[go: up one dir, main page]

JPH01111830A - Reinforcing fiber for production of fiber-reinforced composite metallic material - Google Patents

Reinforcing fiber for production of fiber-reinforced composite metallic material

Info

Publication number
JPH01111830A
JPH01111830A JP26742787A JP26742787A JPH01111830A JP H01111830 A JPH01111830 A JP H01111830A JP 26742787 A JP26742787 A JP 26742787A JP 26742787 A JP26742787 A JP 26742787A JP H01111830 A JPH01111830 A JP H01111830A
Authority
JP
Japan
Prior art keywords
fibers
fiber
particles
precursor
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26742787A
Other languages
Japanese (ja)
Other versions
JPH0826420B2 (en
Inventor
Yoshiaki Kajikawa
義明 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62267427A priority Critical patent/JPH0826420B2/en
Publication of JPH01111830A publication Critical patent/JPH01111830A/en
Publication of JPH0826420B2 publication Critical patent/JPH0826420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To develop reinforcing fibers having excellent performance as the raw material for a fiber-reinforced composite metallic material by providing a composite metallic layers contg. specific hard particles around fibers made of carbon, stainless steel or ceramics as precursor fibers. CONSTITUTION:The carbon fibers and stainless steel fibers 10 as the precursor fibers are wound, in the state of isolating the fibers from each other, on a jig 16 having two pieces of arm parts 12, 14 in a plating cell. The fibers are then immersed in a plating bath 20 ot Cu, Ni, etc., contg. fine pieces 18 of the hard particles of Al2O3, SiO2, TiO2, Cr4C, etc., or the hard particles such as SiC whiskers and Si3N4 whiskers or graphite, MoS2, etc., having self-lubricity and are thereby electroplated with the precursor fibers 10 are cathode. The reinforcing fibers 24 which have the metal plating layers 22 uniformly dispersed and incorporated with the above-mentioned fine pieces 18 at about 18vol.% on the surfaces of the precursor fibers 10 are cut to a suitable length. The fibers are then unidirectionally oriented and are compressionmolded. The reinforcing fibers for the fiber reinforced composite metallic material consisting of Al, etc., as the matrix metal is thus produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維強化金属複合材料に係り、更に詳細には
その製造に使用される強化繊維に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to fiber-reinforced metal composite materials, and more particularly to the reinforcing fibers used in their manufacture.

従来の技術 例えば本願出願人と他の−の出願人との共願にかかる特
開昭58−93845号公報に記載されている如(、強
化繊維と固体潤滑粒子の如き粒子にて複合強化された複
合材料の製造に際しては、従来より一般に、強化繊維と
粒子との混合物にて成形体を形成し、該成形体を用いて
加圧鋳造することが行われている。
Conventional techniques such as those described in Japanese Unexamined Patent Application Publication No. 58-93845 jointly filed by the applicant of the present application and another applicant (such as a composite reinforcement reinforced with reinforcing fibers and particles such as solid lubricant particles) Conventionally, in the production of composite materials, a molded body is formed from a mixture of reinforcing fibers and particles, and the molded body is used for pressure casting.

発明が解決しようとする問題点 しかしかかる方法にて複合材料を製造する場合には、強
化繊維の間に粒子が存在するため、溶融マトリックス金
属が成形体に浸透しに<<、そのため良好な複合化が困
難であり、また粒子が均一に分散された成形体を製造す
ること自体が困難であり、また加圧浸透段階に於て溶融
マトリックス金属によって粒子が移動せしめられるため
、粒子が均一に分散された複合材料を製造することが困
難であるという問題がある。
Problems to be Solved by the Invention However, when producing a composite material by such a method, the presence of particles between the reinforcing fibers prevents the molten matrix metal from penetrating into the molded body. Furthermore, it is difficult to produce a molded body in which the particles are uniformly dispersed, and because the particles are moved by the molten matrix metal during the pressure infiltration stage, it is difficult to produce a molded body in which the particles are uniformly dispersed. The problem is that it is difficult to manufacture composite materials that are

本発明は、従来の方法により強化繊維及び粒子等にて複
合強化された複合材料を製造する場合に於ける上述の問
題に鑑み、粒子等の微細片が均一に分散された複合材料
を容易に製造することを可能にする強化繊維を提供する
ことを目的としている。
In view of the above-mentioned problems in manufacturing composite materials reinforced with reinforcing fibers, particles, etc. by conventional methods, the present invention has been developed to easily produce composite materials in which fine pieces such as particles are uniformly dispersed. The aim is to provide reinforcing fibers that can be manufactured.

問題点を解決するための手段 上述の如き目的は、本発明によれば、前駆繊維と、該前
駆繊維を被覆し他の材料の微細片が分散された複合金属
被覆層とよりなる繊維強化金属複合材料製造用強化繊維
によって達成される。
Means for Solving the Problems According to the present invention, a fiber-reinforced metal comprising precursor fibers and a composite metal coating layer covering the precursor fibers and having fine pieces of another material dispersed therein. This is achieved by reinforcing fibers for the production of composite materials.

発明の作用及び効果 本発明の強化繊維は、前駆繊維と、該前駆繊維を被覆し
他の材料の微細片が分散された複合金属被覆層とよりな
っているので、本発明の強化繊維を用いて加圧鋳造が行
われると、複合金属被覆層の金属が溶融マトリックスに
よって溶融され、他の材料の微細片は前駆繊維の近傍に
於いてマトリックス中に均一に分散された状態になるの
で、粒子等が均一に分散された複合材料を容易に製造す
ることができる。
Functions and Effects of the Invention The reinforcing fiber of the present invention is composed of a precursor fiber and a composite metal coating layer that covers the precursor fiber and has fine pieces of other materials dispersed therein. When pressure casting is performed, the metal of the composite metal coating layer is melted by the molten matrix, and the fine pieces of other materials are uniformly dispersed in the matrix in the vicinity of the precursor fibers, so that the particles It is possible to easily produce a composite material in which the following components are uniformly dispersed.

また前駆m維がセラミック繊維の如くマトリックス金属
溶湯に対する濡れ性の悪い繊維である場合にも、複合金
属被覆層の金属を適当な金属に選定することにより、前
駆繊維の濡れ性が向上し、複合不良部等の欠陥を生じる
ことなく繊維強化金属複合材料を製造することができる
Furthermore, even if the precursor m-fiber is a fiber that has poor wettability with respect to the molten matrix metal, such as a ceramic fiber, by selecting an appropriate metal for the composite metal coating layer, the wettability of the precursor fiber can be improved and the composite A fiber-reinforced metal composite material can be manufactured without producing defects such as defective parts.

更に従来の強化繊維及び粒子等にて複合強化された複合
材料の製造方法に於ては、粒子等の体積率を制御するこ
とが困難であるが、本発明に於ては、複合金属被覆層に
含まれる他の材料の微細片の体積率を制御することによ
り、例えば複合金属被覆層の適用がめっきにて行われる
場合には、めっき浴中の他の材料の微細片の量、pH1
温度、電流密度の如きめっき条件を適宜に制御すること
により、粒子等の体積率を所望の値に容易に制御するこ
とができる。
Furthermore, in the conventional manufacturing method of composite materials reinforced with reinforcing fibers, particles, etc., it is difficult to control the volume fraction of particles, etc., but in the present invention, the composite metal coating layer By controlling the volume fraction of fine particles of other materials contained in the plating bath, for example when the application of a composite metal coating layer is carried out by plating, the amount of fine particles of other materials in the plating bath, pH 1
By appropriately controlling plating conditions such as temperature and current density, the volume fraction of particles, etc. can be easily controlled to a desired value.

本発明の一つの詳細な特徴によれば、他の材料の微細片
は硬質の粒子若しくはホイスカであり、かかる強化繊維
が使用される場合には、前駆繊維により複合材料の強度
を確保すると共に、硬質の粒子やホイスカによって1J
J6!耗性を向上させることができる。尚硬質の粒子と
してはアルミナ粒子、炭化クロム粒子、シリカ粒子、酸
化チタン粒子、酸化ジルコニウム粒子、炭化ケイ素粒子
、窒化ケイ素粒子、炭化チタン粒子、炭化タングステン
粒子、ダイヤモンド粒子等があり、硬質のホイスカとし
ては炭化ケイ素ホイスカ、窒化ケイ素ホイスカ等がある
According to one particular feature of the invention, the fine particles of the other material are hard particles or whiskers, and when such reinforcing fibers are used, the precursor fibers ensure the strength of the composite material and 1J due to hard particles and whiskers
J6! Abrasion resistance can be improved. Examples of hard particles include alumina particles, chromium carbide particles, silica particles, titanium oxide particles, zirconium oxide particles, silicon carbide particles, silicon nitride particles, titanium carbide particles, tungsten carbide particles, and diamond particles. There are silicon carbide whiskers, silicon nitride whiskers, etc.

本発明の他の一つの詳細な特徴によれば、他の材料の微
細片は自己潤滑性を有する粒子若しくはホイスカである
。かかる強化繊維によれば、前駆繊維により複合材料の
強度や耐摩耗性を確保すると共に、自己潤滑性を有する
粒子やホイスカによって腹合材料自身及び相手材の摩耗
量を低減することができる。尚自己潤滑性を有する粒子
としては窒化ボロン粒子、黒鉛粒子、二硫化モリブデン
、二硫化タングステン等があり、自己潤滑性を有するホ
イスカとしてはチタン酸カリウムホイスカ等がある。
According to another detailed feature of the invention, the particles of other material are self-lubricating particles or whiskers. According to such reinforcing fibers, the strength and wear resistance of the composite material can be ensured by the precursor fibers, and the amount of wear of the mating material itself and the mating material can be reduced by the self-lubricating particles and whiskers. Particles having self-lubricating properties include boron nitride particles, graphite particles, molybdenum disulfide, tungsten disulfide, etc., and whiskers having self-lubricating properties include potassium titanate whiskers.

尚複合金属被覆層を構成する金属は使用される前駆繊維
の材質及び本発明の強化繊維が適用されるマトリックス
金属との関連で任意に選定されてよく、例えばニッケル
、ニッケル合金、銅、クロム、鉄、鉄合金、コバルト、
金、銀、亜鉛等であってよく、前駆繊維は炭素繊維、炭
化ケイ素繊維、アルミナ繊維、アルミナ−シリカ繊維、
ボロン繊維、タングステン繊維、ステンレス繊維等であ
ってよい。また複合金属被覆層を形成する方法はめっき
、溶射の如き任意の方法であってよいが、特に均一な厚
さの層を形成し得る点でめっきが好ましい。
The metal constituting the composite metal coating layer may be arbitrarily selected depending on the material of the precursor fiber used and the matrix metal to which the reinforcing fiber of the present invention is applied, such as nickel, nickel alloy, copper, chromium, iron, iron alloy, cobalt,
gold, silver, zinc, etc., and the precursor fibers are carbon fibers, silicon carbide fibers, alumina fibers, alumina-silica fibers,
It may be boron fiber, tungsten fiber, stainless steel fiber, etc. Further, the composite metal coating layer may be formed by any method such as plating or thermal spraying, but plating is particularly preferred since it can form a layer with a uniform thickness.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 第1図に示されている如く、前駆繊維としての炭素繊維
(連続繊維)10(東し株式会社製「M2O」、繊維径
6.5μ)を二つのアーム部12及び14を有する治具
16に各巻回が互いに隔置された状態にて巻付け、それ
を他の材料の微細片としてのアルミナ粒子18(平均粒
径0.5μ)が分散された銅めっき浴20(硫酸銅20
0g/ノ、硫酸50g/ノ、浴温30℃)中に浸漬し、
炭素繊維を一方の電極として電圧2v1陰極電流密度6
A/dlQ’にて電気めっきを行い、これにより炭素繊
維を厚さ約1μの複合金属被覆層にて被覆した。
Example 1 As shown in FIG. 1, carbon fiber (continuous fiber) 10 ("M2O" manufactured by Toshi Co., Ltd., fiber diameter 6.5 μm) was used as a precursor fiber, and had two arm parts 12 and 14. The jig 16 is wound with each winding being spaced apart from each other, and the coil is coated in a copper plating bath 20 (copper sulfate) in which alumina particles 18 (average particle size: 0.5 μm) are dispersed as fine pieces of another material. 20
0g/no, sulfuric acid 50g/no, bath temperature 30℃),
Voltage 2v1 cathode current density 6 using carbon fiber as one electrode
Electroplating was carried out at A/dlQ', thereby coating the carbon fibers with a composite metal coating layer having a thickness of about 1 μm.

第2図はかくして形成された強化繊維24の断面を示す
解図であり、複合金属被覆層22は体積率約20%のア
ルミナ粒子18が分散された銅よりなっていた。
FIG. 2 is an illustration showing a cross section of the reinforcing fiber 24 thus formed, and the composite metal coating layer 22 was made of copper in which alumina particles 18 with a volume fraction of about 20% were dispersed.

次いでかくして形成された強化繊維の性能を評価すべく
、強化繊維24のアーム部12及び14の間に延在して
いた部分を長さ100+amに切断し、第3図に示され
ている如く、それらを一方向に配向して圧縮成形するこ
とにより、10X20X1001nffiの寸法を有し
強化繊維の体積率が約50%の繊維成形体26を形成し
た。次いで第4図に示されている如く、繊維成形体26
を両端にて開口したステンレス鋼製のケース28に充填
し、約600℃に予熱した後、高圧鋳造用の鋳型30内
に配置し、鋳型内に740℃のアルミニウム合金(JI
S規格AC4C)の溶湯32を注湯し、溶湯を鋳型30
に嵌合するプランジャ34により約1000 kg/ 
ca+2にて加圧し、その加圧状態を溶湯が完全に凝固
するまで保持した。
Next, in order to evaluate the performance of the reinforcing fibers thus formed, the portion of the reinforcing fibers 24 extending between the arms 12 and 14 was cut to a length of 100+ am, as shown in FIG. By oriented them in one direction and compression molding them, a fiber molded body 26 having dimensions of 10×20×1001nffi and a reinforcing fiber volume ratio of about 50% was formed. Next, as shown in FIG. 4, the fiber molded body 26
is filled into a stainless steel case 28 that is open at both ends, preheated to approximately 600°C, placed in a mold 30 for high-pressure casting, and filled with aluminum alloy (JI) at 740°C.
Pour molten metal 32 of S standard AC4C) and place the molten metal into mold 30.
Approximately 1000 kg/
Pressure was applied at ca+2, and the pressurized state was maintained until the molten metal completely solidified.

かくして形成されたインゴットより強化繊維にて複合強
化された部分を切り出し、その断面を顕微鏡にて観察し
たところ、炭素繊維の周囲にアルミナ粒子が均一に分散
されており、またアルミニウム合金の浸透不良の如き欠
陥は全く生じていないことが認められた。
A section reinforced with reinforcing fibers was cut out from the ingot thus formed, and its cross section was observed under a microscope. It was found that alumina particles were uniformly dispersed around the carbon fibers, and it was found that there was poor penetration of the aluminum alloy. It was found that no such defects occurred.

実施例2 第5図に示されている如く、前駆繊維としてのアルミナ
繊維36(デュポン社製、平均繊維径20μ、平均繊維
長31HI11)を、他の材料の微細片としての窒化ボ
ロン粒子38(平均粒径3μ)が分散されたニッケルめ
っき浴40(日本ガニゼン株式会社製「ブルーシューマ
ー」)に分散させることにより無電解めっきを行い、こ
れによりアルミナ繊維を複合金属被覆層にて被覆した。
Example 2 As shown in FIG. 5, alumina fibers 36 (manufactured by DuPont, average fiber diameter 20μ, average fiber length 31HI11) as precursor fibers were mixed with boron nitride particles 38 (as fine pieces of other materials). Electroless plating was performed by dispersing the alumina fibers in a nickel plating bath 40 ("Blue Schumer" manufactured by Nippon Ganizen Co., Ltd.) in which particles (average particle size: 3 μm) were dispersed, thereby coating the alumina fibers with a composite metal coating layer.

第6図はかくして形成された強化繊維42を示す断面図
であり、アルミナ繊維36を被覆する複合金属被覆層4
4は体積率約25%の窒化ボロン粒子38が分散された
ニッケルよりなり、厚さは約8μであった。
FIG. 6 is a sectional view showing the reinforcing fibers 42 thus formed, and shows the composite metal coating layer 4 covering the alumina fibers 36.
4 was made of nickel in which boron nitride particles 38 with a volume fraction of about 25% were dispersed, and the thickness was about 8 μm.

次いで上述の如く形成された強化繊維の性能を評価すべ
く、強化繊維を無機質バインダとしてのコロイダルシリ
カの水溶液中に分散させ、該分散液に対し圧縮成形を行
い、得られた圧縮成形体を乾燥することにより、第7図
に示されている如く、70X70X10+nmの寸法を
有し強化繊維42の体積率が15%である繊維成形体4
6を形成した。
Next, in order to evaluate the performance of the reinforcing fibers formed as described above, the reinforcing fibers were dispersed in an aqueous solution of colloidal silica as an inorganic binder, compression molding was performed on the dispersion, and the resulting compression molded product was dried. As a result, as shown in FIG. 7, a fiber molded body 4 having dimensions of 70×70×10+nm and a volume percentage of reinforcing fibers 42 of 15% is obtained.
6 was formed.

次いで繊維成形体46を400℃に予熱した後第8図に
示されている如く、高圧鋳造用の鋳型30内に配置し、
鋳型内に730℃のアルミニウム合金(JIS規格AC
8A)の溶湯48を注湯し、溶湯を鋳型30に嵌合する
プランジャ34により約1000 kg/ Cm2に加
圧し、その加圧状態を溶湯が完全に凝固するまで保持し
た。かくして形成されたインゴットより強化繊維にて複
合強化された部分を切出し、その断面を顕微鏡にて観察
したところ、アルミナ繊維の周囲に窒化ボロン粒子が均
一に分散されており、アルミニウム合金の浸透不良の如
き欠陥は全く生じていないことが認められた。
Next, after preheating the fiber molded body 46 to 400° C., it is placed in a mold 30 for high pressure casting, as shown in FIG.
Aluminum alloy (JIS standard AC) heated to 730℃ is placed inside the mold.
The molten metal 48 of 8A) was poured, and the molten metal was pressurized to about 1000 kg/cm2 by the plunger 34 fitted into the mold 30, and the pressurized state was maintained until the molten metal completely solidified. A section reinforced with reinforcing fibers was cut out from the ingot thus formed, and its cross section was observed under a microscope. As a result, boron nitride particles were uniformly dispersed around the alumina fibers, indicating poor penetration of the aluminum alloy. It was found that no such defects occurred.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は前駆繊維としての炭素繊維に複合金属被覆層が
形成されるめっき工程を示す解図、第2図は第1図に示
されためっき工程により形成された強化繊維を示す断面
図、第3図は第2図に示された強化繊維にて形成された
繊維成形体を示す斜視図、第4図は第3図に示された繊
維成形体を用いて行われる複合材料の製造の鋳造工程を
示す断面図、第5図は無電解めっきにより前駆繊維とし
てのアルミナ繊維に複合金属被覆層が形成されるめっき
工程を示す解図、第6図は第5図に示されためつき工程
により形成された強化繊維を示す断面図、第7図は第6
図に示された強化繊維にて形成された繊維成形体を示す
斜視図、第8図は第7図に示された繊維成形体を用いて
行なわれる複合材料の製造の鋳造工程を示す断面図であ
る。 10・・・炭素繊維、12.14・・・アーム部、16
・・・治具、18・・・アルミナ粒子、20・・・めっ
き浴。 22・・・強化繊維、24・・・複合金属被覆層、26
・・・繊維成形体、28・・・ケース、30・・・鋳型
、32・・・アルミニウム合金の溶湯、34・・・プラ
ンジャ、36・・・アルミナ繊維、38・・・窒化ボロ
ン粒子、40・・・めっき浴、42・・・強化繊維、4
4・・・複合金属被覆層、46・・・繊維成形体、48
・・・アルミニウム合金の溶湯 特 許 出 願 人  トヨタ自動車株式会社代   
理   人  弁理士   明石8毅第4図 10・−炭素繊維     24・・強化繊維18・・
アルミナ粒子    26・・繊維成形体20・・めっ
き;谷      32・・アルミニウム合金の;容、
易22・・複合金属被覆層 第 5 図 第7区 36・・アルミナ繊維    4 38・・窒化ポロン粒子  43 40・・めっきノ谷        48・・42・・
強化繊維 第6図 第8図 アルミニウム合金のI8ン1
Fig. 1 is an illustration showing a plating process in which a composite metal coating layer is formed on carbon fibers as precursor fibers, Fig. 2 is a cross-sectional view showing reinforcing fibers formed by the plating process shown in Fig. 1, FIG. 3 is a perspective view showing a fiber molded body formed from the reinforcing fibers shown in FIG. 2, and FIG. A sectional view showing the casting process, Figure 5 is an illustration showing the plating process in which a composite metal coating layer is formed on the alumina fiber as a precursor fiber by electroless plating, and Figure 6 is the plating process shown in Figure 5. 7 is a cross-sectional view showing reinforcing fibers formed by
FIG. 8 is a perspective view showing a fiber molded body formed from the reinforcing fibers shown in FIG. It is. 10...Carbon fiber, 12.14...Arm part, 16
... Jig, 18... Alumina particles, 20... Plating bath. 22... Reinforcing fiber, 24... Composite metal coating layer, 26
... Fiber molded body, 28 ... Case, 30 ... Mold, 32 ... Molten aluminum alloy, 34 ... Plunger, 36 ... Alumina fiber, 38 ... Boron nitride particles, 40 ... Plating bath, 42 ... Reinforced fiber, 4
4... Composite metal coating layer, 46... Fiber molded body, 48
...Aluminum alloy molten metal patent applicant: Toyota Motor Corporation representative
Attorney Patent Attorney Tsuyoshi Akashi 8 Figure 4 10 - Carbon fiber 24... Reinforced fiber 18...
Alumina particles 26...Fiber molded body 20...Plating; Valley 32...Aluminum alloy; Volume;
Easy 22... Composite metal coating layer No. 5 Figure 7 Section 36... Alumina fiber 4 38... Poron nitride particles 43 40... Plating valley 48... 42...
Reinforcement fiber Figure 6 Figure 8 Aluminum alloy I8-1

Claims (3)

【特許請求の範囲】[Claims] (1)前駆繊維と、該前駆繊維を被覆し他の材料の微細
片が分散された複合金属被覆層とよりなる繊維強化金属
複合材料製造用強化繊維。
(1) A reinforcing fiber for producing a fiber-reinforced metal composite material comprising a precursor fiber and a composite metal coating layer covering the precursor fiber and having fine pieces of another material dispersed therein.
(2)特許請求の範囲第1項の繊維強化金属複合材料製
造用強化繊維に於て、前記他の材料の微細片は硬質の粒
子若しくはホイスカであることを特徴とする繊維強化金
属複合材料製造用強化繊維。
(2) In the reinforcing fiber for manufacturing a fiber-reinforced metal composite material according to claim 1, the fine pieces of the other material are hard particles or whiskers. Reinforced fiber for use.
(3)特許請求の範囲第1項の繊維強化金属複合材料製
造用強化繊維に於て、前記他の材料の微細片は自己潤滑
性を有する粒子若しくはホイスカであることを特徴とす
る繊維強化金属複合材料製造用強化繊維。
(3) The reinforcing fiber for manufacturing a fiber-reinforced metal composite material according to claim 1, wherein the fine pieces of the other material are particles or whiskers having self-lubricating properties. Reinforced fibers for composite material production.
JP62267427A 1987-10-23 1987-10-23 Method for producing fiber-reinforced metal composite material Expired - Lifetime JPH0826420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267427A JPH0826420B2 (en) 1987-10-23 1987-10-23 Method for producing fiber-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267427A JPH0826420B2 (en) 1987-10-23 1987-10-23 Method for producing fiber-reinforced metal composite material

Publications (2)

Publication Number Publication Date
JPH01111830A true JPH01111830A (en) 1989-04-28
JPH0826420B2 JPH0826420B2 (en) 1996-03-13

Family

ID=17444695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267427A Expired - Lifetime JPH0826420B2 (en) 1987-10-23 1987-10-23 Method for producing fiber-reinforced metal composite material

Country Status (1)

Country Link
JP (1) JPH0826420B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158828A (en) * 1988-10-17 1992-10-27 Sumitomo Metal Industries, Ltd. Carbon/metal composite
KR100479499B1 (en) * 1996-07-01 2005-07-28 스포에리 앤드 컴파니 악티엔게젤샤프트 Conductive Yarn and Manufacturing Method
JP2010106354A (en) * 2008-10-28 2010-05-13 Korea Inst Of Machinery & Materials Multifunctional composite fiber by multicomponent simultaneous vapor deposition, composite material possessing the same and method of manufacturing the same
KR101041394B1 (en) * 2011-03-02 2011-06-14 한국기계연구원 A composite material with Multi-functional Hybrid Fiber by Simultaneous Multi-component Deposition
KR101041396B1 (en) * 2008-10-28 2011-06-14 한국기계연구원 Multifunctional composite fiber by multi-component simultaneous attachment
KR101041395B1 (en) * 2008-10-28 2011-06-14 한국기계연구원 Manufacturing method of multifunctional composite fiber by multi-component simultaneous attachment
KR101297971B1 (en) * 2008-04-18 2013-08-19 주식회사 엘지화학 Metohd of modificating carobn fiber using electrophoresis
CN109797469A (en) * 2019-02-19 2019-05-24 南京中奥航天应用技术研究院(有限合伙) The immune enhanced carbon fiber of radiation protection of raising and its fabric braiding structure are taken in aerospace
CN114231957A (en) * 2022-02-21 2022-03-25 北京航天天美科技有限公司 Composite sealing layer and sealing structure of composite material packaging box

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167830A (en) * 1986-01-20 1987-07-24 Toshiba Corp Production of heat resistant composite metallic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167830A (en) * 1986-01-20 1987-07-24 Toshiba Corp Production of heat resistant composite metallic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158828A (en) * 1988-10-17 1992-10-27 Sumitomo Metal Industries, Ltd. Carbon/metal composite
US5531943A (en) * 1988-10-17 1996-07-02 Sumitomo Metal Industries, Ltd. Method of making a carbon/metal composite
KR100479499B1 (en) * 1996-07-01 2005-07-28 스포에리 앤드 컴파니 악티엔게젤샤프트 Conductive Yarn and Manufacturing Method
KR101297971B1 (en) * 2008-04-18 2013-08-19 주식회사 엘지화학 Metohd of modificating carobn fiber using electrophoresis
JP2010106354A (en) * 2008-10-28 2010-05-13 Korea Inst Of Machinery & Materials Multifunctional composite fiber by multicomponent simultaneous vapor deposition, composite material possessing the same and method of manufacturing the same
KR101041396B1 (en) * 2008-10-28 2011-06-14 한국기계연구원 Multifunctional composite fiber by multi-component simultaneous attachment
KR101041395B1 (en) * 2008-10-28 2011-06-14 한국기계연구원 Manufacturing method of multifunctional composite fiber by multi-component simultaneous attachment
US8057898B2 (en) 2008-10-28 2011-11-15 Korea Institute Of Machinery & Materials Multi-functional hybrid fiber by simultaneous multi-component deposition, composite material with the same, and method for manufacturing the same
KR101041394B1 (en) * 2011-03-02 2011-06-14 한국기계연구원 A composite material with Multi-functional Hybrid Fiber by Simultaneous Multi-component Deposition
CN109797469A (en) * 2019-02-19 2019-05-24 南京中奥航天应用技术研究院(有限合伙) The immune enhanced carbon fiber of radiation protection of raising and its fabric braiding structure are taken in aerospace
CN114231957A (en) * 2022-02-21 2022-03-25 北京航天天美科技有限公司 Composite sealing layer and sealing structure of composite material packaging box

Also Published As

Publication number Publication date
JPH0826420B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
CA1097024A (en) Molds for continuous casting of metals
US4341823A (en) Method of fabricating a fiber reinforced metal composite
EP1273817B1 (en) Process for the manufacture of a fibre reinforced material consisting at least on the peripheral area of a metal-ceramic composite material
US4338132A (en) Process for fabricating fiber-reinforced metal composite
JPH01111830A (en) Reinforcing fiber for production of fiber-reinforced composite metallic material
JPS5970736A (en) Composite material and its production
JPS5974247A (en) Fiber reinforced metallic composite member and its production
JP3681354B2 (en) Metal matrix composite and piston using the same
US5354528A (en) Process for producing preform for metal matrix composite
JPH06306672A (en) Composite material-reinforcing member and its production and composite material
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
JPS60145247A (en) Mold for continuous casting and its production
JP2610265B2 (en) Manufacturing method of metal matrix composite material
JPH0645833B2 (en) Method for manufacturing aluminum alloy-based composite material
JP7197945B1 (en) Metal-coated metal-matrix composite material and method for producing metal-coated metal-matrix composite material
JPS5893845A (en) Fiber-reinforced metal composite material and its manufacturing method
JPS61165265A (en) Production of composite material utilizing oxidation reduction reaction
KR950004230B1 (en) Method of manufacturing aluminium composite materials
Choi et al. Manufacturing Process of Carbon Short Fiber Reinforced Al Matrix With Preformless and Their Properties
JPH06136563A (en) Metallic composite member
JPH01108328A (en) Production of fiber reinforced sintered metallic body
DE2439929C3 (en) A method for achieving an improved bond between an electrodeposited cermet and a cast metal and application of the method
JPH035063A (en) Manufacture of mixed material
JPS6244542A (en) Composite metal material
JPH06136562A (en) Metallic composite member