[go: up one dir, main page]

JPH01108690A - Three-dimensional surgical operation simulation device - Google Patents

Three-dimensional surgical operation simulation device

Info

Publication number
JPH01108690A
JPH01108690A JP62265257A JP26525787A JPH01108690A JP H01108690 A JPH01108690 A JP H01108690A JP 62265257 A JP62265257 A JP 62265257A JP 26525787 A JP26525787 A JP 26525787A JP H01108690 A JPH01108690 A JP H01108690A
Authority
JP
Japan
Prior art keywords
image
memory
dimensional
dimensional image
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265257A
Other languages
Japanese (ja)
Inventor
Hiroshi Takagi
博 高木
Koichi Okuto
奥戸 好一
Yoshihiro Goto
良洋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP62265257A priority Critical patent/JPH01108690A/en
Publication of JPH01108690A publication Critical patent/JPH01108690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)
  • Instructional Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To freely display a surgical operation model by converting separately an image in a separation range in a binary image and an image outside of the separation range to three-dimensional images, and superposing and displaying them. CONSTITUTION:By designating a separation range, an address generating part 4 fetches only a coordinate value being within its range, and stores it in a memory 5 so as to correspond to the slice surface. As a result, in a memory 3, only the separation range is eliminated and only the image of a non- separation part is left. Subsequently, a three-dimensional image generating device 6 obtains a three-dimensional image from the image of the memory 3 and stores it in a memory 7, thereafter, obtains a three-dimensional image from the image of the memory 5 and stores it in a memory 8. In such a way, a superposition processing part 9 executes superposition of the images of the memory 7 and 8, and a CRT 10 displays its three-dimensional image which is processed. As for the superposition processing, when the images of the three- dimensional image memory 8 and 7 are superposed, it will suffice that the contents of the memory 8 are processed preferentially, and this side is processed preferentially, comparing with the rear.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3次元手術シミュレーション装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a three-dimensional surgical simulation device.

〔従来の技術〕[Conventional technology]

従来の成形外科等での手術は、紙片で手術モデルを作成
し、このモデルに従って手術を行った。
In conventional plastic surgery, etc., a surgical model was created using a piece of paper, and the surgery was performed according to this model.

紙片による手術モデルに代り、3次元画像による電子映
像での手術モデルも考えられ、出願人は、特許出願を既
に行っている(巾11眉旦Lヨ辺μ)7 )。
Instead of a surgical model using a piece of paper, a surgical model based on an electronic three-dimensional image is also considered, and the applicant has already filed a patent application (width 11 eyebrows L sides μ) 7).

この3次元画像作成の従来例には、「コンピュータ断層
像の3次元処理」 (昭和58.59年度文部省科学研
究費、成果報告書、昭和60年3月発行の予稿集のP、
28〜P、35゜研究代表者、三宅康二)がある。
Conventional examples of 3D image creation include ``3D processing of computerized tomographic images'' (Ministry of Education, Culture, Sports, Science and Technology Grants-in-Aid for Fiscal 1985, Results Report, P. of the Proceedings published in March 1985);
28-P, 35゜Principal Investigator, Koji Miyake).

〔発明が解決しようとする問題点3 紙片による手術モデル作りは、大変に手間のかかる作業
である。更に、多数の手術モデルを作らねばならないこ
とも多く、多くの作業時間をとられていた。
[Problem 3 to be solved by the invention Creating a surgical model using pieces of paper is a very time-consuming task. Furthermore, it is often necessary to create a large number of surgical models, which takes up a lot of work time.

電子映像による3次元手術モデルは、ソフトウェアの発
展があれば、自由自在の電子映像モデルを表示でき、診
断、治療、そして手術へと大きな期待がかけられている
With the development of software, three-dimensional surgical models using electronic images can be displayed freely, and there are great expectations for their use in diagnosis, treatment, and surgery.

本発明の目的は、電子映像による手術モデルの作成に際
し、成形等の必要個所のみを指示して独自に3次元画像
を得る3次元手術シミュレーショ。
The purpose of the present invention is to provide a three-dimensional surgical simulation in which a three-dimensional image is independently obtained by instructing only the necessary parts such as molding when creating a surgical model using electronic images.

ン装置を提供するものである。The purpose of this project is to provide a

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、CT断層像から抽出した指定吸収値対応の2
値画像を記憶する第1のメモリと、該第1のメモリ中の
指定分離範囲の2値画像を記憶する第2のメモリと、上
記第1のメモリ内の前記分離範囲以外の2値画像から3
次元画像を作成し、上記第2のメモリ内の前記分離範囲
内の2値画像から3次元画像を作成する作成手段と、該
2つの3次元画像を重ね合せ処理する手段と、該処理後
の重ね合わせた3次元画像を表示する表示器と、より成
る。
The present invention provides two methods corresponding to specified absorption values extracted from CT tomographic images.
A first memory that stores a value image, a second memory that stores a binary image in a designated separation range in the first memory, and a binary image other than the separation range in the first memory. 3
creating means for creating a three-dimensional image from the binary image within the separation range in the second memory; means for superimposing the two three-dimensional images; It consists of a display device that displays superimposed three-dimensional images.

〔作用〕[Effect]

本発明によれば、2値画像中の分離範囲内の画像と分離
範囲外の画像とを別個に3次元画像に変換し、重ね合せ
て表示させる。
According to the present invention, an image within the separation range and an image outside the separation range in a binary image are separately converted into three-dimensional images, and the images are superimposed and displayed.

〔実施例〕 第1図は本発明の3次元表示装置の実施例図を示す。本
実施例は、CT断層像メモリ1、座標値抽出部2.2値
メモリ3、アドレス作成部4、分離用2値メモリ5.3
次元画像作成装置6.3次元画像メモリ7.8、重ね合
せ処理部9、CRT(表示器)10より成る。
[Embodiment] FIG. 1 shows an embodiment of a three-dimensional display device of the present invention. This embodiment includes a CT tomographic image memory 1, a coordinate value extraction unit 2.2, a binary memory 3, an address creation unit 4, and a separation binary memory 5.3.
The dimensional image creation device 6 consists of a three-dimensional image memory 7.8, a superposition processing section 9, and a CRT (display) 10.

CT断層像メモリド・・被検体のn個の断層スライス面
のCT断層像#1〜#nを格納する。各CT断層像とは
、そのスライス面でのX線吸収個分□布である。隣り合
うスライス面の間隔は数IIm程度である。
CT tomographic image memory: CT tomographic images #1 to #n of n tomographic slice planes of the subject are stored. Each CT tomographic image is an X-ray absorption distribution on its slice plane. The interval between adjacent slice planes is approximately several IIm.

座標値抽出部2・・・外部からの吸収値範囲の指定によ
り、その範囲に入る吸収値をメモリ1の各スライス面毎
に読出し、2値画像を得る。この2値画像を得る様子を
第2図〜第4図で説明する。第2図は被検体組織構成体
とX線吸収値との関係を示す。吸収値はO〜1000の
間の値を取るものとする。この時、骨は数100の吸収
値を持ち、皮膚は数10の吸収値をとることが知られて
いる。この他にも組織構成体に応じた吸収値をとる。尚
、07画像を得るにはCT断層像(スライス面での吸収
=3− 値分布)についてその各点での吸収値を第2図の関係を
もとに組織構成体に変換し、これを表示すれば、07画
像を得る。この07画像を得ることは本発明に直接に関
係しないため、これ以上の詳述はさける。
Coordinate value extraction unit 2: By specifying an absorption value range from the outside, absorption values within the range are read out for each slice plane of the memory 1 to obtain a binary image. The manner in which this binary image is obtained will be explained with reference to FIGS. 2 to 4. FIG. 2 shows the relationship between subject tissue constituents and X-ray absorption values. The absorption value shall take a value between 0 and 1000. At this time, it is known that bones have an absorption value of several hundreds, and skin has an absorption value of several tens. In addition to this, absorption values are taken depending on the tissue structure. In addition, to obtain the 07 image, the absorption value at each point of the CT tomogram (absorption on the slice plane = 3-value distribution) is converted into a tissue construct based on the relationship shown in Figure 2, and this is If you display it, you will get 07 image. Since obtaining this 07 image is not directly related to the present invention, further detailed description will be omitted.

本実施例では、外部から吸収値範囲、(例えば下限値1
00〜上限値1000)を指定し、メモリ1から各スラ
イス面毎にその範囲内の吸収値のみを取出す。取出し内
容は、(#i、x、y、  γ)である。ここで、#i
がスライス面の番号(2方向位置)、Xとyとがスライ
ス面内の座標、γが100〜1000の吸収値である。
In this example, the absorption value range (for example, the lower limit 1
00 to upper limit value 1000), and only absorption values within that range are retrieved from the memory 1 for each slice plane. The retrieved contents are (#i, x, y, γ). Here, #i
is the slice plane number (position in two directions), X and y are coordinates within the slice plane, and γ is an absorption value of 100 to 1000.

この取出し値(#i、x。This extraction value (#i, x.

y、r)の中で吸収値γは100〜1000の各種の値
をとるが、この値の大小に無関係に、γ=“1”とする
。これによって、取出し値は、(#i、x。
y, r), the absorption value γ takes various values from 100 to 1000, but it is assumed that γ=“1” regardless of the magnitude of this value. As a result, the retrieved value is (#i, x.

y)の値となり、いわゆる2値画像となる。100〜1
000以外の吸収値は“0”にするからである。
y), resulting in a so-called binary image. 100-1
This is because absorption values other than 000 are set to "0".

この2値画像は、r−1となる座標の集合であり座標値
画像と呼んでもよい。これにより、γ−0の範囲まで記
憶させる必要はなくなり、メモリ容量(メモリ3.5)
は大巾に少なくできる。
This binary image is a set of coordinates that are r-1, and may be called a coordinate value image. This eliminates the need to store up to the γ-0 range, and the memory capacity (memory 3.5)
can be drastically reduced.

第3図は吸収値範囲を指定し、特定の組織体(例えば骨
像)のみを取出した例を示す。第4図は、骨像のみの存
在位置を“1”とし、その他は“0″とする2値画像の
例を示す。この2値画像の中で骨像内の“1″の部分の
みを座標で指示すれば、座標値画像を得る。
FIG. 3 shows an example in which an absorption value range is specified and only a specific tissue (for example, a bone image) is extracted. FIG. 4 shows an example of a binary image in which the position where only the bone image exists is set to "1" and the other positions are set to "0". If only the "1" portion in the bone image is indicated by coordinates in this binary image, a coordinate value image is obtained.

2値メモリ3・・・2値メモリ3は、各スライス面毎に
抽出した吸収値指定範囲の2値画像(座標値画像、以下
同じ)を格納する。
Binary memory 3: The binary memory 3 stores a binary image (coordinate value image, hereinafter the same) of a designated absorption value range extracted for each slice plane.

アドレス作成部4、分離用2値メモリ5・・・手術部位
の指定を、外部から分離範囲として行い、この分離範囲
をアドレス作成部4は、メモリ3内のアドレスに換算し
、メモリ3をアクセスする。この結果、分離範囲内の2
(i画像のみが分離され、この分離した2値画像をメモ
リ5が格納する。尚、被分離の2値画像はそのままメモ
リ3に残す゛。
Address generation unit 4, separation binary memory 5...The surgical site is specified as a separation range from the outside, and the address generation unit 4 converts this separation range into an address in the memory 3 and accesses the memory 3. do. As a result, 2
(Only the i image is separated, and the separated binary image is stored in the memory 5. Note that the binary image to be separated remains in the memory 3 as it is.

3次元画像作成装置6・・・2値画像から3次元画像を
作成する。3次元画像は遠くは暗く、近くは明るくする
如き処理による擬似3次元画像である。
Three-dimensional image creation device 6...Creates a three-dimensional image from a binary image. A three-dimensional image is a pseudo three-dimensional image created by processing such that distant areas are darkened and nearby areas are brightened.

=6− その作成装置6は前記の文献に詳しい。尚、3次元作成
装置というときは、構成要素2. 3. 5(又は6)
を含めて呼ぶことが多い。この呼び方に従うならば作成
装置6は、作成装置本体と呼んでよい。この3次元作成
装置6は、先ずメモリ3内の2値画像を利用して3次元
画像を得、次いでメモリ5内の2値画像を利用して3次
元画像を得る。
=6- The production device 6 is detailed in the above-mentioned literature. Note that when referring to a three-dimensional creation device, component 2. 3. 5 (or 6)
It is often called including. According to this nomenclature, the creation device 6 may be called a creation device main body. This three-dimensional creation device 6 first uses the binary image in the memory 3 to obtain a three-dimensional image, and then uses the binary image in the memory 5 to obtain a three-dimensional image.

3次元画像メモリ7・・・メモリ3内の分離範囲外の作
成3次元画像を格納する。
Three-dimensional image memory 7: Stores the created three-dimensional image outside the separation range in the memory 3.

3次元画像メモリ8・・・メモリ5内の分離範囲内の作
成3次元画像を格納する。
Three-dimensional image memory 8: Stores the created three-dimensional image within the separation range in the memory 5.

重ね合せ処理部9・・・メモリ7と8との3次元画像は
互いに重なり合う。重なり合った部分は2重映像となり
、分離後の画像そのものが見づらくなる。そこで、重ね
合せ処理部9では、2重写しになった分離部分について
分離後の3次元画像のみが写るように処理をする。更に
、分離部分の3次元画像のみをずらして観察に供したり
、手術のための診断に供したりすることが多い。この場
合の位置のずれによる2重映像の中で分離部分のみを写
るように処理したい。この処理をも、重ね合せ処理部9
が行う。この処理も重ね合せ処理と呼んでよい。
Superposition processing section 9: Three-dimensional images in memories 7 and 8 are superimposed on each other. The overlapping portion becomes a double image, making it difficult to see the separated image itself. Therefore, the superimposition processing unit 9 processes the separated portions that have been duplicated so that only the three-dimensional image after separation is displayed. Furthermore, only the three-dimensional image of the separated portion is often shifted and used for observation or for diagnosis for surgery. In this case, we would like to process the double image caused by the positional shift so that only the separated part is visible. This process is also performed by the superposition processing unit 9.
will do. This process may also be called superposition process.

2重映像の重なりについて第5図で説明する。The overlapping of double images will be explained with reference to FIG.

第5図(イ)の骨像とは、既に2値化した1つのスライ
ス面での2値化画像とする。このような2値化画像#1
〜#nより3次元画像を得たとすると、この2値化画像
中、下段の部分は表示前面(手前)の画像であり、明る
く表示され、上段の部分は表示後方の画像であり、暗く
表示される。然るに、点線部の如く分離部分を指定する
と、第5図(イ)の骨像は分離2値画像と被分離画像と
に分けられ、それぞれ別個に3次元処理される。この処
理の結果、被分離2値画像については分離部分を欠落さ
せたままで3次元画像となる。しかし、斜線で示す奥行
きの部分はそのまま残される。そこで、3次元画像化す
ると、分離2値化画像(3次元)Aと被分離2値化画像
(3次元)Bの斜線部とが重なり合う。この重なり合う
と、画像Bのみが単独で見づらくなる。そこで、このよ
うな重なり部分の奥の部分について表示させないように
することが必要となる。この処理が重ね合せ処理である
The bone image in FIG. 5(a) is a binarized image on one slice plane that has already been binarized. Such a binarized image #1
Assuming that a 3D image is obtained from ~#n, the lower part of this binarized image is the image in front of the display and is displayed brightly, and the upper part is the image behind the display and is displayed darkly. be done. However, when a separated portion is designated as indicated by a dotted line, the bone image shown in FIG. 5(a) is divided into a separated binary image and an image to be separated, and each is subjected to three-dimensional processing separately. As a result of this processing, the binary image to be separated becomes a three-dimensional image with the separated portion still missing. However, the depth portion indicated by diagonal lines remains as is. Therefore, when converted into a three-dimensional image, the diagonally shaded portions of the separated binarized image (three-dimensional) A and the binarized image to be separated (three-dimensional) B overlap. This overlapping makes it difficult to see only image B alone. Therefore, it is necessary to prevent the deep part of such an overlapping part from being displayed. This processing is superposition processing.

CRTIO・・・重ね合せ処理後の3次元画像を取込み
表示する。
CRTIO: Captures and displays a three-dimensional image after superposition processing.

第1図の動作の全体を説明する。The entire operation shown in FIG. 1 will be explained.

CT断層像メモリ1には、n個のスライス面毎のCT断
層像を格納しておく。このメモリ1にアクセスアドレス
を与えて、#1→#2→・・・→#nの順にスライス面
の断層像を読み出す。座標値抽出部2は、このスライス
面毎のCT断層像について外部から指定した吸収値範囲
の吸収値のみを選択して(#i、x、y、  γ)を得
、次いでγ−1と一率化し、2値化画像(#i、x、y
)を得る。
The CT tomographic image memory 1 stores CT tomographic images for each of n slice planes. An access address is given to this memory 1, and tomographic images of slice planes are read out in the order of #1→#2→...→#n. The coordinate value extraction unit 2 selects only the absorption values in the absorption value range specified from the outside for the CT tomogram for each slice plane to obtain (#i, x, y, γ), and then aligns them with γ-1. and binarized image (#i, x, y
).

2値化画像(#f、x、y)は、スライス面毎にましめ
られ、メモリ3に格納する。
The binarized image (#f, x, y) is compiled for each slice plane and stored in the memory 3.

アドレス作成部4は分離範囲の指定により、その範囲内
の座標値のみを取出し、スライス面対応にメモリ5に格
納する。この結果、メモリ3には、分離範囲のみが除去
されて非分離部分の画像のみが残る。
By specifying the separation range, the address generation unit 4 extracts only the coordinate values within the range and stores them in the memory 5 corresponding to the slice plane. As a result, only the separated range is removed and only the image of the non-separated portion remains in the memory 3.

次に、3次元画像作成装置6は、メモリ3の画像から3
次元画像を得てメモリ7に格納し、その後でメモリ5の
画像から3次元画像を得てメモリ8に格納する。重ね合
せ処理部9は、メモリ7と8との画像の重ね合せを行い
、CRTIOはその処理後の3次元画像を表示する。
Next, the three-dimensional image creation device 6 generates a three-dimensional image from the image in the memory 3.
A dimensional image is obtained and stored in the memory 7, and then a 3-dimensional image is obtained from the image in the memory 5 and stored in the memory 8. The superposition processing unit 9 superposes the images in the memories 7 and 8, and the CRTIO displays the processed three-dimensional image.

重ね合せ処理は、3次元画像メモリ8とメモリ7との映
像が重なった場合、メモリ8の内容を優先させ、且つ手
前を後方に比して優先させるとの処理を行えばよい。
In the superimposition process, when the images in the three-dimensional image memory 8 and the memory 7 overlap, the contents of the memory 8 are given priority, and the front side is given priority over the rear side.

第6図は、分離範囲指定の実施例を示す。3次元画像を
表示しておき、この画像をみて作業者は分離範囲(点線
部の矩形)をトランクボールやマウス等を利用して指示
する。この指示内容を読取り、アドレス作成部4への指
定分離範囲とする。
FIG. 6 shows an example of specifying the separation range. A three-dimensional image is displayed, and the operator, looking at this image, indicates the separation range (the rectangle indicated by the dotted line) using a trunk ball, a mouse, or the like. The contents of this instruction are read and set as the designated separation range for the address creation section 4.

この場合、最初に表示しておいた3次元画像は、分離用
メモリ5にデータを映す前のメモリ3の画像をもとにし
ての3次元画像である。
In this case, the initially displayed three-dimensional image is a three-dimensional image based on the image in the memory 3 before data is projected onto the separation memory 5.

本実施例によれば、XCTの断層像からの擬イ以3次元
画像上で手術モデルを作成できるようになった。尚、超
音波CTやMR−CTの例もありうる。
According to this embodiment, it is now possible to create a surgical model on a pseudo-I three-dimensional image obtained from an XCT tomographic image. Note that examples of ultrasonic CT and MR-CT are also possible.

更に、分離範囲の画像は、単独画像であるため、移動、
回転削除等の処理の対象として扱いうる。
Furthermore, since the image of the separation range is a single image, it may be difficult to move,
It can be handled as a target for processing such as rotation deletion.

これによって様々な手術モデルを映像化できるようにな
る。尚、移動、回転等の処理は、装置6の中で行っても
よく、又は装置6とメモリ5との間に処理部を設けてこ
れによって行わせてもよい。
This makes it possible to visualize various surgical models. Note that processing such as movement and rotation may be performed within the device 6, or may be performed by a processing section provided between the device 6 and the memory 5.

更に、作成装置6は、2つの3次元画像の作成をシリア
ルに行ったが、並列で処理させることも可能である。
Furthermore, although the creation device 6 created the two three-dimensional images serially, it is also possible to process them in parallel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子映像モデルにより手術モデルを作
ることができるようになった。特に除去とか成形とかの
個所を分離して扱うことができるようになったため、手
術モデルを自在に表示できるようになった。
According to the present invention, it has become possible to create a surgical model using an electronic image model. In particular, since parts such as removal and molding can be handled separately, surgical models can now be displayed more freely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例図、第2図〜第4図は2(i画
像を求めるための説明図、第5図は重ね合せ処理の説明
図、第6図は分離範囲指定の実施例を示す図である。 1・・・CT断層像メモリ、3・・・指定吸収個用2値
メモリ、5・・・分離用メモリ。 特許出願人  株式会社日立メディコ 代理人 弁理士  秋本正実(外1名)3y!、元画4
Fig. 1 is an embodiment of the present invention, Figs. 2 to 4 are explanatory diagrams for obtaining the 2 It is a diagram showing an example. 1... CT tomographic image memory, 3... Binary memory for specified absorption, 5... Separation memory. Patent applicant: Hitachi Medical Co., Ltd. Agent Patent attorney: Masami Akimoto ( 1 other person) 3y!, original picture 4
elephant

Claims (1)

【特許請求の範囲】[Claims] 1、CT断層像から抽出した指定吸収値対応の2値画像
を記憶する第1のメモリと、該第1のメモリ中から分離
した指定分離範囲の2値画像を記憶する第2のメモリと
、上記第1のメモリ内の前記分離範囲以外の2値画像か
ら3次元画像を作成し、上記第2のメモリ内の分離範囲
内の2値画像から3次元画像を作成する手段と、該2つ
の3次元画像を重ね合せ処理する手段と、該処理後の重
ね合せた3次元画像を表示する表示器と、より成る3次
元手術シミュレーション装置。
1. A first memory that stores a binary image corresponding to a designated absorption value extracted from a CT tomographic image, and a second memory that stores a binary image of a designated separation range separated from the first memory; means for creating a three-dimensional image from a binary image outside the separation range in the first memory, and creating a three-dimensional image from a binary image within the separation range in the second memory; A three-dimensional surgery simulation device comprising means for superimposing three-dimensional images, and a display for displaying the superimposed three-dimensional images after the processing.
JP62265257A 1987-10-22 1987-10-22 Three-dimensional surgical operation simulation device Pending JPH01108690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265257A JPH01108690A (en) 1987-10-22 1987-10-22 Three-dimensional surgical operation simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265257A JPH01108690A (en) 1987-10-22 1987-10-22 Three-dimensional surgical operation simulation device

Publications (1)

Publication Number Publication Date
JPH01108690A true JPH01108690A (en) 1989-04-25

Family

ID=17414714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265257A Pending JPH01108690A (en) 1987-10-22 1987-10-22 Three-dimensional surgical operation simulation device

Country Status (1)

Country Link
JP (1) JPH01108690A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362275A (en) * 1989-07-31 1991-03-18 Toshiba Corp Three-dimensional picture display device
JPH07308321A (en) * 1994-05-17 1995-11-28 Hitachi Ltd Graphics display object processing device, surgery simulation device, and rotational force generation device used in the device
JP2008110177A (en) * 2006-10-31 2008-05-15 Toshiba Corp Medical image generation apparatus and method
JP2012235983A (en) * 2011-05-13 2012-12-06 Olympus Medical Systems Corp Medical image display system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169280A (en) * 1986-01-22 1987-07-25 Hitachi Medical Corp Ct image three-dimensional display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169280A (en) * 1986-01-22 1987-07-25 Hitachi Medical Corp Ct image three-dimensional display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362275A (en) * 1989-07-31 1991-03-18 Toshiba Corp Three-dimensional picture display device
JPH07308321A (en) * 1994-05-17 1995-11-28 Hitachi Ltd Graphics display object processing device, surgery simulation device, and rotational force generation device used in the device
JP2008110177A (en) * 2006-10-31 2008-05-15 Toshiba Corp Medical image generation apparatus and method
JP2012235983A (en) * 2011-05-13 2012-12-06 Olympus Medical Systems Corp Medical image display system

Similar Documents

Publication Publication Date Title
US6826297B2 (en) Displaying three-dimensional medical images
JP2004534584A5 (en)
JPH119590A (en) Image processing unit
US7893938B2 (en) Rendering anatomical structures with their nearby surrounding area
JP2007501970A (en) Method and apparatus for image processing
JPH1176228A (en) Three-dimensional image construction apparatus
CN1722981B (en) Real-time guiding auxiliary system for radiographic imaging
WO2011040015A1 (en) Device and method for displaying medical image and program
JPH0683940A (en) Image display device
KR101727670B1 (en) Device and method for medical image segmentation based on user interactive input
JPH01108690A (en) Three-dimensional surgical operation simulation device
Bakalash et al. Medicube: A 3d medical imaging architecture
JPH1153577A (en) 3D medical image processing device
JPH0526231B2 (en)
JP2006068350A (en) Medical image display method, medical image displaying device and program for medical image displaying
JPH1043178A (en) Method, device for setting reconstitutive faces, reconstitutive image preparing method and x-ray ct device
US20090027379A1 (en) Imaging system
JPH1186039A (en) Image processing support device
CN105493153A (en) Method for displaying on a screen an object shown in a 3D data set
JP5105584B2 (en) Target area display device and program
JPH08167047A (en) Three-dimensional image display device
JPH02205986A (en) Picture display device
JPS6260066A (en) Stereoscopic image display device
JP2657212B2 (en) 3D medical image display method
JPH04104379A (en) Three-dimensional image processor