] 以下、実施例により本発明の詳細な説明するが、本発明
は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 11のテフロン容器にイオン交換水208.3gをとり
、25wtχのアンモニア水98.0gを添加した後、
CO2ガス29.7gを吹き込み、Co2含有アルカリ
水溶液を作成した。この液を撹拌しながらCO2/Nb
のモル比が2.8になるようにフッ化ニオブ水溶液(N
bユ0,1換算10−tχ)320gと25wt!のア
ンモニア水144gを同時に添加し、1時間で添加を終
了し、粗粒状の水酸化ニオブを晶出させた。
Example 1 208.3 g of ion-exchanged water was placed in a Teflon container of No. 11, and 98.0 g of ammonia water of 25 wtχ was added.
29.7 g of CO2 gas was blown into the reactor to create a Co2-containing alkaline aqueous solution. While stirring this liquid, CO2/Nb
Niobium fluoride aqueous solution (N
byu0,1 conversion 10-tχ) 320g and 25wt! 144 g of aqueous ammonia was added at the same time, and the addition was completed in 1 hour to crystallize coarse niobium hydroxide.

この時のPHは9.5であった。The pH at this time was 9.5.

その後、この沈殿物を濾過洗浄し、120″Cで20時
間乾燥し、フッ素の分析を行った0分析値は得られた水
酸化ニオブをNb2.0.!rの重量に換算し、フッ素
はFとして計算した。この結果フッ素含有量は85pp
麿と非常に少なかった。
Thereafter, this precipitate was filtered and washed, dried at 120''C for 20 hours, and analyzed for fluorine. Calculated as F. As a result, the fluorine content was 85pp.
Maro and very few.

実施例2 イオン交換水326.9g、 25wtχのアンモニア
水7g、 co2ガス2.1gでアルカリ水溶液の作成
を行った他は実施例1と同じ条件で実験および分析を行
った。この時のCOz/Nbのモル比は0.2であり、
晶出時のPHは9.6であった。このような処理の結果
、 得られた水酸化物中のフッ素含有量は190pp−であ
った。
Example 2 Experiments and analyzes were conducted under the same conditions as in Example 1, except that an alkaline aqueous solution was prepared using 326.9 g of ion-exchanged water, 7 g of 25 wt x ammonia water, and 2.1 g of CO2 gas. The molar ratio of COz/Nb at this time is 0.2,
The pH at the time of crystallization was 9.6. As a result of such treatment, the fluorine content in the obtained hydroxide was 190 pp-.

実施例3 イオン交換水290.0g、 25wtXのアンモニア
水35g 、 CO□ガス10.6gでアルカリ水溶液
の作成を行った他は実施例1と同じ条件で実験および分
析を行った。この時のCOz/Nbのモル比は1.0で
あり、晶出時のPHは9.5であった。このような処理
の結果、得られた水酸化物中のフッ素含有量は150p
p霞であった。
Example 3 Experiments and analyzes were conducted under the same conditions as in Example 1, except that an alkaline aqueous solution was prepared using 290.0 g of ion-exchanged water, 35 g of 25 wtX ammonia water, and 10.6 g of CO□ gas. The COz/Nb molar ratio at this time was 1.0, and the pH at the time of crystallization was 9.5. As a result of such treatment, the fluorine content in the obtained hydroxide was 150p.
It was a haze.

実施例4 イオン交換水244.8g、25IIltzノアンモニ
ア水70g 、 co2ガス21.2gでアルカリ水溶
液の作成を行った他は実施例1と同じ条件で実験および
分析を行った。この時のCO2/Nbのモル比は2.0
であり、晶出時のPHは9.5であった。このような処
理の結果、得られた水酸化物中のフッ素含有量は95P
Plであった。
Example 4 Experiments and analyzes were conducted under the same conditions as in Example 1, except that an alkaline aqueous solution was prepared using 244.8 g of ion-exchanged water, 70 g of 25IIltz noammonia water, and 21.2 g of CO2 gas. The molar ratio of CO2/Nb at this time is 2.0
The pH at the time of crystallization was 9.5. As a result of such treatment, the fluorine content in the obtained hydroxide is 95P.
It was Pl.

実施例5 イオン交換水384.0g、25111tzノアンモニ
ア水85g 、 co2ガス10.6gでアルカリ水溶
液を作成し、この溶液にフッ化ニオブ水溶液(濃度は実
施例1と同じ) 320gだけを添加し、実施例1と同
様の方法で実験を行い、分析結果を得た。
Example 5 An alkaline aqueous solution was prepared with 384.0 g of ion-exchanged water, 85 g of 25111tz noammonia water, and 10.6 g of CO2 gas, and only 320 g of a niobium fluoride aqueous solution (the concentration was the same as in Example 1) was added to this solution. An experiment was conducted in the same manner as in Example 1, and analytical results were obtained.

この時のCO2/Nbのモル比は1.0であり、晶出時
のPHは9.0であった。このような処理の結果、得ら
れた水酸化物中のフッ素含有量は190Pρ1であった
The CO2/Nb molar ratio at this time was 1.0, and the pH at the time of crystallization was 9.0. As a result of such treatment, the fluorine content in the obtained hydroxide was 190 Pρ1.

実施例6 イオン交換水384.0g、 25wtχのアンモニア
水85g 、 CO2ガス10.6gでアルカリ水溶液
を作成し、この溶液に1.1zのフッ素を含有したシェ
ラ酸ニオブ水溶液(濃度は実施例1と同じ) 320g
だけを添加し、実施例1と同様の方法で実験を行い、分
析結果を得た。
Example 6 An alkaline aqueous solution was prepared with 384.0 g of ion-exchanged water, 85 g of ammonia water of 25 wtx, and 10.6 g of CO2 gas, and to this solution was added a niobium Scherate aqueous solution containing 1.1z of fluorine (the concentration was the same as that of Example 1). Same) 320g
An experiment was carried out in the same manner as in Example 1, with the addition of only 100% of the sample, and analytical results were obtained.

この時のCO2/Nbのモル比は1.0であり、晶出時
のPHは9.0であった。このような処理の結果、得ら
れた水酸化物中のフッ素含有量は80ppmであった。
The CO2/Nb molar ratio at this time was 1.0, and the pH at the time of crystallization was 9.0. As a result of such treatment, the fluorine content in the obtained hydroxide was 80 ppm.

実施例7 1001ダイライト槽にイオン交換水36.7kgをと
り、25wtχのアンモニア水1.2kgを加えた後重
炭酸アンモニウム(純度97−tχN、4kgを加えて
、CO2含有アルカリ水溶液を作成した。
Example 7 36.7 kg of ion-exchanged water was placed in a 1001 dilite tank, 1.2 kg of 25 wtχ ammonia water was added, and 4 kg of ammonium bicarbonate (purity 97-tχN) was added to prepare a CO2-containing alkaline aqueous solution.

この液にフッ化ニオブ水溶液(濃度は実施例1と同じ)
 31.0kgと25−tχのアンモニア水7.1kg
を攪拌させつつ、同時に添加を行い、2時間で添加を終
了させた。この時のPHは9.3であっ光。
Add to this solution a niobium fluoride aqueous solution (concentration is the same as in Example 1).
31.0 kg and 7.1 kg of ammonia water with 25-tχ
were added at the same time with stirring, and the addition was completed in 2 hours. The pH at this time was 9.3 and it was light.

この沈殿物を遠心分離機で濾過、分離し、実施例1と同
様の方法で、フッ素の分析を行った。
This precipitate was filtered and separated using a centrifuge, and fluorine was analyzed in the same manner as in Example 1.

この結果、フッ素含有量は160ρpmであった。As a result, the fluorine content was 160 ρpm.

さらに沈殿物を、20倍量のイオン交換水で洗浄したと
ころ、フッ素含有量はさらに48ρplに減少した。
When the precipitate was further washed with 20 times the amount of ion-exchanged water, the fluorine content was further reduced to 48 ρpl.

実施例8 フッ化タンタル(T 820g換算10wtZ)を用い
、実施例1と同様に実験を行い、水酸化タンタルを得た
。実施例1と同様に分析を行ったところフッ素含有量は
155PP■であった。また、晶出時のPHは9.5で
あった。
Example 8 An experiment was conducted in the same manner as in Example 1 using tantalum fluoride (T 820 g equivalent 10 wtZ) to obtain tantalum hydroxide. Analysis was conducted in the same manner as in Example 1, and the fluorine content was found to be 155 PP. Further, the pH at the time of crystallization was 9.5.

実施例9 実施例8と同じフッ化タンタルを用い、実施例2とおな
し条件で実験を行ったところ、水酸化タンタル中のフッ
素含有量は90ppmであった。
Example 9 Using the same tantalum fluoride as in Example 8, an experiment was conducted under the same conditions as in Example 2, and the fluorine content in tantalum hydroxide was 90 ppm.

また、晶出時のP)lは9.5であった。Moreover, P)l at the time of crystallization was 9.5.

実施例10 実施例8と同じフッ化タンタルを用い、実施例3とおな
し条件で実験を行ったところ、水酸化タンタル中のフッ
素含有量は165ρpmであったまた、晶出時のPHは
9.0であった。
Example 10 Using the same tantalum fluoride as in Example 8, an experiment was conducted under the same conditions as in Example 3. The fluorine content in tantalum hydroxide was 165 ρpm, and the pH at the time of crystallization was 9. It was 0.

実施例11 0.9χのフッ素を含有したシュウ酸タンクル溶液(T
aユ05換算10wtZ )を用い、実施例4と同じ条
件で実験を行った。水酸化タンタル中のフッ素含有量は
70ppmであった。
Example 11 Oxalic acid tank solution containing 0.9χ fluorine (T
An experiment was conducted under the same conditions as in Example 4 using 10wtZ (converted to 05). The fluorine content in tantalum hydroxide was 70 ppm.

また、晶出時のP)Iは9.0であった。Moreover, P)I at the time of crystallization was 9.0.

実施例12 実施例8と同じフッ化タンタルを用い、実施例5とおな
し条件で実験を行ったところ、水酸化タンタル中のフッ
素含有量は150ρp−であったまた、晶出時のpHは
9.0であった。
Example 12 Using the same tantalum fluoride as in Example 8, an experiment was conducted under the same conditions as in Example 5. The fluorine content in the tantalum hydroxide was 150 pp-, and the pH at the time of crystallization was 9. It was .0.

この水酸化物を実施例5と同様に洗浄したところ、フッ
素含有量は41ρplに減少した。
When this hydroxide was washed in the same manner as in Example 5, the fluorine content was reduced to 41 ρpl.

比較例1 11テフロン容器にフッ化ニオブ水溶液(N%0゜換算
5wtχ) 640gに炭酸アンモニウム500gを加
えこれを80°Cに加熱して、6時間後に水酸化ニオブ
の晶出が完了した。これを実施例1と同様の条件で分析
したところ、フッ素含有量は5χであった。また、晶出
時のPRは7.3であった。
Comparative Example 1 11 500 g of ammonium carbonate was added to 640 g of an aqueous niobium fluoride solution (N% 0° conversion 5 wtχ) and heated to 80° C. After 6 hours, crystallization of niobium hydroxide was completed. When this was analyzed under the same conditions as in Example 1, the fluorine content was 5χ. Moreover, PR at the time of crystallization was 7.3.

比較例2 11テフロン容器にフッ化ニオブ水溶液(濃度は比較例
1と同じ) 640gをとり、25wtχのアンモニア
水をPHが7.8になるまで加え、水酸化ニオブを晶出
させた。この時の、フッ素含有量は13.1zであった
Comparative Example 2 11 640 g of niobium fluoride aqueous solution (concentration is the same as Comparative Example 1) was placed in a Teflon container, and 25 wt x ammonia water was added until the pH reached 7.8 to crystallize niobium hydroxide. At this time, the fluorine content was 13.1z.

比較例3 11テフロン容器にイオン交換水336gをとり、フン
化ニオブ溶液(fi度は比較例1と同じ) 320gと
25wtZのアンモニア水144gを同時に添加し、よ
く攪拌しながら1時間かけて添加を終了した。
Comparative Example 3 11 Put 336 g of ion-exchanged water in a Teflon container, add 320 g of niobium fluoride solution (fi degree is the same as Comparative Example 1) and 144 g of 25 wtZ ammonia water at the same time, and add over 1 hour while stirring well. finished.

晶出時のPH8,5である。この時のフッ素含有量は0
.2χであった。
The pH at the time of crystallization is 8.5. The fluorine content at this time is 0
.. It was 2χ.

比較例4 フッ化タンタル水溶液(TaよOt換算5wtχ)を用
い、比較例1と同様な条件で実験を行った。
Comparative Example 4 An experiment was conducted under the same conditions as Comparative Example 1 using an aqueous tantalum fluoride solution (5 wtx in terms of Ta and Ot).

得られた水酸化タンタルのフッ素含有量は5.1!であ
った。晶出時のPHは、7.3である。
The fluorine content of the obtained tantalum hydroxide is 5.1! Met. The pH during crystallization is 7.3.

比較例5 フッ化タンタル水溶液(1度は比較例4とおなし)を用
い、比較例2と同様な条件で実験を行った。得られた水
酸化タンタルのフッ素含有量は12,8χであり、晶出
時のPFIは、8.0である。
Comparative Example 5 An experiment was conducted under the same conditions as Comparative Example 2 using an aqueous tantalum fluoride solution (once was the same as Comparative Example 4). The fluorine content of the obtained tantalum hydroxide is 12.8χ, and the PFI at the time of crystallization is 8.0.

比較例6 フッ化タンタル水溶液(Taユ0.!−換算10wt!
>を用い、比較例2と同様な条件で実験を行った。得ら
れた水酸化タンタルのフッ素含有量はり、0χであった
。晶出時のPRは、9.0である。
Comparative Example 6 Tantalum fluoride aqueous solution (Ta 0.! - converted to 10wt!)
An experiment was conducted under the same conditions as Comparative Example 2. The fluorine content of the obtained tantalum hydroxide was 0x. PR at the time of crystallization is 9.0.

[発明の効果] 本発明は以上のようにきわめて簡単な方法により、濾過
性がよく、しかもフッ素含有量が200ρpl以下とい
う従来法に比べて格段にフッ素含有量の少ない水酸化ニ
オブまたは水酸化タンタルを得ることができ、前記水酸
化物はさらに洗浄することにより、50ppm以下に低
下せしめることができるという効果を奏する。
[Effects of the Invention] As described above, the present invention uses a very simple method to produce niobium hydroxide or tantalum hydroxide, which has good filtration properties and has a significantly lower fluorine content than the conventional method, which has a fluorine content of 200 ρpl or less. can be obtained, and the hydroxide content can be reduced to 50 ppm or less by further washing.

Claims (1)

【特許請求の範囲】[Claims] CO_2を含有させたアルカリ水溶液に、CO_2/N
bまたはCO_2/Taのモル比が0.1〜3.0にな
るように、ニオブまたはタンタルのフッ化物水溶液また
はシュウ酸塩水溶液を添加し、PH8以上で晶出させる
ことを特徴とする水酸化ニオブまたは水酸化タンタルの
製造方法。
CO_2/N to an alkaline aqueous solution containing CO_2
Hydroxylation characterized by adding a niobium or tantalum fluoride aqueous solution or an oxalate aqueous solution so that the molar ratio of b or CO_2/Ta is 0.1 to 3.0, and crystallizing at a pH of 8 or higher. Method for producing niobium or tantalum hydroxide.
JP27310587A 1987-10-30 1987-10-30 Production of niobium hydroxide of tantalum hydroxide Pending JPH01115820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27310587A JPH01115820A (en) 1987-10-30 1987-10-30 Production of niobium hydroxide of tantalum hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27310587A JPH01115820A (en) 1987-10-30 1987-10-30 Production of niobium hydroxide of tantalum hydroxide

Publications (1)

Publication Number Publication Date
JPH01115820A true JPH01115820A (en) 1989-05-09

Family

ID=17523204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27310587A Pending JPH01115820A (en) 1987-10-30 1987-10-30 Production of niobium hydroxide of tantalum hydroxide

Country Status (1)

Country Link
JP (1) JPH01115820A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194232A (en) * 1990-09-28 1993-03-16 Hermann C. Starck Berlin Gmbh & Co. Kg Process for the preparation of tantalum/niobium hydroxides and oxides with a low fluoride content
US6338832B1 (en) * 1995-10-12 2002-01-15 Cabot Corporation Process for producing niobium and tantalum compounds
US7175823B2 (en) 2002-02-27 2007-02-13 Stella Chemifa Kabushiki Kaisha Purification method for producing high purity niobium compound and/or tantalum compound
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194232A (en) * 1990-09-28 1993-03-16 Hermann C. Starck Berlin Gmbh & Co. Kg Process for the preparation of tantalum/niobium hydroxides and oxides with a low fluoride content
US6338832B1 (en) * 1995-10-12 2002-01-15 Cabot Corporation Process for producing niobium and tantalum compounds
US6984370B2 (en) 1995-10-12 2006-01-10 Cabot Corporation Process for producing niobium and tantalum compounds
US7276225B2 (en) 1995-10-12 2007-10-02 Cabot Corporation Process for producing niobium and tantalum compounds
US7175823B2 (en) 2002-02-27 2007-02-13 Stella Chemifa Kabushiki Kaisha Purification method for producing high purity niobium compound and/or tantalum compound
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same

Similar Documents

Publication Publication Date Title
RU2456241C2 (en) Method of producing vanadium oxide through extraction
CN106068242B (en) Activation U3O8 is so that it is converted into hydration UO4 method
JP2002518281A (en) Production method of potassium sulfate
US4465657A (en) Process for the preparation of pure silicon dioxide and silicon dioxide obtained by applying this process
JPS63239128A (en) Production of uranium oxide
JP2002531365A (en) Lime processing
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
US3506394A (en) Method for producing sodium silicofluoride from wet process phosphoric acid
JPS6236021A (en) Production of calcium carbonate having low strontium content
JPH01115820A (en) Production of niobium hydroxide of tantalum hydroxide
AU685018B2 (en) Process for preparing high-purity zirconium oxychloride crystals
RU2424188C1 (en) Method of producing high-purity calcium fluoride
EA010106B1 (en) Process for complete utilization of olivine constituents
JP2002503620A (en) Pure titanium dioxide hydrate and method for producing the same
JPH0624739A (en) Method of separating sulfate
CN1363511A (en) Process for preparing fluorine compound and SiO2 from sodium fluosilicate
JPH0362651B2 (en)
JPH01313333A (en) Production of niobium hydroxide or tantalum hydroxide having high purity
JP7345728B2 (en) How to purify lithium carbonate
JP3585603B2 (en) Method for producing high-purity strontium carbonate
JP2000169140A (en) Production of magnesium fluoride
JPH0629135B2 (en) Purification method of titanium sulfate solution
US4943418A (en) Method of preparing high-purity manganese compounds
RU2412116C1 (en) Method of producing high-purity strontium carbonate
JPS6090812A (en) Manufacture of high purity silica