JPH01110067A - Supersonic motor - Google Patents
Supersonic motorInfo
- Publication number
- JPH01110067A JPH01110067A JP62266793A JP26679387A JPH01110067A JP H01110067 A JPH01110067 A JP H01110067A JP 62266793 A JP62266793 A JP 62266793A JP 26679387 A JP26679387 A JP 26679387A JP H01110067 A JPH01110067 A JP H01110067A
- Authority
- JP
- Japan
- Prior art keywords
- friction
- vibration body
- moving body
- friction material
- vibrating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011347 resin Substances 0.000 claims abstract description 33
- 229920005989 resin Polymers 0.000 claims abstract description 33
- 239000000835 fiber Substances 0.000 claims abstract description 25
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000004033 plastic Substances 0.000 claims abstract description 7
- 229920003023 plastic Polymers 0.000 claims abstract description 7
- 239000002783 friction material Substances 0.000 claims description 36
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 229920000620 organic polymer Polymers 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 3
- 238000003825 pressing Methods 0.000 abstract description 3
- 239000000843 powder Substances 0.000 description 20
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000000805 composite resin Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920006282 Phenolic fiber Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006376 polybenzimidazole fiber Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、圧電体による超音波振動を利用して駆動する
超音波モータに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that is driven using ultrasonic vibrations produced by a piezoelectric body.
従来の技術
一般に、超音波モータは、圧電体を固定した振動体と動
体とが加圧接触した構成であシ、圧電体への電気入力に
よシ、圧電体と振動体に第3図に示すような超音波振動
の進行波を発生させ、また動体との摩擦力によシ動体を
駆動させている。Conventional technology Generally, an ultrasonic motor has a configuration in which a vibrating body to which a piezoelectric body is fixed is brought into pressure contact with a moving body. It generates a traveling wave of ultrasonic vibration as shown in the figure, and also drives the moving body by the frictional force with the moving body.
第3図において、1は圧電体であり、その表面に振動体
2が接着固定されている。また、3は動体であり、摩擦
材4が一体化されている。この構成によシ、圧電体1に
電気入力を加えると、圧電体1と振動体2に超音波振動
(ム方向の進行波)が発生し、振動体2の各質点にBの
ような楕円運動が発生する。ここで、進行波の各波頭は
進行波方向ムと逆方向に動く性質があり、また進行波の
各谷底は進行波方向ムと同方向に動く性質かある。In FIG. 3, 1 is a piezoelectric body, and a vibrating body 2 is adhesively fixed to the surface of the piezoelectric body. Moreover, 3 is a moving body, and a friction material 4 is integrated therein. With this configuration, when an electrical input is applied to the piezoelectric body 1, ultrasonic vibrations (traveling waves in the direction of the wave) are generated in the piezoelectric body 1 and the vibrating body 2, and each mass point of the vibrating body 2 forms an ellipse like B. Movement occurs. Here, each wave crest of the traveling wave has the property of moving in the opposite direction to the traveling wave direction M, and each trough of the traveling wave has the property of moving in the same direction as the traveling wave direction M.
したがって、振動体2の表面に置かれた物体(摩擦材4
と動体3)は、波頭の上部のみに接触し、振動体2との
摩擦力によってC方向に駆動する。Therefore, an object (friction material 4
The moving body 3) contacts only the top of the wave crest, and is driven in the C direction by the frictional force with the vibrating body 2.
この進行波の振幅は一般に最大でも10μm程度である
。The amplitude of this traveling wave is generally about 10 μm at maximum.
一般に、振動体と動体とは加圧接触した構成であり、よ
シ大きなモータ出力を得るために、撮動体と動体との加
圧力を強くし、振動体と動体との摩擦係数を大きくする
ことが必要である。しかし、加圧力が強すぎると、摩擦
材が摩耗しやすくなり、また振動体の振動が抑制されや
すくなる傾向がある0
なお、振動体および動体の材料として、鉄やステンレス
およびアルミニウム等の金属が利用されておシ、また摩
擦材の材料として、無機繊維と樹脂からなる複合樹脂等
が利用されている。Generally, the vibrating body and the moving body are in pressurized contact, and in order to obtain a larger motor output, the pressure between the photographing body and the moving body is increased, and the coefficient of friction between the vibrating body and the moving body is increased. is necessary. However, if the pressurizing force is too strong, the friction material tends to wear out easily, and the vibration of the vibrating body tends to be suppressed. Composite resins made of inorganic fibers and resins are also used as materials for friction materials.
発明が解決しようとする問題点
しかしながら、上記従来例のように摩擦材に無機繊維と
樹脂とからなる複合樹脂を利用した場合、超音波モータ
の駆動時間の経過とともに、振動体と動体の摩擦によシ
摩耗粉が振動体と動体の双方に多く発生し、またその摩
耗粉が振動体や動体の接触面に付着するため、両者間の
摩擦係数が経時的に変化してしまい、ブレーキトルク(
モータに電気を入力していないときの振動体と動体の摩
擦力)も経時的に変化してしまうという問題点があった
0
また、振動体に付着した摩耗粉の影響により、振動体部
の最適共振周波数が経時的に変動してしまい、安定した
モータの駆動が得られないという問題点があった。Problems to be Solved by the Invention However, when a composite resin made of inorganic fibers and resin is used as a friction material as in the conventional example described above, as the driving time of the ultrasonic motor passes, the friction between the vibrating body and the moving body increases. A lot of abrasion powder is generated on both the vibrating body and the moving body, and the abrasion powder adheres to the contact surfaces of the vibrating body and the moving body, so the coefficient of friction between the two changes over time, and the brake torque (
There was a problem in that the frictional force between the vibrating body and the moving body (when no electricity was being input to the motor) also changed over time0.Also, due to the influence of abrasion powder adhering to the vibrating body, the vibration force of the vibrating body There was a problem in that the optimum resonance frequency fluctuated over time, making it impossible to obtain stable motor drive.
本発明は上記従来の問題点を解決するものであシ、常に
安定した駆動が得られる超音波モータを提供することを
目的とする。The present invention is intended to solve the above-mentioned conventional problems, and an object of the present invention is to provide an ultrasonic motor that can always provide stable driving.
問題点を解決するための手段
上記目的を達成するために、本発明の超音波モータは、
少なくとも有機繊維とフロロカーボン樹とも一方の菩零
面に固定した構成を有している。Means for Solving the Problems In order to achieve the above object, the ultrasonic motor of the present invention has the following features:
It has a structure in which at least the organic fiber and the fluorocarbon tree are fixed to one side.
作用
摩擦材に有機繊維とフロロカーボン樹脂粉末とをマトリ
ックス樹脂で結合した複合プラスチック材を用いている
ため、摩擦材自体の摩耗量を著しく少なくすることがで
き、しかも摩擦材の接触相手を摩耗させることがなく、
安定した摩擦係数を得る仁とができる。Since the friction material is a composite plastic material in which organic fibers and fluorocarbon resin powder are combined with a matrix resin, the amount of wear of the friction material itself can be significantly reduced, and the friction material does not wear out the material it comes in contact with. There is no
It is possible to obtain a stable coefficient of friction.
実施例
以下、本発明の一実施例について、図面を参照しながら
説明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図において、1Fi圧電体であり、その表面に金属
製振動体2が接着固定されている。3は動体であシ、有
機繊維とフロロカーボン樹脂粉末とマトリックス樹脂と
よシなる摩擦材4が、動体3に固定されている。また、
振動体2と摩擦材4は締結力によって加圧接触されてい
る。ここで、圧電体1に共振周波数の高盾波電界を印加
すると、圧電体1と振動体2に超音波振動の進行波が発
生し、振動体表面と接触している摩擦材4が、振動体と
の摩擦力によって、動体3と一体となって駆動する。ま
た、電力が入力されないときは、振動体2と摩擦材4と
の間に働く加圧力と摩擦係数との積に相当する保持トル
クすなわちブレーキ力が生じる。In FIG. 1, it is a 1Fi piezoelectric body, and a metal vibrating body 2 is adhesively fixed to the surface thereof. 3 is a moving body, and a friction material 4 made of organic fibers, fluorocarbon resin powder, and matrix resin is fixed to the moving body 3. Also,
The vibrating body 2 and the friction material 4 are brought into pressure contact by a fastening force. Here, when a high shield wave electric field with a resonant frequency is applied to the piezoelectric body 1, a traveling wave of ultrasonic vibration is generated in the piezoelectric body 1 and the vibrating body 2, and the friction material 4 in contact with the vibrating body surface vibrates. It is driven together with the moving body 3 by the frictional force with the body. Further, when no electric power is input, a holding torque, that is, a braking force corresponding to the product of the pressing force acting between the vibrating body 2 and the friction material 4 and the friction coefficient is generated.
以上のように、有機繊維とフロロカーボン樹脂粉末とマ
トリックス樹脂とよシなる複合プラスチック摩擦材を利
用することによシ、超音波モータの長期間の駆動におい
て、安定した摩擦力とブレーキトルクを得ることができ
ると共に、振動体の共振周波数の経時変化も少なく、再
現良く起動し、安定駆動ができるようになる0
有機繊維としては、芳香族ポリアミド繊維、フェノール
繊維、有機高分子ウィスカー、ポリベンズイミダゾール
繊維、超高分子量ポリエチレン繊維、液晶プラスチック
繊維などが使用できる。フロロカーボン樹脂粉末として
は四フッ化エチレンおよび六フッ化エチレンなどのポリ
マーやゴムの粉末が使用可能である。マトリックス樹脂
としてはポリイミド、ポリアミドイミド、エポキシ樹脂
。As described above, by using a composite plastic friction material made of organic fibers, fluorocarbon resin powder, and matrix resin, it is possible to obtain stable friction force and brake torque during long-term drive of an ultrasonic motor. At the same time, there is little change in the resonant frequency of the vibrating body over time, and it is possible to start up with good reproducibility and drive stably.0 Organic fibers include aromatic polyamide fibers, phenolic fibers, organic polymer whiskers, and polybenzimidazole fibers. , ultra-high molecular weight polyethylene fiber, liquid crystal plastic fiber, etc. can be used. As the fluorocarbon resin powder, powders of polymers and rubbers such as tetrafluoroethylene and hexafluoroethylene can be used. Matrix resins include polyimide, polyamideimide, and epoxy resin.
フェノール樹脂、シリコーン樹脂、ポリエステル樹脂、
ボリアリレート樹脂、液晶ポリマーなどが使用できる。Phenolic resin, silicone resin, polyester resin,
Polyarylate resin, liquid crystal polymer, etc. can be used.
そして、有機繊維およびフロロカーボン樹脂粉末の含有
割合はそれぞれ6重量パーセント以上を同時に含有する
ことが望ましい。It is desirable that the content of the organic fiber and the fluorocarbon resin powder is 6% by weight or more, respectively.
なお、本発明に使用する摩擦材として、有機繊維および
フロロカーボン樹脂粉末に加えて、他の無機や金属の充
填材を添加含有することも可能である〇
次に、本発明を具体的実施例によって、さらに詳しく説
明する。In addition to the organic fibers and fluorocarbon resin powder, the friction material used in the present invention can also contain other inorganic or metal fillers.Next, the present invention will be explained by specific examples. , will be explained in more detail.
実施例1
表1に示すような種々の有機繊維と70ロカーボン樹脂
粉末とマトリックス樹脂とが均一に分散し、1−の厚さ
に成形されたそれぞれの複合プラスチック摩擦材シート
ラ、直径40111 を厚さ11111のステンレス円
板に接着して、摩擦材表面の動摩擦係数の経時変化を測
定する。動摩擦係数の経時変化測定は、上記摩擦材を接
着した円板ヲ3゜rpmの回転速度で回転させ、中心か
ら15mの位置に直径が3wmのステンレス球音接触さ
せ、そのステンレス球に20ofの荷重を加えたときの
、摩擦材表面とステンレス球との間の摩擦係数を測定し
たものである。Example 1 Various organic fibers, 70% carbon resin powder, and matrix resin as shown in Table 1 were uniformly dispersed, and each composite plastic friction material sheet was molded to a thickness of 1-1 mm, with a diameter of 40111 mm. 11111 to measure the change over time in the coefficient of dynamic friction on the surface of the friction material. To measure the change over time in the coefficient of dynamic friction, the disk to which the above friction material is bonded is rotated at a rotational speed of 3 degrees rpm, a stainless steel ball with a diameter of 3 wm is brought into contact with the disk at a distance of 15 m from the center, and a load of 20 of is applied to the stainless steel ball. The coefficient of friction between the surface of the friction material and the stainless steel ball was measured when
なお、それぞれの摩擦材を使用したときの動摩擦係数の
経時変化を表2に示し、また、フロロカーボン樹脂粉末
を含有しない摩擦材の材料組成と摩擦係数も表1および
表2に比較して示す。Table 2 shows the change over time in the coefficient of dynamic friction when each friction material is used, and Tables 1 and 2 also show a comparison of the material composition and friction coefficient of the friction material that does not contain fluorocarbon resin powder.
表1および表2から明らかなように、有機繊維トフロロ
カーボン樹脂粉末とマトリックス樹脂とよシなる複合プ
ラスチック摩擦材はいずれも、摩擦係数が0.2以上の
大きな摩擦係数であり、摩擦係数の経時変化も殆んど認
められなかった。As is clear from Tables 1 and 2, both the organic fiber tofluorocarbon resin powder and matrix resin composite plastic friction materials have large friction coefficients of 0.2 or more, and the friction coefficients change over time. Almost no changes were observed.
これに対し、フロロカーボン樹脂粉末を含まない摩擦材
の場合(比較例F、G)、いずれも、経時的に摩擦係数
が大きく変動した。また、有機繊維を含まない摩擦材の
場合(比較例H)、摩擦係数の経時変化は殆んど認めら
れないが、摩擦係数は非常に小さい。On the other hand, in the case of friction materials that do not contain fluorocarbon resin powder (Comparative Examples F and G), the coefficient of friction fluctuated greatly over time. Furthermore, in the case of a friction material that does not contain organic fibers (Comparative Example H), there is almost no change in the friction coefficient over time, but the friction coefficient is very small.
実施例2
実施例1で用いたそれぞれのム〜Hの摩擦材を用いて、
第3図に示すような円板型超音波モータを構成した。第
3図において、1は圧電体であり、その表面にステンレ
ス製振動体2が接着固定されている。3はステンレス製
動体であシ、実施例1のそれぞれの摩擦材シート4が固
定されている。Example 2 Using each of the friction materials M to H used in Example 1,
A disk-type ultrasonic motor as shown in FIG. 3 was constructed. In FIG. 3, 1 is a piezoelectric body, and a vibrating body 2 made of stainless steel is adhesively fixed to the surface of the piezoelectric body. Reference numeral 3 denotes a moving body made of stainless steel, to which each friction material sheet 4 of Example 1 is fixed.
また、振動体と動体とはバネの加圧によって初期のブレ
ーキトルクが600g・αになるように調整設定されて
いる。さらに、円板の円周方向に4波の進行波が励起さ
れるように圧電体に電極を配置し、約70 KHzの共
振周波数の電界を印加して動体を無荷回転数50 Or
pmで駆動させている。Further, the vibrating body and the moving body are adjusted and set so that the initial brake torque is 600 g·α by applying pressure from a spring. Furthermore, electrodes were arranged on the piezoelectric material so that four traveling waves were excited in the circumferential direction of the disk, and an electric field with a resonant frequency of approximately 70 KHz was applied to the moving body at an unloaded rotation speed of 50 Or
It is driven by pm.
なお、それぞれの摩擦材シートラ構成したそれぞれのモ
ータについて、所定の時間の駆動後、電源を切ったシ入
れたシしたときの再起動の有無。In addition, for each motor configured with each friction material sheet, check whether or not it restarts when the power is turned off and then turned on after being driven for a predetermined period of time.
電源切断後のブレーキトルクおよび共振周波数を測定し
た結果を表3に示す。Table 3 shows the results of measuring the brake torque and resonance frequency after the power was turned off.
(以下余 白)
表3よシ明らかのように、有機繊維とフロロカーボン樹
脂粉末とマトリックス樹脂とよシなる摩擦材を使用した
超音波モータの場合(実験番号ム〜R)、いずれのモー
タについてもブレーキトルクの経時変化は小さい。また
、共振周波数の経時変化も少なく、再起動性にも問題が
生じなかった。(Left below) As is clear from Table 3, in the case of ultrasonic motors that use friction materials such as organic fibers, fluorocarbon resin powder, and matrix resin (experiment numbers M to R), both motors Changes in brake torque over time are small. In addition, there was little change in the resonance frequency over time, and there were no problems with restartability.
さらに、接触相手材のステンレス振動体の傷つき摩耗も
殆んど認められなかった。Furthermore, almost no scratches or wear on the stainless steel vibrating body, which was the contacting material, was observed.
これに対し、フロロカーボン樹脂粉末を含まない摩擦材
を使用したモータの場合(実験番号F。On the other hand, in the case of a motor using a friction material that does not contain fluorocarbon resin powder (experiment number F).
G)、ブレーキトルクは大きく変動し、また、共振周波
数も変動して、動体が再起動しなくなることがあった。G) The brake torque fluctuated greatly, and the resonant frequency also fluctuated, which sometimes made it impossible for the moving object to restart.
また、有機繊維を含まない摩擦材(実験番号H)を使用
した七−夕の場合、摩擦係数が小さすぎて、動体が駆動
しなかった。In addition, in the case of Tanabata using a friction material that does not contain organic fibers (experiment number H), the friction coefficient was too small and the moving object did not move.
実施例3
表4に示すような有機繊維と70ロカーボン樹脂粉末と
の含有割合のそれぞれの摩擦材(厚さ1txs ) k
使用して、実施例2と同様の円板型超音波モータを構成
し、実施例2と同じ方法で共振周波数電界を印加してモ
ータを駆動させた。Example 3 Friction materials (thickness 1 txs) with the content ratios of organic fiber and 70 carbon resin powder as shown in Table 4
A disk-type ultrasonic motor similar to that in Example 2 was constructed using the same method as in Example 2, and the motor was driven by applying a resonant frequency electric field in the same manner as in Example 2.
なお、それぞれの摩擦材シートを構成したそれぞれのモ
ータについて、所定の時間の駆動後、電源を切ったり入
れたシしたときの再起動の良否。In addition, for each motor that made up each friction material sheet, check whether or not it restarts when the power is turned off and on after being driven for a predetermined period of time.
電源切断後のブレーキトルクおよび共振周波数を測定し
た結果を表4に示す。Table 4 shows the results of measuring the brake torque and resonance frequency after the power was turned off.
(以下余 白)
表4よシ明らかのように、有機繊維の含有量が6重量パ
ーセント以上およびフロロカーボン樹脂粉末の含有量が
5重量パーセント以上の組成の摩擦材を使用した場合、
(実験番号に、L、M)、いずれのモータについてもブ
レーキトルクの経時変化は小さい。また、共振周波数の
経時変化も少なく、再起動性にも問題が生じなかった。(Left below) As is clear from Table 4, when using a friction material with a composition containing organic fibers of 6% by weight or more and fluorocarbon resin powder content of 5% by weight or more,
(Experiment numbers: L and M) The change in brake torque over time is small for both motors. In addition, there was little change in the resonance frequency over time, and there were no problems with restartability.
これに対し、フロロカーボン樹脂粉末の含有量が2重量
パーセント以下のとき(実験番号1.J)、ブレーキト
ルクの経時変化が大きく、また共振周波数も大きく変化
して、再起動性しなくなることがあった。有機繊維を含
まないで、フロロカーボン樹脂粉末だけを含有する場合
(実験番号N)、ブレーキトルクが2009−Qlよシ
大きい加圧を加えるとモータが駆動しなくなり、大きな
出力を得ることができなく、また、摩擦材の摩耗量が多
いO
発明の効果
以上の実施例の説明よシ明らかなように、本発明の超音
波モータは、摩擦材を少なくとも有機繊維とフロロカー
ボン樹脂とマトリックス樹脂と金によシ、超音波モータ
の摩耗を小さくシ、またブレーキトルクの経時変化およ
び振動体の共振周波数の経時変化を小さくすることがで
きるため、モータの起動が安定し、長期信頼性に優れた
超音波モータが得られる。On the other hand, when the content of fluorocarbon resin powder was 2% by weight or less (experiment number 1.J), the brake torque changed significantly over time, and the resonance frequency also changed significantly, resulting in a loss of restartability. Ta. When containing only fluorocarbon resin powder without organic fibers (experiment number N), if the brake torque is greater than 2009-Ql and pressure is applied, the motor will not drive and large output cannot be obtained. Furthermore, the amount of wear of the friction material is large. Effects of the Invention As is clear from the above description of the embodiments, the ultrasonic motor of the present invention is characterized in that the friction material is made of at least organic fibers, fluorocarbon resin, matrix resin, and gold. Ultrasonic motors with excellent long-term reliability and stable motor startup because they can reduce wear on the ultrasonic motor and also reduce changes over time in brake torque and changes in the resonant frequency of the vibrating body over time. is obtained.
第1図は本発明の一実施例における超音波モータの要部
構成断面図、第2図は他の実施例における一部切欠した
斜視図、第3図は超音波モータの原理を示す要部断面図
である。
1・・・・・・圧電体、2・・・・・・振動体、3・・
・・・・動体、4・・・・・・摩擦材。Fig. 1 is a sectional view of the main part of an ultrasonic motor according to one embodiment of the present invention, Fig. 2 is a partially cutaway perspective view of another embodiment, and Fig. 3 is a main part showing the principle of the ultrasonic motor. FIG. 1... Piezoelectric body, 2... Vibrating body, 3...
...Moving object, 4...Friction material.
Claims (2)
せ、少なくとも有機繊維と、フロロカーボン樹脂と、マ
トリックス樹脂とを含有する プラスチック材からなる摩擦材を、前記振動体と前記動
体の対向する少なくとも一方の面に固定した超音波モー
タ。(1) A moving object is brought into pressure contact with a vibrating body equipped with a piezoelectric material, and a friction material made of a plastic material containing at least organic fibers, fluorocarbon resin, and matrix resin is applied between the vibrating body and the moving body. An ultrasonic motor fixed to at least one opposing surface.
繊維と有機高分子ウィスカーの群から選ばれる少なくと
も一種以上からなる特許請求の範囲第1項記載の超音波
モータ。(2) The ultrasonic motor according to claim 1, wherein the organic fibers are at least one selected from the group consisting of aromatic polyamide fibers, phenol fibers, and organic polymer whiskers.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266793A JPH0632573B2 (en) | 1987-10-21 | 1987-10-21 | Ultrasonic motor |
KR1019880013628A KR910003669B1 (en) | 1987-10-20 | 1988-10-19 | Ultrasonic motor |
EP88309862A EP0313352B1 (en) | 1987-10-20 | 1988-10-20 | Ultrasonic motor |
DE3855207T DE3855207T2 (en) | 1987-10-20 | 1988-10-20 | Ultrasonic motor |
EP94105760A EP0612115B1 (en) | 1987-10-20 | 1988-10-20 | Ultrasonic motor |
DE3853251T DE3853251T2 (en) | 1987-10-20 | 1988-10-20 | Ultrasonic motor arrangement. |
US07/477,198 US5150000A (en) | 1987-10-20 | 1990-02-06 | Ultrasonic motor |
US07/841,553 US5311094A (en) | 1987-10-20 | 1992-02-26 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266793A JPH0632573B2 (en) | 1987-10-21 | 1987-10-21 | Ultrasonic motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01110067A true JPH01110067A (en) | 1989-04-26 |
JPH0632573B2 JPH0632573B2 (en) | 1994-04-27 |
Family
ID=17435765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62266793A Expired - Fee Related JPH0632573B2 (en) | 1987-10-20 | 1987-10-21 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0632573B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6098609A (en) * | 1995-02-01 | 2000-08-08 | Ishizuka; Hiroshi | Superabrasive electrodeposited cutting edge and method of manufacturing the same |
-
1987
- 1987-10-21 JP JP62266793A patent/JPH0632573B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6098609A (en) * | 1995-02-01 | 2000-08-08 | Ishizuka; Hiroshi | Superabrasive electrodeposited cutting edge and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0632573B2 (en) | 1994-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5274295A (en) | Vibration driven motor | |
EP0313352B1 (en) | Ultrasonic motor | |
JPH01110067A (en) | Supersonic motor | |
JPS6258887A (en) | Ultrasonic motor | |
JPS63277478A (en) | Ultrasonic motor | |
JPH01206880A (en) | Ultrasonic motor | |
JPH0217874A (en) | Ultrasonic motor | |
JPS63257475A (en) | Ultrasonic motor | |
JPH01107675A (en) | Ultrasonic wave motor | |
JP2575028B2 (en) | Ultrasonic motor | |
JPH043353A (en) | Tape guide device | |
JPH01248975A (en) | Ultrasonic-wave motor | |
JPH0217873A (en) | Ultrasonic motor | |
JPH01110066A (en) | Supersonic motor | |
JPH074073B2 (en) | Ultrasonic motor | |
JPH01227669A (en) | Vibration wave motor | |
JP2548253B2 (en) | Ultrasonic motor | |
JPS63257477A (en) | Ultrasonic motor | |
JPH09327185A (en) | Oscillating actuator | |
JPS63178773A (en) | Ultrasonic wave motor | |
JPH01138977A (en) | Ultrasonic wave motor | |
JP3160139B2 (en) | Vibration wave motor | |
JPH02133076A (en) | Ultrasonic motor | |
JPH01129781A (en) | Ultrasonic motor device | |
JPH0255586A (en) | Ultrasonic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |