[go: up one dir, main page]

JPH01113727A - High-polymer liquid crystal substrate - Google Patents

High-polymer liquid crystal substrate

Info

Publication number
JPH01113727A
JPH01113727A JP26944887A JP26944887A JPH01113727A JP H01113727 A JPH01113727 A JP H01113727A JP 26944887 A JP26944887 A JP 26944887A JP 26944887 A JP26944887 A JP 26944887A JP H01113727 A JPH01113727 A JP H01113727A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
polymer liquid
acid
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26944887A
Other languages
Japanese (ja)
Inventor
Yoshi Toshida
土志田 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26944887A priority Critical patent/JPH01113727A/en
Publication of JPH01113727A publication Critical patent/JPH01113727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To decrease defects such as impurities and pinholes and to form a thin liquid crystal film having a uniform thickness by sticking the monomer component of a high-polymer liquid crystal onto a substrate and polymerizing the same, thereby forming the thin film on the substrate. CONSTITUTION:Glass, metals, plastic, etc., are used as the substrate 1 to be used and the substrate having grooves 2 of about 0.05-0.2mum depth on the surface is used as well. The monomer component of the high-polymer liquid crystal is stuck onto this substrate 1 by evaporation or sublimation. This substrate 1 is heated or is subjected to heating reaction by plasma, UV rays, electron beams, etc., to polymerize the monomer component. The thin film of the high-polymer liquid crystal which has the high adhesiveness between the high- polymer liquid crystal layer and the substrate 1, eliminates the impurities and pinhole defects and has a uniform film thickness is thereby formed easily on various kinds of the substrates.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、モノマー成分から基板上に直接高分子液晶の
薄膜を形成する手段を有する高分子液晶基板であって、
均質で配向性に優れ、さらに機械的強度に優れた高分子
液晶基板に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a polymer liquid crystal substrate having means for directly forming a polymer liquid crystal thin film on the substrate from monomer components, comprising:
This invention relates to a polymer liquid crystal substrate that is homogeneous, has excellent orientation, and has excellent mechanical strength.

[従来の技術] 従来、高分子液晶、特に側鎖型高分子液晶は。[Conventional technology] Conventionally, polymer liquid crystals, especially side-chain type polymer liquid crystals.

側鎖に剛直な分子構造を有し、又、主鎖型高分子液晶は
主鎖が一般にエステル結合を介してメソーゲン基とフレ
キシブル鎖からなり、両者とも温度と共に相転移し、例
えば、固体→ネマティック相→等方性流動相または固体
→スメクティック相→ネマティック相→等方性流動相な
どの現象が観察される。
The side chains have a rigid molecular structure, and the main chain of main chain polymer liquid crystals generally consists of mesogen groups and flexible chains via ester bonds, and both undergo a phase transition with temperature, for example, from solid to nematic. Phenomena such as phase → isotropic fluid phase or solid → smectic phase → nematic phase → isotropic fluid phase are observed.

一方、高分子液晶は高分子という面からの特徴として、
薄膜フィルム化・大面積化等の機能化が容易に行なわれ
、また物理的・化学的な安定性、耐久性等の物性面の向
上も期待できる。
On the other hand, polymer liquid crystals have the following characteristics from the aspect of polymers:
Functionalization such as thin films and larger areas can be easily achieved, and improvements in physical properties such as physical and chemical stability and durability can be expected.

従来、高分子液晶の配向のためには、低分子液晶に用い
られるところのラビング法(F、 Kahn:Phys
、 Today、 66 (1982)) 、斜方蒸着
法(J。
Conventionally, the rubbing method (F, Kahn: Phys.
, Today, 66 (1982)), oblique evaporation method (J.

Janning:  Appl、  Phys、  L
ett、、 21. 173(1972)) 、グレー
ティング法(M、 Nakamuraand M、  
Ura:  J、 Appl、  Phys、、 52
.210(1981) )や機械的な力によるシェアリ
ング法による配向を行うことが出来た。それ以外にも液
晶状態にて電場もしくは磁場で配向することも報告され
ていた。
Janning: Appl, Phys, L
ett,, 21. 173 (1972)), grating method (M, Nakamura and M,
Ura: J, Appl, Phys,, 52
.. 210 (1981)) and the shearing method using mechanical force. In addition, it has also been reported that liquid crystal molecules can be oriented in an electric or magnetic field.

しかしながら、上記従来例のうち、ラビング法や斜方蒸
着法、グレーティング法のような主として表面エネルギ
ーを用いる配向法は低分子液晶に対しては有効ではある
が、高分子液晶において良好な配向を得るのは困難であ
った。又、磁場や電場を用いた配向法では大面積におい
て均一に処理することが困難てあり、配向処理時間もか
なり必要であることから実用的でない。シェアリング法
では厚みが制約され、高分子液晶では実用的な厚みで行
うことは困難であった。
However, among the conventional methods mentioned above, alignment methods that mainly use surface energy, such as rubbing, oblique evaporation, and grating, are effective for low-molecular liquid crystals, but cannot achieve good alignment for polymer liquid crystals. It was difficult. Furthermore, the alignment method using a magnetic field or electric field is difficult to process uniformly over a large area, and requires a considerable amount of time for alignment treatment, which is not practical. In the shearing method, the thickness is limited, and it is difficult to achieve a practical thickness with polymer liquid crystals.

通常、高分子液晶の合成は、有機溶媒中にその千ツマー
成分を溶解させ、反応開始剤や触媒等の存在下に加熱反
応を行ない、反応終了後、再沈殿等の操作により不純物
、低分子量体等を除去して目的物を得ている。この様に
して得られた高分子液晶を基板上に塗布する方法として
は、流延法やディッピング法、スピナーによる回転塗布
法などかあり、通常は高分子液晶を適当な有機溶媒に溶
解させて低粘度化して塗布に供している。
Usually, polymer liquid crystals are synthesized by dissolving the 100% polymer component in an organic solvent, performing a heating reaction in the presence of a reaction initiator or catalyst, and after the reaction is completed, impurities and low molecular weight particles are removed by reprecipitation. The target object is obtained by removing the body, etc. Methods for coating the polymer liquid crystal obtained in this way on a substrate include casting, dipping, and spin coating using a spinner. Usually, the polymer liquid crystal is dissolved in an appropriate organic solvent. The viscosity is lowered and used for coating.

しかしながら、上記の高分子液晶の合成操作時には、反
応溶媒・再沈殿溶媒として大量の溶媒が必要となり、ま
た操作工程も数段階に渡って行なわれる。さらに塗布操
作上の問題点としては、使用する溶媒中の不純物による
悪影響を除くためにその精製が必要となり、さらに溶媒
蒸発の際に薄膜中にピンホール等の欠陥が生じる可能性
かある。したがって、より良い薄膜形成方法が望まれて
いる現状である。
However, during the synthesis operation of the polymer liquid crystal described above, a large amount of solvent is required as a reaction solvent and a reprecipitation solvent, and the operation process is performed in several steps. Further problems in the coating operation include the need for purification to remove the adverse effects of impurities in the solvent used, and the possibility that defects such as pinholes may occur in the thin film during solvent evaporation. Therefore, there is currently a demand for a better method for forming thin films.

[発明が解決しようとする問題点] 本発明は、上記の様な工程上の問題点を解決し、高分子
液晶を簡便に精度良く、所定の基板上に薄膜化すること
がてきる高分子液晶基板を提供しようとするものである
[Problems to be Solved by the Invention] The present invention solves the above-mentioned process problems and provides a polymer liquid crystal that can be easily and precisely formed into a thin film on a predetermined substrate. The aim is to provide a liquid crystal substrate.

[問題点を解決するための手段] 即ち、本発明は、高分子液晶の七ツマー成分を基板上に
付着させた後、重合を行ない基板上に高分子液晶薄膜を
形成する手段を有することを特徴とする高分子液晶基板
である。
[Means for Solving the Problems] That is, the present invention includes means for depositing a heptamer component of a polymeric liquid crystal on a substrate and then polymerizing it to form a polymeric liquid crystal thin film on the substrate. This is a characteristic polymer liquid crystal substrate.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、高分子液晶のモノマー成分を蒸発・
凝縮或いは昇華により所定の基板上に付着させた後に、
加熱・プラズマ・紫外線・電子線等のエネルギーにより
重合させることにより、前記基板上に高分子液晶薄膜を
形成てきる。
In the present invention, the monomer components of the polymer liquid crystal are evaporated and
After being deposited on a given substrate by condensation or sublimation,
A polymer liquid crystal thin film can be formed on the substrate by polymerization using energy such as heating, plasma, ultraviolet rays, or electron beams.

本発明において用いられる上記の千ツマー成分としては
、特に限定することはなく広範囲の高分子・液晶のモノ
マーを使用することができる。
The above-mentioned monomer component used in the present invention is not particularly limited, and a wide range of polymer/liquid crystal monomers can be used.

例えばサーモトロピック液晶性を示す主鎖型高分子液晶
が使用てきる。メソーゲン基として用いることの出来る
具体的な化合物には、ターフェニルジカルボン酸、p−
テレフタル酸、ナフタレンジカルボン酸、ビフェニルジ
カルボン酸、スチルベンジカルボン酸、アゾベンゼンジ
カルボン酸、アゾキシベンゼンジカルボン酸、シクロヘ
キサンジカルボン酸、ビフェニルエーテルジカルボン酸
For example, a main chain polymer liquid crystal exhibiting thermotropic liquid crystal properties can be used. Specific compounds that can be used as mesogenic groups include terphenyldicarboxylic acid, p-
Terephthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, stilbenzenedicarboxylic acid, azobenzenedicarboxylic acid, azoxybenzenedicarboxylic acid, cyclohexanedicarboxylic acid, biphenyletherdicarboxylic acid.

ビフェニルエタンジカルボン酸、ビフェニルエタンジカ
ルボン酸もしくはカルボキシケイ皮酸等のジカルボン酸
、ハイドロキノン、ジハイドロキシビフェニル、ジハイ
ドロキシターフェニル、ジハイドロキシアゾベンゼン、
ジハイドロキシアゾキシベンゼン、ジハイドロキシジメ
チルアゾベンゼン、ジハイドロキシジメチルアゾキシベ
ンゼン、ジハイドロキシピリダジン、ジハイドロキシナ
フタレン、ジヒドロキシフェニルエーテル、もしくはビ
ス(ヒドロキシフェノキシ)エタン等のジオール又はハ
イドロキシ安息香酸、ハイドロキシビフェニルカルボン
酸、パイトロキシターフェニルカルボン酸、ハイドロキ
シケイ皮酸、ハイドロキシアゾベンゼンカルボン酸、ハ
イドロキシアゾキシベンゼンカルボン酸もしくはハイド
ロキシスチルベンカルボン酸等のハイドロキシカルボン
酸を用いることが出来る。
Dicarboxylic acids such as biphenylethanedicarboxylic acid, biphenylethanedicarboxylic acid or carboxycinnamic acid, hydroquinone, dihydroxybiphenyl, dihydroxyterphenyl, dihydroxyazobenzene,
Diols such as dihydroxyazoxybenzene, dihydroxydimethylazobenzene, dihydroxydimethylazoxybenzene, dihydroxypyridazine, dihydroxynaphthalene, dihydroxyphenyl ether, or bis(hydroxyphenoxy)ethane, or hydroxybenzoic acid, hydroxybiphenylcarboxylic acid, Hydroxycarboxylic acids such as pytroxyterphenylcarboxylic acid, hydroxycinnamic acid, hydroxyazobenzenecarboxylic acid, hydroxyazoxybenzenecarboxylic acid or hydroxystilbenecarboxylic acid can be used.

フレキシブル鎖としては下記[I]式で表わされる基が
用いられる。
As the flexible chain, a group represented by the following formula [I] is used.

一←÷べ!12)7−+0→;←)−−[I](式中、
2は1から4の整数、mは0またはl、nは1から15
までの整数を示す) 具体的に用いるフレキシブル鎖の原料とじては、メチレ
ングリコール、エチレングリコール、ブロイ(ンジオー
ル、ブタンジオール、ベンタンジオール、ヘキサンジオ
ール、ヘプタンジオール、オクタンジオール、ノナンジ
オール、デカンジオール、ウンデカンジオール、ドデカ
ンジオール、トリデカンジオール、テトラデカンジオー
ル、ペンタデカンジオール、ジエチレングリコール、ト
リエチレングリコール、テトラエチレングリコール、ノ
ナエチレングリコール、もしくはトリデカエチレングリ
コール、等のジオール又はマロン酸、こはく酸、グルタ
ル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライ
ン酸、もしくはセバシン酸、等のジカルボン酸を用いる
ことが出来る。
One←÷be! 12) 7-+0→;←)--[I] (in the formula,
2 is an integer from 1 to 4, m is 0 or l, n is 1 to 15
(Integers up to Diols, diols such as dodecanediol, tridecanediol, tetradecanediol, pentadecanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, nonaethylene glycol, or tridecaethylene glycol, or malonic acid, succinic acid, glutaric acid, adipic acid Dicarboxylic acids such as , pimelic acid, speric acid, azelaic acid, or sebacic acid can be used.

さらに、光学活性基として、2官能性のものがフレキシ
ブル鎖の原料として使用できる。具体的には、 (+)−3−メチル−1,6−ヘキサンジオール(−)
−3−メチル−1,6−ヘキサンジオール(+)−3−
メチルアジピックアシッド(−)−3−メチルアジピッ
クアシッド(D)−マニトール(D−mannitol
)(L)−マニトール(L−mannitol)(リー
パントテン酸 (+)−1,2−4−トリハイドロキシ−3,3−ジメ
チルブタン (−)−1,2−プロパンジオール (÷)−1,2−プロパンジオール (+)−乳酸 (−)−乳酸 (23,5S)−2−メチル−3−オキサヘキサン−1
,5−ジオール (2S、5S、8S)−2,5−ジメチル−3,6−シ
オキサノナンー1.8−ジオール 等を用いることが出来る。
Furthermore, as an optically active group, a difunctional one can be used as a raw material for a flexible chain. Specifically, (+)-3-methyl-1,6-hexanediol (-)
-3-methyl-1,6-hexanediol (+)-3-
Methylazipic acid (-)-3-methyladipic acid (D)-mannitol
) (L)-mannitol (L-mannitol) (liepantothenic acid (+)-1,2-4-trihydroxy-3,3-dimethylbutane (-)-1,2-propanediol (÷)-1, 2-Propanediol (+)-lactic acid (-)-lactic acid (23,5S)-2-methyl-3-oxahexane-1
, 5-diol (2S, 5S, 8S)-2,5-dimethyl-3,6-thioxanonan-1,8-diol, etc. can be used.

上記の内カルボン酸成分は塩化チオニル等で酸クロライ
ドとし、以下の重合工程で使°用される。
Among the above carboxylic acid components, thionyl chloride or the like is converted into an acid chloride and used in the following polymerization step.

代表的な高分子液晶としては下記のようなものがあるが
、これらに限定されるものではない。
Typical polymer liquid crystals include, but are not limited to, those listed below.

(本は光学活性基を表わす) (x + y = 1であり、X≧o、iである。また
、15〉n≧1である。) 又、重合後の高分子液晶がサーモトロピック液晶性を示
すアクリル酸エステルあるいはメタクリル酸エステル類
も好ましい。
(The book represents an optically active group.) (x + y = 1, X≧o, i. Also, 15>n≧1) In addition, the polymer liquid crystal after polymerization has thermotropic liquid crystallinity. Also preferred are acrylic esters and methacrylic esters.

これらのエステル類は、一般に炭化水素の屈曲類を介し
て液晶性コア部(メソーゲン部)を有するもので、例え
ば該エステルとして、下記一般式%式% これらに限定されるものではない。
These esters generally have a liquid crystalline core portion (mesogen portion) through hydrocarbon bends, and the esters may be represented by, for example, the following general formula (%).They are not limited to these.

一般式[11] 一般式[ml R8 R,:  H,CH3 p: lへ12の整数 x  :  +、−o−、−coo− Y・−0−0−、豫)℃ト。General formula [11] General formula [ml R8 R,:H,CH3 p: 12 integer to l x: +, -o-, -coo- Y・-0-0-, 豫)℃t.

−o−cH−N−(Qト 、 +x−co−@ト 。-o-cH-N-(Qto, +x-co-@to.

4防N−N(妊、 ÷coo番。4 defense N-N (pregnancy, ÷ coo number.

(シoco(ト、 (トcu=cu−coo(ト。(shico(to, (to cu=cu-coo(to).

(別cooづH所−◎は4coo−@−。(Another coozu H place-◎ is 4coo-@-.

豫)石針oco+、 ()(沢ocu、(C軒。豫) stone needle oco+, () (sawa ocu, (C house).

4coO+C匡■(ト。4coO+C匡■(t.

■ Z ニー(H=CI(−COO−Rz、−COO−R2
,−0−Rt、−C−Rt。
■ Z Knee (H=CI(-COO-Rz, -COO-R2
, -0-Rt, -C-Rt.

−0CO−R2,−NH−R2,−NR2,−(:N、
−H。
-0CO-R2, -NH-R2, -NR2, -(:N,
-H.

C1〜2oのアルキル基、C1〜2oの不斉炭素含有ア
ルキル基、 −F、 −CR,−Br、 −NH,、−
NO2n2:c、〜2oのアルキル基、61〜2oの不
斉炭素含有アルキル基 上記モノマーを基板上に付着させるには、真空度10−
2〜10−’Torr程度の真空下でモノマー成分と基
板とを適当な間隔を置いて静置し、さらに必要に応じて
モノマーを加熱することで達成される。
C1-2o alkyl group, C1-2o asymmetric carbon-containing alkyl group, -F, -CR, -Br, -NH,, -
NO2n2: c, ~2o alkyl group, 61~2o asymmetric carbon-containing alkyl group In order to attach the above monomer onto the substrate, a vacuum degree of 10-
This is achieved by leaving the monomer component and the substrate at rest with an appropriate distance between them under a vacuum of about 2 to 10 Torr, and further heating the monomer if necessary.

この様にして基板上に千ツマ−を積層した後、前記真空
下或いは取り出して大気圧下て、好゛ましくは窒素やア
ルゴン等の不活性雰囲気中で、前記基板を加熱するか或
いはプラズマ・紫外線・電子線等の活性エネルギー線を
照射すれば、重合か進行し高分子液晶の薄膜を形成する
ことができる。
After stacking the layers on the substrate in this manner, the substrate is heated under the vacuum, or taken out and placed under atmospheric pressure, preferably in an inert atmosphere such as nitrogen or argon, or exposed to plasma. - By irradiating active energy rays such as ultraviolet rays and electron beams, polymerization progresses and a thin film of polymer liquid crystal can be formed.

前記基板上に予め配向膜を処理しておくことにより、高
分子液晶薄膜の配向を制御できる。前記基板上に配向処
理を施す方法としては、ラビング法や斜方蒸着法や磁界
を印加する方法などがある。
By processing an alignment film on the substrate in advance, the alignment of the polymer liquid crystal thin film can be controlled. Methods for performing alignment treatment on the substrate include a rubbing method, an oblique evaporation method, and a method of applying a magnetic field.

本発明において使用される基板としては、ガラス・金属
・プラスチック等であるが、さらにITO膜等の導電層
を有する基板、また第1図(a)〜(d)に示す様に、
表面に深さ0.05〜0.2 p、ta程度の溝2を有
する基板1等にも応用可能である。
Substrates used in the present invention include glass, metal, plastic, etc., but also substrates having a conductive layer such as an ITO film, and as shown in FIGS. 1(a) to (d),
It is also applicable to a substrate 1 having grooves 2 on the surface with a depth of approximately 0.05 to 0.2 p and ta.

[作 用] 本発明の高分子液晶基板は、高分子液晶の七ツマー成分
を蒸発あるいは昇華により基板上に付着させるので、該
基板と該高分子液晶層との密着性に優れ、かつ基板上に
高精度のモノマー成分の薄膜が均一に積層され、該薄膜
を加熱するか或いはプラズマ・紫外線・電子線等の活性
エネルギーを付与することにより重合を行なうために、
不純物の混入やピンホール等の発生がなく、均一な膜厚
の高分子液晶薄膜を形成することができる。
[Function] The polymeric liquid crystal substrate of the present invention has excellent adhesion between the substrate and the polymeric liquid crystal layer, since the hexamer component of the polymeric liquid crystal is adhered onto the substrate by evaporation or sublimation. A thin film of high-precision monomer components is uniformly laminated on the material, and polymerization is carried out by heating the thin film or applying active energy such as plasma, ultraviolet rays, or electron beams.
A polymer liquid crystal thin film with a uniform thickness can be formed without contamination of impurities or generation of pinholes.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 厚さ1■−9たて50■■、よこ50mm角のガラス基
板を、七ツマ−として下記の式[IV]で示される化合
物を用い、 [IV] ベンゾインイソブチルエーテルを式[IV]の化合物に
対し0.2重量%混合したものを入れたシャーレと、l
Oc■の間隔をあけて真空容器内に静置した。この真空
容器内を5 X 10−’Torrの真空度まで排気し
、上記式[IV]の化合物を入れたシャーレを50℃に
加熱して、30分間保った後、系内に窒素ガスを導入し
て大気圧に戻し、モノマー層が付着したガラス基板を取
り出した。
Example 1 A glass substrate with a thickness of 1 - 9 (height: 50 mm) and a width of 50 mm (width) square was used as a seven-pointed glass substrate using a compound represented by the following formula [IV]. ] A Petri dish containing a mixture of 0.2% by weight of the compound;
They were left standing in a vacuum container with an interval of Oc■. The inside of this vacuum container was evacuated to a degree of vacuum of 5 x 10-'Torr, and the petri dish containing the compound of the above formula [IV] was heated to 50°C and maintained for 30 minutes, after which nitrogen gas was introduced into the system. The pressure was returned to atmospheric pressure, and the glass substrate with the monomer layer attached was taken out.

次に、該ガラス基板を窒素雰囲気下で500Wの水冷式
超高圧水銀灯により、15csの距離から約1時間紫外
線を照射した。照射後、膜厚を測定した所3.2pmで
あった。得られた高分子薄膜は97℃〜120℃で液晶
相(ネマチック)を示した。
Next, the glass substrate was irradiated with ultraviolet rays for about 1 hour from a distance of 15 cs using a 500 W water-cooled ultra-high pressure mercury lamp in a nitrogen atmosphere. After irradiation, the film thickness was measured and found to be 3.2 pm. The obtained polymer thin film exhibited a liquid crystal phase (nematic) at 97°C to 120°C.

薄膜の表面を光学顕微鏡て50倍に拡大して観察したが
、ピンホール等の欠陥は見られなかった。
When the surface of the thin film was observed using an optical microscope under 50 times magnification, no defects such as pinholes were observed.

上記の高分子液晶基板を一30℃X2Hn60℃X2H
の温度条件でヒートサイクル試験をlOサイクル行なっ
た後、高分子薄膜層とガラス基板との密着性試験を行な
った所、基盤目剥離テストで65/10G (100の
マス目の内65コ密着)であった。
The above polymer liquid crystal substrate
After conducting a heat cycle test under the temperature conditions of 1O, an adhesion test between the polymer thin film layer and the glass substrate was performed, and the substrate peeling test was 65/10G (65 out of 100 squares adhered). Met.

実施例2 千ツマ−を下記の式[V]で示される化合物[V] に変えた以外は、実施例1と同様にして七ツマー層が付
着したガラス基板を得た。次に、該ガラス基板を窒素雰
囲気下で150kVの加速電圧で電子線照射を行った。
Example 2 A glass substrate with a seven-layer layer attached was obtained in the same manner as in Example 1, except that the seven-layer compound was changed to a compound [V] represented by the following formula [V]. Next, the glass substrate was irradiated with an electron beam at an acceleration voltage of 150 kV in a nitrogen atmosphere.

得られた高分子層の膜厚は2.61Lsであった。この
高分子薄膜は67・0〜180°Cで液晶相(スメクチ
ック)を示した。光学顕微鏡観察では実施例1と同様欠
陥の存在は見られなかった。
The thickness of the obtained polymer layer was 2.61 Ls. This polymer thin film exhibited a liquid crystal phase (smectic) at 67.0 to 180°C. Similar to Example 1, no defects were observed by optical microscopic observation.

実施例3 実施例1と同様のガラス基板にポリアミック酸溶液(日
立化成工業■製、商品名PIQ :不揮発分濃度3wt
%)を塗布し、加熱後ラビング法で一軸配向処理を加え
たポリイミドの配向膜を形成した基板を使用した以外は
、実施例1と同様にして高分子液晶薄膜を有する基板を
作成した。この液晶層の上に、厚さ2.8ル■のスペー
サを介して、同形状のガラス基板を重ね合わせた。上記
の記録媒体を140℃まで加熱し、液晶層を等方性状態
にした。2℃/sinのスピードで徐々に冷却すると、
液晶層は一軸に配向した。
Example 3 A polyamic acid solution (manufactured by Hitachi Chemical Co., Ltd., trade name PIQ: non-volatile content concentration 3wt) was applied to the same glass substrate as in Example 1.
A substrate having a polymeric liquid crystal thin film was prepared in the same manner as in Example 1, except that a substrate having a polyimide alignment film coated with %) and uniaxially aligned by a rubbing method after heating was used. A glass substrate of the same shape was placed on top of this liquid crystal layer with a spacer having a thickness of 2.8 μm interposed therebetween. The above recording medium was heated to 140° C. to bring the liquid crystal layer into an isotropic state. When gradually cooled at a speed of 2℃/sin,
The liquid crystal layer was uniaxially aligned.

実施例4 第1図(a)に示す断面形状の溝を有し、その溝の深さ
0.081Lm 、溝の幅1.0 gtm 、溝の間隔
0.61Lraであるたて5h■、よこ50II11角
、厚さ1111のガラス基板を使用した以外は、実施例
2と同様にして高分子液晶薄膜を該基板上に作成した。
Example 4 It has a groove with the cross-sectional shape shown in FIG. A polymer liquid crystal thin film was formed on the substrate in the same manner as in Example 2, except that a glass substrate of 50mm square and 111mm thick was used.

この液晶層の上に、厚さ2.:l #Lmのスペーサを
介して、同形状のガラス基板を型枠台わせた。上記の記
録媒体を200℃まで加熱して、液晶層を等方性状態に
する。2℃l■inで徐々に冷却すると、液晶層は上記
の溝に沿って完全に配向していた。
On top of this liquid crystal layer, a thickness of 2. :l A glass substrate of the same shape was mounted on a mold frame via a #Lm spacer. The above recording medium is heated to 200° C. to bring the liquid crystal layer into an isotropic state. When the liquid crystal layer was gradually cooled at 2° C./in, the liquid crystal layer was completely oriented along the above-mentioned grooves.

比較例1 実施例1で使用したと同様の式[IV]のモノマー10
gを、脱水処理したベンゼン50■2を溶媒として、ア
ゾビスイソブチロニトリルを重合開始剤として七ツマ−
に対し0.3重量%の割合で添加し、窒素雰囲気下で7
0℃×30時間加熱して溶液重合を行なった。反応後、
反応液をメタノール中に注加し、沈殿した固体を炉別し
た。乾燥した固体をクロロホルムに溶かし、沈殿溶媒と
してメタノールを使用し、この再沈殿操作を2回行なっ
た後のポリマーを乾燥して、以下の様に供した。
Comparative Example 1 Monomer 10 of formula [IV] similar to that used in Example 1
g was treated with 50% of dehydrated benzene as a solvent and azobisisobutyronitrile as a polymerization initiator.
7% by weight under nitrogen atmosphere.
Solution polymerization was performed by heating at 0° C. for 30 hours. After the reaction,
The reaction solution was poured into methanol, and the precipitated solid was filtered out. The dried solid was dissolved in chloroform, methanol was used as a precipitation solvent, and this reprecipitation operation was performed twice. The polymer was then dried and used as follows.

上記のポリマーを塩化メチレンに10wt%の濃度で溶
解させ、スピナーにより厚さl■朧、50X 50■■
角のガラス基板上に塗布した。塩化メチレンは特級品を
蒸留精製し、溶液は0.21Lmのフィルターで濾過後
塗布に供した。
The above polymer was dissolved in methylene chloride at a concentration of 10 wt%, and the thickness was 1 x 50 x 50 using a spinner.
Coated on a corner glass substrate. Special grade methylene chloride was purified by distillation, and the solution was filtered through a 0.21 Lm filter before being applied.

塗布後、40℃の熱風乾燥器で乾燥後、膜厚を測定した
ところ、スピナーの回転中心部で2.8 u、tm 、
 15mm外側で2.1 p−raであった。
After coating and drying in a hot air dryer at 40°C, the film thickness was measured and found to be 2.8 u, tm at the center of rotation of the spinner.
It was 2.1 p-ra at 15 mm outside.

また、薄膜の表面を光学顕微鏡で50倍に拡大して観察
したところ、場所によってはピンホールが視野内に認め
られた。この高分子液晶基板を実施例1と同様の条件て
ヒートサイクル試験後、密着性試験を行なった所、5 
/100で実施例1に比べ低下していた。
Furthermore, when the surface of the thin film was observed with an optical microscope under 50 times magnification, pinholes were observed in the field of view in some places. This polymer liquid crystal substrate was subjected to a heat cycle test under the same conditions as in Example 1, and then an adhesion test was conducted.
/100, which was lower than in Example 1.

実施例5 ハイドロキシ安息香酸0.1モルのエタノール溶液にN
aOHO,12モルを加え、次にベンジルクロライド0
.12モルを加えた。溶媒を留去し、再結晶してベンジ
ル−ハイドロキシ安息香酸を得た。このベンジル−ハイ
ドロキシ安息香酸0.2モルとテレフタル酸クロライド
0.1モルをピリジン中で反応させることによって、ビ
ス(4−ベンジルオキシカーボニルフェニル)テレフタ
レートを得た。再結晶して精製したこのジエステルをト
リフルオロ酢酸中で加熱処理することによって、ビス(
4−カルボキシフェニル)テレフタレートを得た。これ
に塩化チオニルを反応させ、酸クロライド■を得た。
Example 5 Adding N to an ethanol solution of 0.1 mol of hydroxybenzoic acid
Add 12 moles of aOHO, then 0 benzyl chloride
.. 12 moles were added. The solvent was distilled off and the residue was recrystallized to obtain benzyl-hydroxybenzoic acid. Bis(4-benzyloxycarbonylphenyl) terephthalate was obtained by reacting 0.2 mol of this benzyl-hydroxybenzoic acid with 0.1 mol of terephthalic acid chloride in pyridine. This diester purified by recrystallization is heated in trifluoroacetic acid to obtain bis(
4-carboxyphenyl) terephthalate was obtained. This was reacted with thionyl chloride to obtain acid chloride (■).

たて50■■、横50−−角のガラス基板にポリアミッ
ク酸溶液(日立化成工業■製、PIQ :不揮発分濃度
3wt%)を塗布し、加熱後ラビング法て一軸配向処理
を加えたポリイミドの配向膜を形成した基板を、上記■
と1.9−ノナンジオールをそれぞれ入れた2個のシャ
ーレと10c1の間隔で真空容器内に静置した。この真
空容器内を5 X 10”’Torrの真空度まて排気
し、上記のシャーレを40°Cに加熱して、30分間保
った後、系内に窒素ガスを導入して大気圧に戻した。
A polyamic acid solution (manufactured by Hitachi Chemical Co., Ltd., PIQ: non-volatile content concentration 3 wt%) was applied to a glass substrate measuring 50 cm vertically and 50 cm horizontally, and after heating, a polyimide was subjected to a uniaxial alignment treatment using a rubbing method. The substrate on which the alignment film has been formed is
and 1,9-nonanediol were placed in a vacuum container at a distance of 10 cm from two petri dishes containing 1,9-nonanediol and 1,9-nonanediol. The inside of this vacuum container was evacuated to a vacuum level of 5 x 10'' Torr, and the above petri dish was heated to 40°C and held for 30 minutes, then nitrogen gas was introduced into the system to return it to atmospheric pressure. Ta.

次に、その原料成分が付着したガラス基板に窒素雰囲気
下で遠赤外線照射を行ない、該基板を約130°Cで6
時間加熱、重合を進行させた。加熱後、膜厚を測定した
ところ、2ILIlてあった。得られた高分子薄膜は9
0℃〜230”Cて液晶相(スメクチック)を示した。
Next, the glass substrate to which the raw material components have been attached is irradiated with far infrared rays in a nitrogen atmosphere, and the substrate is heated at approximately 130°C for 6 hours.
The mixture was heated for a period of time to allow polymerization to proceed. After heating, the film thickness was measured and found to be 2ILIl. The obtained polymer thin film was 9
It exhibited a liquid crystal phase (smectic) at 0°C to 230''C.

また、薄膜の表面を光学顕微鏡で50倍に拡大して観察
したが、ピンホール等の欠陥は見られなかった。
Furthermore, when the surface of the thin film was observed using an optical microscope under 50 times magnification, no defects such as pinholes were observed.

この高分子液晶薄膜はそのままで部分的に配向していた
。この液晶層の上に、厚さ1.8 周囲のスペーサを介
して、ガラス基板を重ね合わせた。上記の記録媒体を2
50°Cまで加熱して液晶層を等方性状態にした後、2
℃/■inで徐冷すると、該液晶層は一軸に均一に配向
した。
This polymer liquid crystal thin film was partially oriented as it was. A glass substrate was placed on top of this liquid crystal layer with a 1.8-thick spacer interposed therebetween. 2 of the above recording media
After heating to 50°C to make the liquid crystal layer isotropic, 2
When slowly cooled at .degree. C./inch, the liquid crystal layer was uniaxially and uniformly aligned.

上記の高分子液晶基板を一30°CX2H→60℃×2
Hの温度条件でヒートサイクル試験を10サイクル行な
った後、高分子薄膜層とガラス基板との密着性試験を行
なったところ、基盤目剥離テストで70/100であっ
た。
The above polymer liquid crystal substrate is heated at 30°C x 2H → 60°C x 2.
After 10 cycles of a heat cycle test under the temperature condition of H, an adhesion test between the polymer thin film layer and the glass substrate was performed, and the result was 70/100 in the substrate peel test.

実施例6 4.4″−ターフェニルジカルボン酸に塩化チオニルを
反応させ酸クロライド■を得た。第1図(a)で示した
断面形状の溝を有し、その溝の深さ口、oaIL履、溝
の幅10口IL11、溝の間隔0.6ル謹であるたて5
0■、横50−−角、厚さ1mmのガラス基板を、上記
■とテトラエチレングリコールをそれぞれ入れた2個の
シャーレと10cmの間隔で真空容器内に静置した。そ
の後の操作は実施例5と同様に行ない、高分子液晶薄膜
をガラス基板上に作成した。膜厚は1.81L−であっ
た。この高分子液晶は125℃〜250℃で液晶相(ス
メクチック)を示した。薄膜表面の光学顕微鏡観察では
実施例5と同様欠陥の存在は見られなかった。この高分
子液晶薄膜はそのままで部分的に配向していた。この液
晶層の上に、厚さ1.61L■のスペーサを介してガラ
ス基板を重ね合わせた。上記の記録媒体を270℃まで
加熱して等方性状−態にした後、2℃/winで徐々に
冷却すると、液晶層は上記の溝に沿って完全に配向して
いた。
Example 6 Acid chloride ■ was obtained by reacting 4.4″-terphenyldicarboxylic acid with thionyl chloride. It had a groove with the cross-sectional shape shown in FIG. 1(a), and the depth of the groove was as follows: oaIL Shoes, groove width 10 holes IL11, groove spacing 0.6 mm length 5
A glass substrate measuring 0 cm, 50 mm wide and 1 mm thick was placed in a vacuum container at a distance of 10 cm from two Petri dishes containing the above-mentioned ■ and tetraethylene glycol, respectively. The subsequent operations were performed in the same manner as in Example 5, and a polymer liquid crystal thin film was formed on a glass substrate. The film thickness was 1.81 L-. This polymer liquid crystal exhibited a liquid crystal phase (smectic) at 125°C to 250°C. As in Example 5, no defects were observed in the optical microscope observation of the thin film surface. This polymer liquid crystal thin film was partially oriented as it was. A glass substrate was placed on top of this liquid crystal layer with a spacer having a thickness of 1.61 L being interposed therebetween. When the recording medium was heated to 270° C. to be in an isotropic state and then gradually cooled at 2° C./win, the liquid crystal layer was completely oriented along the grooves.

比較例2 実施例5で得られた酸クロライド■と1.9−ノナンジ
オールをジクロロエタン中で窒素雰囲気下に70℃x1
5時間反応させ、溶媒留去後メタノールで洗浄し、乾燥
して得た主鎖型高分子液晶を以下のように供した。
Comparative Example 2 The acid chloride obtained in Example 5 and 1,9-nonanediol were heated in dichloroethane at 70°C x 1 under a nitrogen atmosphere.
After reacting for 5 hours, the solvent was distilled off, washed with methanol, and dried. The resulting main chain polymer liquid crystal was provided as follows.

上記のポリマーをクロロホルムに5wt%の濃度で溶解
させ、スピナーにより厚さ1mm、50x 50■膳角
のガラス基板上に塗布した。クロロホルムは特級品を蒸
留精製し、溶液は0.21Lmのフィルターて濾過後、
塗布に使用した。塗布後40℃の乾燥器で乾燥後、膜厚
を測定したところ、スピナーの回転中心部で21Lm、
8mm外側で1.7 JL■てあった。
The above polymer was dissolved in chloroform at a concentration of 5 wt %, and applied using a spinner onto a 1 mm thick, 50 x 50 square glass substrate. Chloroform is purified by distillation of special grade, and the solution is filtered through a 0.21Lm filter.
Used for coating. After coating and drying in a dryer at 40°C, the film thickness was measured and found to be 21 Lm at the center of rotation of the spinner.
It was 1.7 JL■ at 8mm outside.

また、薄膜の表面を光学顕微鏡で50倍に拡大して観察
したところ、場所によってはピンホールが視野内に認め
られた。
Furthermore, when the surface of the thin film was observed with an optical microscope under 50 times magnification, pinholes were observed in the field of view in some places.

比較例3 比較例2で使用したと同様の主鎖型高分子液晶を用い、
同様の方法により、実施例5と同様にしてポリイミドの
配向膜を形成したガラス基板上に、高分子液晶薄膜を形
成した。膜厚は内周部で27L11.外周部で1.5 
gtaであった。この液晶層の上に、厚さt、s IL
−のスペーサを介してガラス基板を重ね合わせた。上記
の記録媒体を250℃まで加熱して等吉相にした後、2
℃/winで徐冷したところ、配向は不充分で均一な一
軸配向は得られなかった。
Comparative Example 3 Using the same main chain type polymer liquid crystal as used in Comparative Example 2,
By a similar method, a polymer liquid crystal thin film was formed on a glass substrate on which a polyimide alignment film was formed in the same manner as in Example 5. The film thickness is 27L11. 1.5 at the outer periphery
It was gta. On top of this liquid crystal layer, a thickness t, s IL
The glass substrates were stacked with - spacers interposed therebetween. After heating the above recording medium to 250°C to make it into the equi-lucky phase, 2
When it was slowly cooled at °C/win, the orientation was insufficient and uniform uniaxial orientation could not be obtained.

この高分子液晶基板を実施例5と同様の条件でヒートサ
イクル試験後、密着性試験を行なったところ、8 /1
00で実施例5に比べ低下していた。
This polymer liquid crystal substrate was subjected to a heat cycle test under the same conditions as in Example 5, and then an adhesion test was conducted, and the result was 8/1.
00, which was lower than in Example 5.

[発明の効果] 以上説明したように、本発明の高分子液晶基板によれば
、欠陥や不純物が少なく、膜厚の一定した高分子液晶薄
膜を、各種基板上に簡便に形成することがてきる。
[Effects of the Invention] As explained above, according to the polymer liquid crystal substrate of the present invention, a polymer liquid crystal thin film with few defects and impurities and a constant film thickness can be easily formed on various substrates. Ru.

また、本発明で製造した高分子液晶は基板との密着性に
優れているため、耐環境性に優れた高分子液晶基板を提
供できる。
Further, since the polymer liquid crystal produced according to the present invention has excellent adhesion to the substrate, it is possible to provide a polymer liquid crystal substrate with excellent environmental resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる基板の溝形状の断面模式図
である。
FIG. 1 is a schematic cross-sectional view of the groove shape of a substrate used in the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)高分子液晶のモノマー成分を基板上に付着させた
後、重合を行ない基板上に高分子液晶薄膜を形成する手
段を有することを特徴とする高分子液晶基板。
(1) A polymer liquid crystal substrate characterized by having means for depositing a polymer liquid crystal monomer component on the substrate and then polymerizing it to form a polymer liquid crystal thin film on the substrate.
(2)加熱、プラズマ、紫外線または電子線のエネルギ
ーにより重合を行なう特許請求の範囲第1項記載の高分
子液晶基板。
(2) The polymer liquid crystal substrate according to claim 1, wherein polymerization is carried out by heating, plasma, ultraviolet rays, or electron beam energy.
JP26944887A 1987-10-27 1987-10-27 High-polymer liquid crystal substrate Pending JPH01113727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26944887A JPH01113727A (en) 1987-10-27 1987-10-27 High-polymer liquid crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26944887A JPH01113727A (en) 1987-10-27 1987-10-27 High-polymer liquid crystal substrate

Publications (1)

Publication Number Publication Date
JPH01113727A true JPH01113727A (en) 1989-05-02

Family

ID=17472570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26944887A Pending JPH01113727A (en) 1987-10-27 1987-10-27 High-polymer liquid crystal substrate

Country Status (1)

Country Link
JP (1) JPH01113727A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039326A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Substrate with liquid crystalline high plymer thin film and its manufacture
JPH039325A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Orienting method for liquid crystalline high polymer
JPH039321A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Method for orienting liquid crystalline high polymer
JPH03291601A (en) * 1990-04-10 1991-12-20 Nippon Oil Co Ltd Phase difference plate
JPH03291620A (en) * 1990-04-10 1991-12-20 Nippon Oil Co Ltd Compensating plate for liquid crystal display element
JPH07306421A (en) * 1995-04-20 1995-11-21 Canon Inc Ferroelectric liquid crystal element
JP2006009030A (en) * 1994-06-24 2006-01-12 Rolic Ag Optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039326A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Substrate with liquid crystalline high plymer thin film and its manufacture
JPH039325A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Orienting method for liquid crystalline high polymer
JPH039321A (en) * 1989-06-06 1991-01-17 Ricoh Co Ltd Method for orienting liquid crystalline high polymer
JPH03291601A (en) * 1990-04-10 1991-12-20 Nippon Oil Co Ltd Phase difference plate
JPH03291620A (en) * 1990-04-10 1991-12-20 Nippon Oil Co Ltd Compensating plate for liquid crystal display element
JP2006009030A (en) * 1994-06-24 2006-01-12 Rolic Ag Optical element
JP4515984B2 (en) * 1994-06-24 2010-08-04 ロリク アーゲー Optical elements
JPH07306421A (en) * 1995-04-20 1995-11-21 Canon Inc Ferroelectric liquid crystal element

Similar Documents

Publication Publication Date Title
JP5679253B2 (en) Self-supporting polymer thin film
JP6192710B2 (en) Surface director alignment layer and liquid crystal device including the layer
TW200422346A (en) Liquid-crystalline polyester solution composition
TW201807171A (en) Liquid crystal composition and method for producing the same, and phase difference film composed of the liquid crystal composition
JPH01113727A (en) High-polymer liquid crystal substrate
JP4441536B2 (en) Method for producing two-phase film material
JP3934692B2 (en) Retardation film, manufacturing method thereof, and liquid crystal display device
JPH10310612A (en) Compounds and method for producing liquid crystal polymer from these compounds
US5846451A (en) Crosslinking type liquid crystal polymer and oriented crosslinking film thereof
US20090295024A1 (en) Nanoimprint mold
WO2011033986A1 (en) Process for production of liquid crystal polyester film, and liquid crystal polyester film
TW200907028A (en) Supramolecular composite film material and method for fabricating
JP2614106B2 (en) Polymer liquid crystal substrate
EP0776354B1 (en) Liquid-crystalline polyethers
JPH01145604A (en) Making of thin layer
JP4011164B2 (en) Optical film
JP7021341B2 (en) Dielectric layer containing copolymers with mesogen units
CN114149397A (en) Dibenzofurans-based polymerizable compound and preparation method and application thereof
JPS60186525A (en) Production of copolymerized polyester having melt anisotropy
JPH0476522A (en) Liquid crystal display element
JP2005178056A (en) Molding method of liquid crystalline polyester resin
JPH04136089A (en) Purification of high-molecular liquid crystal
JP6100597B2 (en) Block copolymer, microphase-separated structure film using the same, and production method thereof
JPS6323925A (en) Full-aromatic liquid crystal polyester
JPH09227867A (en) Crosslinkable liquid-crystalline polymer and its alignment film