JPH01107672A - Driving gear for ultrasonic wave motor - Google Patents
Driving gear for ultrasonic wave motorInfo
- Publication number
- JPH01107672A JPH01107672A JP62262116A JP26211687A JPH01107672A JP H01107672 A JPH01107672 A JP H01107672A JP 62262116 A JP62262116 A JP 62262116A JP 26211687 A JP26211687 A JP 26211687A JP H01107672 A JPH01107672 A JP H01107672A
- Authority
- JP
- Japan
- Prior art keywords
- current
- detection means
- piezoelectric body
- phase difference
- current level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
- H02N2/142—Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/166—Motors with disc stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、圧電体を用いて駆動力を発生する超音波モー
タに係わり、特に弾性体を励振させる圧電体を駆動する
駆動装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric body, and more particularly to a drive device that drives a piezoelectric body that excites an elastic body.
従来の技術
近年、圧電体セラミックス等の電気−機械変換子を用い
て種々の超音波振動を励損することにより、回転あるい
は走行運動を得る超音波モータが高いエネルギー密度等
を有することから注目されている。2. Description of the Related Art In recent years, ultrasonic motors that obtain rotational or running motion by exciting various ultrasonic vibrations using electromechanical transducers such as piezoelectric ceramics have attracted attention because of their high energy density. There is.
例えば、第4図に示すような構造の超音波モータが提案
されている。すなわち、2つの円形の圧電体1.圧電体
2と円形の弾性体3とを厚み方向に重ねて構成したステ
ータ4と、そのステータ4に面接触し下面にライニング
6を接合し、下部には加圧接触用の締結軸7を形成し、
上部には外部の被回転体に回転を伝達する機械出力軸8
を形成してなるロータ基体5と、軸受9と、前記ロータ
基体5と、ステータ4とを任意の締結トルクで加圧して
組立てる為のバネ10と締結環11とを備え、前記ステ
ータ表面には振動エネルギーを作用させるためのリング
状の突起3aを有しており、圧電体1,2に互いに位相
のずれた電気信号を印加することにより回転力を得るよ
うになっている。For example, an ultrasonic motor having a structure as shown in FIG. 4 has been proposed. That is, two circular piezoelectric bodies 1. A stator 4 is constructed by stacking a piezoelectric body 2 and a circular elastic body 3 in the thickness direction, a lining 6 is bonded to the lower surface of the stator 4 in surface contact with the stator 4, and a fastening shaft 7 for pressure contact is formed at the lower part. death,
At the top is a mechanical output shaft 8 that transmits rotation to an external rotated body.
The rotor base 5 is formed of a rotor base 5, a bearing 9, a spring 10 and a fastening ring 11 for pressurizing and assembling the rotor base 5 and the stator 4 with a desired fastening torque. It has a ring-shaped protrusion 3a for applying vibrational energy, and a rotational force is obtained by applying electrical signals out of phase with each other to the piezoelectric bodies 1 and 2.
このような超音波モータの駆動装置としては、第5図に
示されるような構成が提案されている。As a driving device for such an ultrasonic motor, a configuration as shown in FIG. 5 has been proposed.
この第5図に示す超音波モータの動作原理について以下
説明する。The operating principle of the ultrasonic motor shown in FIG. 5 will be explained below.
まず、ステータ4により定まる駆動周波数fmにて発振
器15により発振された出力信号を分岐し、一方を直接
増幅器16に、他方を位相器17を介して増幅器18に
入力する。前記位相器17では正方向回転あるいは逆方
向回転に使用する±10゜ないし±170°の範囲で位
相シフトした信号が整形される。前記発振器15の出力
信号を直接増幅器16に入力して増幅した信号をリード
線19及び20により第1圧電体1に印加する。それに
よりステータ4には、第1圧電体1の分極方向が互いに
異なるプラス極性あるいはマイナス極性を有する領域の
一対を1波長として周方向に8極、4組の振動子に対応
する4波長の励振波が発生される。第2圧電体2も増幅
器18の出力をリード線20.21を介して印加するこ
とにより同様に駆動される。First, the output signal oscillated by the oscillator 15 at the drive frequency fm determined by the stator 4 is branched, and one is input directly to the amplifier 16 and the other is input to the amplifier 18 via the phase shifter 17 . The phase shifter 17 shapes a signal whose phase is shifted within a range of ±10° to ±170°, which is used for forward or reverse rotation. The output signal of the oscillator 15 is directly input to the amplifier 16 and the amplified signal is applied to the first piezoelectric body 1 through lead wires 19 and 20. As a result, the stator 4 has 8 poles in the circumferential direction and 4 wavelengths of excitation corresponding to 4 sets of vibrators, with each wavelength being a pair of regions in which the polarization directions of the first piezoelectric body 1 have different positive polarity or negative polarity. waves are generated. The second piezoelectric body 2 is similarly driven by applying the output of the amplifier 18 via the lead wires 20, 21.
これらの位相器17と、増幅器16.18とて駆動回路
22を構成している。These phase shifters 17 and amplifiers 16 and 18 constitute a drive circuit 22.
上述のようにステータ4を駆動すると、ステータ4にお
けるロータ14に面する側の振動の頂点がロータ14に
接触し、しかもその頂点が時間とおもに移動するため、
ロータ14には横方向成分を有する力が加えられること
になる。かくしてロータ14は、ステータ4により定ま
る駆動周波数fmにより横方向成分の進行波により位置
移動を繰り返す結果、回転運動を得ることができる。When the stator 4 is driven as described above, the apex of the vibration on the side of the stator 4 facing the rotor 14 comes into contact with the rotor 14, and since the apex mainly moves with time,
A force having a lateral component will be applied to the rotor 14. In this way, the rotor 14 can obtain rotational motion as a result of repeating positional movement by the traveling wave of the lateral component at the drive frequency fm determined by the stator 4.
ところが、発振器により発振される出力信号の発振周波
数fdを、ステータ4の共振周波数fr。However, the oscillation frequency fd of the output signal oscillated by the oscillator is the resonant frequency fr of the stator 4.
により定まる駆動周波数fmと一致するように設定して
おいても、超音波モータが駆動される環境が変化したり
、自己発熱の影響による温度変化や経時変化等が起こる
と、ステータ4の共振周波数froおよび駆動周波数f
mが変化してしまい駆動周波数fmが発振周波数fro
から大きくずれる。Even if the drive frequency fm is set to match the drive frequency fm determined by fro and driving frequency f
m changes and the drive frequency fm becomes the oscillation frequency fro
It deviates significantly from
従って進行波の発生効率が減少し、モータとしての駆動
効率が低下し、極端な場合はモータ停止もある。Therefore, the efficiency of generating traveling waves decreases, the driving efficiency of the motor decreases, and in extreme cases, the motor may stop.
このため、第6図に示すような超音波モータの駆動装置
が提案されている。For this reason, an ultrasonic motor drive device as shown in FIG. 6 has been proposed.
第6図において、23は超音波モータを構成する第1の
圧電体1と第2の圧電体2とを電気回路図で示したもの
である。35は圧電体2と、圧電体2に直列に接続され
た抵抗24と、一方の端子を前記圧電体2の抵抗24と
の接続端子Aと反対側の端子2’Oaに接続されたコン
デンサ26と、前記コンデンサの他方の端子に一方の端
子を接続し、もう一方の端子を前記抵抗24の圧電体2
との接続端子Aと反対側の端子19aに接続された抵抗
25と、抵抗30〜33と演算増幅器34とで構成され
た差動増幅回路42とを備えており、圧電体に流れる機
械振動に比例する電流を検出する電流検出回路である。In FIG. 6, reference numeral 23 indicates an electrical circuit diagram of the first piezoelectric body 1 and the second piezoelectric body 2 that constitute the ultrasonic motor. Reference numeral 35 denotes the piezoelectric body 2, a resistor 24 connected in series to the piezoelectric body 2, and a capacitor 26 whose one terminal is connected to the terminal 2'Oa on the opposite side from the connection terminal A of the piezoelectric body 2 with the resistor 24. , one terminal is connected to the other terminal of the capacitor, and the other terminal is connected to the piezoelectric body 2 of the resistor 24.
It is equipped with a resistor 25 connected to the terminal 19a on the opposite side of the connecting terminal A, and a differential amplifier circuit 42 composed of resistors 30 to 33 and an operational amplifier 34, This is a current detection circuit that detects a proportional current.
ここでもう少し機械系振動に比例する電流検出回路35
について詳しく説明する。圧電体2を電気回路の等価回
路で示すと第8図(a)、 (b)のようになる。(オ
ーム社 池田拓部著「圧電材科学の基礎」P99〜P1
02参照)圧電体2に流れる全電流をITとすると、I
Tは第8図(b)のように機械系振動に比例する電流I
mと、圧電体2の静電容量Coに流れ、高調波成分を含
むIcとの和になる。従って圧電体2に流れる電流IT
のうち、圧電体2の静電容量Coに流れる電流IOを差
し引くと、機械系振動に比例する電流Imが得られる。Here, a little more current detection circuit 35 proportional to mechanical system vibration
I will explain in detail. An equivalent electrical circuit of the piezoelectric body 2 is shown in FIGS. 8(a) and 8(b). (Ohmsha, Takube Ikeda, “Basics of Piezoelectric Material Science” P99-P1
02)) If the total current flowing through the piezoelectric body 2 is IT, then I
T is the current I which is proportional to the vibration of the mechanical system as shown in Figure 8(b).
It is the sum of m and Ic, which flows through the capacitance Co of the piezoelectric body 2 and includes harmonic components. Therefore, the current IT flowing through the piezoelectric body 2
Of these, by subtracting the current IO flowing through the capacitance Co of the piezoelectric body 2, a current Im proportional to the mechanical vibration is obtained.
従ってコンデンサ26の静電容量を圧電体2の静電容量
に等しく設定し、抵抗24と抵抗25とを等しく設定し
ておくと、差動増幅回路42により圧電体2に流れる全
電流ITから圧電体2の静電容量Coに流れる電流1o
に等しいコンデンサ26に流れる電流を差し引いた機械
系振動に比例する電流■1こ応じた出力波形が得られる
。すなわち、機械系振動に比例する電流Imが検出でき
る。第9図に、第6図に示されるA点、B点。Therefore, if the capacitance of the capacitor 26 is set equal to the capacitance of the piezoelectric body 2, and the resistors 24 and 25 are set equally, the differential amplifier circuit 42 converts the total current IT flowing through the piezoelectric body 2 into a piezoelectric Current 1o flowing through capacitance Co of body 2
An output waveform corresponding to the current proportional to the mechanical vibration obtained by subtracting the current flowing through the capacitor 26 which is equal to 1 is obtained. That is, a current Im proportional to mechanical system vibration can be detected. FIG. 9 shows points A and B shown in FIG.
0点の波形を示す。これかられかるようにA点。The waveform at point 0 is shown. Point A as you will see from now on.
B点には高調波成分によるひずみ波形があられれている
が、0点には電圧波形と位相比較可能な、機械系振動に
比例する電流Inの波形が得られる。At point B, a distorted waveform due to harmonic components is obtained, but at point 0, a waveform of current In proportional to mechanical system vibration is obtained, whose phase can be compared with the voltage waveform.
36は圧電体2に印加される電圧を検出する電圧検出回
路である。37は位相差検出回路で、機械系振動に比例
する電流検出回路35と電圧検出回路36との出力波形
の位相を比較し、その位相差に応じた直流電圧を出力す
る。36 is a voltage detection circuit that detects the voltage applied to the piezoelectric body 2. A phase difference detection circuit 37 compares the phases of the output waveforms of the current detection circuit 35 and the voltage detection circuit 36, which are proportional to mechanical system vibration, and outputs a DC voltage according to the phase difference.
43は誤差増幅器で、前記位相差検出回路37の出力電
圧と基準電圧源41の電圧とを比較し、その差電圧に応
じた電圧を出力する。43 is an error amplifier that compares the output voltage of the phase difference detection circuit 37 and the voltage of the reference voltage source 41, and outputs a voltage according to the difference voltage.
44は可変発振器で、前記誤差増幅器43の出力電圧に
応じてその発振周波数が可変される。44 is a variable oscillator whose oscillation frequency is varied according to the output voltage of the error amplifier 43.
なお、第6図において、抵抗28,29、コンデンサ2
7は圧電体に印加される電圧のバランスをとる為に挿入
されたものである。以下詳細に説明していく。In addition, in FIG. 6, resistors 28, 29 and capacitor 2
7 is inserted to balance the voltage applied to the piezoelectric body. This will be explained in detail below.
圧電体2に直列に接続された抵抗24と等しい抵抗値を
有する抵抗28を圧電体1に直列接続し、コンデンサ2
6と抵抗25とにそれぞれ等しいコンデンサ27と抵抗
29とで構成された直列回路をライン21aと20aと
の間に接続し、機械系振動に比例する電流検出回路を構
成する圧電体2と抵抗24と抵抗25とコンデンサ26
とに対して、ライン20aで対称形構成になるように圧
電体1と、抵抗28と、抵抗29と、コンデンサ27と
を挿入している。前記対称形構成にすることにより、ラ
イン21aと20aとの間に印加される電圧レベルとラ
イン20aと19aとの間に印加される電圧レベルとが
等しい(但し、位相は異なる)時、圧電体1と圧電体2
とに印加される電圧レベルもそれぞれ等しくなる。従っ
て、圧電体1と圧電体2とに印加される電圧レベルが異
なることにより生ずる不都合(例えばモータ効率の低下
など)は発生しなくなる。これにより安定なモータ回転
が得られる。A resistor 28 having the same resistance value as the resistor 24 connected in series to the piezoelectric body 1 is connected in series to the piezoelectric body 1, and a capacitor 2 is connected in series to the piezoelectric body 1.
A series circuit consisting of a capacitor 27 and a resistor 29, each equal to the value of the piezoelectric body 2 and the resistor 25, is connected between the lines 21a and 20a, and the piezoelectric body 2 and the resistor 24 constitute a current detection circuit proportional to the vibration of the mechanical system. and resistor 25 and capacitor 26
The piezoelectric body 1, the resistor 28, the resistor 29, and the capacitor 27 are inserted so as to have a symmetrical configuration along the line 20a. By having the symmetrical configuration, when the voltage level applied between lines 21a and 20a and the voltage level applied between lines 20a and 19a are equal (but different in phase), the piezoelectric material 1 and piezoelectric body 2
The voltage levels applied to both are also equal. Therefore, problems caused by the difference in the voltage levels applied to the piezoelectric body 1 and the piezoelectric body 2 (for example, a decrease in motor efficiency) will not occur. This provides stable motor rotation.
以上のように構成された超音波モータの駆動回路におい
ては、第7図に示したように、発振器44の出力信号の
周波数fdを、ステータ4の機械系共振周波数fro+
より位相差ΔPにある駆動周波数fm1に設定しておく
と、
fd=fm+ (1)超音波モータが
駆動される環境が変化したり、自己発熱の影響による温
度変化や経時変化がおこりステータ4の機械系共振周波
数frolおよびそれより位相差ΔPにある駆動周波数
f1がそれぞれfrom l fm2に変化しても、発
振器による発振される出力信号すなわち超音波モータの
駆動回路22の出力信号の周波数fdは、
fd=fm2
に制御される。すなわちステータ4の機械系共振周波数
froの変化に対して超音波モータの駆動回路22の出
力信号の周波数fdは常にfroとfmを追従している
ことになる。In the drive circuit for the ultrasonic motor configured as described above, as shown in FIG.
If the drive frequency fm1 is set at a phase difference ΔP, fd=fm+ (1) The environment in which the ultrasonic motor is driven changes, temperature changes due to self-heating, and changes over time occur, causing the stator 4 to Even if the mechanical system resonance frequency frol and the drive frequency f1 at a phase difference ΔP from it change to from l fm2, the frequency fd of the output signal oscillated by the oscillator, that is, the output signal of the ultrasonic motor drive circuit 22, is It is controlled by fd=fm2. That is, with respect to a change in the mechanical system resonance frequency fro of the stator 4, the frequency fd of the output signal of the ultrasonic motor drive circuit 22 always follows fro and fm.
発明が解決しようとする問題点
しかしこのような超音波モータの駆動回路においては、
駆動周波数f1が共振点以上の場合、第10図に示すよ
うに超音波モータの回転数は駆動周波数f1に反比例す
るが、圧電体1.2の機械系振動に比例する電流と電圧
の位相差は駆動周波数fmlの低いときに反比例し、駆
動周波数fitの高いときには変化が小さくなるため、
駆動周波数fII11の高い(回転数の低い)場合に前
記位相差の変動が回転数を大幅に変化させ、正確な制御
をしに<(シているという問題点があった。Problems to be Solved by the Invention However, in such an ultrasonic motor drive circuit,
When the driving frequency f1 is above the resonance point, the rotational speed of the ultrasonic motor is inversely proportional to the driving frequency f1 as shown in FIG. 10, but the phase difference between the current and voltage is proportional to the mechanical vibration of the piezoelectric body 1.2. is inversely proportional when the driving frequency fml is low, and the change is small when the driving frequency fit is high, so
When the driving frequency fII11 is high (the number of revolutions is low), the variation in the phase difference causes a large change in the number of revolutions, posing a problem that accurate control is difficult.
本発明は、上記問題点を解決するもので、駆動周波数の
高い(低回転時)場合にも、回転を正確に制御すること
ができる超音波モータの駆動装置を提供するものである
。The present invention solves the above problems and provides an ultrasonic motor drive device that can accurately control rotation even when the drive frequency is high (low rotation).
問題点を解決するための手段
このような従来の問題点を解決するために本発明は、圧
電体に流れる機械系振動に比例した電流を検出する電流
検出手段と、前記圧電体に印加される電圧を検出する電
圧検出手段と、前記電流検出手段からの信号と電圧検出
手段からの信号の位相差を検出する位相差検出手段と、
前記電流検出手段で検出した電流の電流レベルを検出す
るとともに基準電圧源と該電流レベルを比較する電流レ
ベル検出手段と、前記位相差検出手段からの信号と前記
電流レベル検出手段からの信号により発振周波数を可変
する可変発振器と、前記可変発振器からの信号に基づい
て前記圧電体に流れる機械系振動に比例した電流と前記
位相差を一定とする駆動用電圧を供給する駆動回路とか
ら構成されたものである。Means for Solving the Problems In order to solve these conventional problems, the present invention provides current detection means for detecting a current proportional to mechanical system vibration flowing through a piezoelectric body, voltage detection means for detecting voltage; phase difference detection means for detecting a phase difference between a signal from the current detection means and a signal from the voltage detection means;
current level detection means for detecting the current level of the current detected by the current detection means and comparing the current level with a reference voltage source; and oscillation by a signal from the phase difference detection means and a signal from the current level detection means. It is composed of a variable oscillator that varies the frequency, and a drive circuit that supplies a current proportional to the mechanical vibration flowing through the piezoelectric body based on a signal from the variable oscillator and a drive voltage that keeps the phase difference constant. It is something.
作用
上記構成により本発明は電流レベル検出手段で圧電体に
流れる機械系撮動に比例した電流の電流レベルと基準電
圧源とを比較し、また、位相差検出手段で圧電体に流れ
る機械系撮動に比例した電流と圧電体に印加される電圧
との位相差を検出し、電流レベル検出手段からの信号と
位相差検出手段からの信号によって可変発振器を介して
駆動回路を制御し、圧電体に流れる機械系振動に比例し
た電流と前記位相差を一定に制御する。すなわち回転数
を一定に制御する。ここで、前記電流レベルは第2図(
a)に示すように超音波モータの駆動周波数に対して反
比例の関係にあり、駆動周波数の高い場合にも超音波モ
ータの駆動周波数と回転数の特性に追随でき、高い駆動
周波数域において安定した制御を行うことができる。ま
た、低い駆動周波数域、例えば第2図(a)に示すよう
に70kHz付近においても、位相差によって制御を行
うため、安定、かつ正確な回転数制御を行うことができ
る。Operation With the above configuration, the present invention uses the current level detection means to compare the current level of the current proportional to the mechanical imaging flowing through the piezoelectric body with a reference voltage source, and also uses the phase difference detection means to compare the current level of the current proportional to the mechanical imaging flowing through the piezoelectric body. The drive circuit is controlled via a variable oscillator by the signal from the current level detection means and the signal from the phase difference detection means. The current proportional to the vibration of the mechanical system flowing through the current and the phase difference are controlled to be constant. In other words, the rotation speed is controlled to be constant. Here, the current level is as shown in Figure 2 (
As shown in a), it is inversely proportional to the driving frequency of the ultrasonic motor, and even when the driving frequency is high, it can follow the characteristics of the driving frequency and rotation speed of the ultrasonic motor, and is stable in the high driving frequency range. can be controlled. Further, even in a low drive frequency range, for example, around 70 kHz as shown in FIG. 2(a), since control is performed using a phase difference, stable and accurate rotation speed control can be performed.
実施例
以下、本発明の一実施例を第1図〜第3図にもとづいて
説明する。EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.
なお、従来と同じ部分については従来例(第4図〜第9
図)と同符号を付し、その説明を省略する。Note that the same parts as the conventional example (Figs. 4 to 9)
The same reference numerals as in Figure) are given, and the explanation thereof will be omitted.
第1図は本発明の第1の実施例における駆動装置の回路
図で、51は電流レベル検出回路であり、この電流レベ
ル検出回路51の入力側に電流検出回路35の出力が接
続されている。前記電流レベル検出回路51の出力は抵
抗52を介して演算増幅器54の一方の入力側に接続さ
れており、この演算増幅器54の一方の入力側は抵抗5
3を介して演算増幅器54の出力側に接続されている。FIG. 1 is a circuit diagram of a driving device according to a first embodiment of the present invention, 51 is a current level detection circuit, and the output of the current detection circuit 35 is connected to the input side of this current level detection circuit 51. . The output of the current level detection circuit 51 is connected to one input side of an operational amplifier 54 via a resistor 52, and one input side of the operational amplifier 54 is connected to the resistor 5.
3 to the output side of the operational amplifier 54.
前記演算増幅器54の他方の入力側には基準電圧源55
が接続されており、抵抗52.53と演算増幅器54と
で誤差増幅器56を構成している。また、駆動回路22
内の駆動電圧を昇圧するためのトランス(図示せず)の
1次側を演算増幅器54の一方の入力側(抵抗52と接
続された111II)に抵抗57を介して接続している
。A reference voltage source 55 is connected to the other input side of the operational amplifier 54.
are connected, and an error amplifier 56 is configured by the resistors 52 and 53 and the operational amplifier 54. In addition, the drive circuit 22
The primary side of a transformer (not shown) for boosting the drive voltage within is connected to one input side (111II connected to resistor 52) of operational amplifier 54 via resistor 57.
そして、圧電体2に流れている機械系振動に比例した電
流を電流検出回路35で検出し、この検出された電流(
振幅を有する信号)を電流レベル検出回路51に入力す
る。この電流レベル検出回路51では、入力された電流
を半波整流した後で精分し、この積分値を出力する。こ
の電流レベル検出回路51の出力信号は抵抗52で電圧
信号に変換された後、演算増幅器54で基準電圧を有す
る基準電圧源55と比較され誤差増幅される。この演算
増幅器54の出力は可変発振器44に入力されている。Then, a current proportional to the mechanical vibration flowing through the piezoelectric body 2 is detected by the current detection circuit 35, and this detected current (
A signal having an amplitude) is input to the current level detection circuit 51. This current level detection circuit 51 performs half-wave rectification of the input current, then refines it, and outputs this integrated value. The output signal of this current level detection circuit 51 is converted into a voltage signal by a resistor 52, and then compared with a reference voltage source 55 having a reference voltage by an operational amplifier 54 to amplify the error. The output of this operational amplifier 54 is input to the variable oscillator 44.
また、位相差検出器50の出力も可変発振器44に入力
されている。これらの各信号に応じて可変発振器44で
の発振周波数を可変し、駆動回路22を介して超音波モ
ータの回転数を一定とするように制御する。このとき、
基準電圧源41.55のそれぞれの基準電圧については
、所望の回転数に対して応じたものにする必要がある。Further, the output of the phase difference detector 50 is also input to the variable oscillator 44. The oscillation frequency of the variable oscillator 44 is varied according to each of these signals, and the rotation speed of the ultrasonic motor is controlled to be constant via the drive circuit 22. At this time,
The reference voltage of each of the reference voltage sources 41.55 needs to be set in accordance with the desired rotation speed.
このように本実施例では、電流レベル検出回路51から
出力される第2図(a)に示す圧電体2に流れる機械系
振動に比例する電流の振幅積分値と基準電圧源55とを
比較とともに、位相差検出器50から出力される第2図
(a)に示す位相差と基準電圧源41とを比較すること
により、電流の振幅積分値は高い駆動周波数域において
も回転数の特性(第2図(a)に示す)に対応できるた
め、高駆動周波数域(低回転時)の回転数を正確に制御
することができるとともに、低駆動周波数域(例えば7
0kHz付近、高回転時)の回転数を位相差によって正
確に制御することができる。As described above, in this embodiment, the integrated amplitude value of the current proportional to the mechanical system vibration flowing through the piezoelectric body 2 shown in FIG. 2(a) output from the current level detection circuit 51 is compared with the reference voltage source 55, By comparing the phase difference shown in FIG. 2(a) outputted from the phase difference detector 50 with the reference voltage source 41, the amplitude integral value of the current can be determined even in a high driving frequency range. As shown in Figure 2 (a)), it is possible to accurately control the rotation speed in the high drive frequency range (low rotation), and it is also possible to accurately control the rotation speed in the low drive frequency range (for example, 7
The rotation speed (near 0kHz, at high rotation) can be accurately controlled by the phase difference.
また、駆動回路22のトランスに入力される信号を抵抗
57を介して演算増幅器54に入力しており、駆動電圧
をフィードバック制御でき、第2図(b)に示すように
各駆動電圧に対する回転数−トルク特性を変化させるこ
とができる。したがって、トランスへ入力する電圧を変
化させ−ることで回転数−トルク特性を変えることがで
き、数々の仕様に対応させることが容易にできる。なお
、比較例として従来の回転数−トルク特性を第2図(C
)に示す。In addition, the signal input to the transformer of the drive circuit 22 is input to the operational amplifier 54 via the resistor 57, so that the drive voltage can be feedback-controlled, and the rotation speed for each drive voltage is as shown in FIG. - Torque characteristics can be changed. Therefore, by changing the voltage input to the transformer, the rotation speed-torque characteristics can be changed, making it easy to adapt to various specifications. As a comparative example, the conventional rotation speed-torque characteristic is shown in Figure 2 (C
).
次に、第3図は本発明の他の実施例を示し、本実施例は
、圧電体2の近傍に設けた圧電センサ58と、該圧電セ
ンサ58からの信号を入力し、圧電体2に流れる機械系
振動に比例した電流信号を検出する検出器59とで電流
検出回路35aを構成している。なお、圧電センサ58
の出力信号と駆動周波数との関係を第2図(a)に示す
。この圧電センサ58の出力はステータ(図示せず)へ
の取付は位置によって検出する信号(圧電体2に流れる
機械系振動に比例した電流信号)の大きさが変わってく
るが、圧電センサ58を用いることによって、電流信号
検出用のコンデンサ26.27をはぶ(ことができ、駆
動回路22の出力を圧電体23へ第1の実施例のものよ
りも多(印加することができる。Next, FIG. 3 shows another embodiment of the present invention. In this embodiment, a piezoelectric sensor 58 provided near the piezoelectric body 2 and a signal from the piezoelectric sensor 58 are inputted to the piezoelectric body 2. A current detection circuit 35a is constituted by a detector 59 that detects a current signal proportional to the flowing mechanical system vibration. Note that the piezoelectric sensor 58
The relationship between the output signal and drive frequency is shown in FIG. 2(a). When the piezoelectric sensor 58 is mounted on a stator (not shown), the magnitude of the detected signal (a current signal proportional to the mechanical vibration flowing through the piezoelectric body 2) changes depending on the position. By using this, the capacitors 26 and 27 for detecting current signals can be omitted, and the output of the drive circuit 22 can be applied to the piezoelectric body 23 in a larger amount than in the first embodiment.
発明の効果
以上の説明から明らかなように本発明は、圧電体に流れ
る機械系振動に比例した電流の電流レベルを検出し、基
準電圧源と電流レベルを比較する電流レベル検出手段か
らの信号と、圧電体に流れる機械系振動に比例した電流
と圧電体に印加される電圧の位相差を基準電圧源と比較
する位相差検出手段からの信号の各信号によって可変発
振器を介して駆動回路を制御することにより、駆動周波
数の低い場合(高回転時)には駆動周波数に対する回転
数の特性に位相差及び電流レベルを用いて応じることが
でき、また、駆動周波数の高い場合(低回転時)には電
流レベルを補償として用いて応じることができるため、
どの駆動周波数域でも安定した回転数制御を正確に行う
ことができる。Effects of the Invention As is clear from the above explanation, the present invention detects the current level of a current proportional to mechanical vibration flowing through a piezoelectric body, and compares the current level with a reference voltage source. , the drive circuit is controlled via a variable oscillator by each signal from a phase difference detection means that compares the phase difference between a current proportional to mechanical vibration flowing through the piezoelectric body and a voltage applied to the piezoelectric body with a reference voltage source. By doing this, it is possible to use the phase difference and current level to respond to the characteristics of the rotation speed relative to the drive frequency when the drive frequency is low (at high rotations), and when the drive frequency is high (at low rotations). can be met using the current level as compensation, so
Stable and accurate rotation speed control can be performed in any drive frequency range.
第1図は本発明の第1の実施例における超音波モータの
駆動装置のブロック図、第2図(a)は機械系振動に比
例する電流信号の振幅積分値、圧電センサによる電流信
号の振幅積分値9機械系振動に比例する電流と電圧の位
相差と駆動周波数及び回転数と駆動周波数の関係を示す
グラフ、第2図(b)。
(C)はトランスへの各入力電圧に対するトルクと回転
数の関係を示すグラフで、(b)は本発明、(C)は従
来のものについてであり、第3図は本発明の他の実施例
における超音波モータの駆動装置のブロック図、第4図
は従来の超音波モータの分解斜視図、第5図は従来の超
音波モータの駆動装置のブロック図、第6図は超音波モ
ータの駆動装置のブロック図、第7図は超音波モータを
構成する圧電体のアドミッタンス特性図、第8図は超音
波モータを構成する圧電体の等価回路図、第9図は機械
系振動に比例する電流検出回路A、B、C点での波形図
、第10図は同超音波モータの機械系振動に比例する電
流と電圧の位相差と駆動周波数及び回転数と駆動周波数
の関係を示すグラフである。
1.2・・・・・・圧電体、4・・・・・・ステータ、
14・・・・・・ロータ、22・・・・・・駆動回路、
24.25・・・・・・抵抗、26.27・・・・・・
コンデンサ、28,29.30. 31.32.33・
・・・・・抵抗、34・・・・・・演算増幅器、35.
35a・・・・・・機械系振動に比例する電流検出回路
、36・・・・・・電圧検出回路、37・・・・・・位
相差検出回路、38.39・・・・・・抵抗、40・・
・・・・演算増幅器、41・・・・・・基準電圧源、4
2・・・・・・差動増幅回路、43・・・・・・誤差増
幅器、44・・・・・・可変発振器、50・・・・・・
位相差検出器、51・・・・・・電流レベル検出回路、
52.53・・・・・・抵抗、54・・・・・・演算増
幅器、55・・・・・・基準電圧源、56・・・・・・
誤差増幅器、57・・・・・・抵抗、58・・・・・・
圧電センサ、59・・・・・・検出器。
代理人の氏名 弁理士 中尾敏男 ほか1名第4図
[F]−/ l l
第7図
第8図
第9図FIG. 1 is a block diagram of the ultrasonic motor drive device according to the first embodiment of the present invention, and FIG. 2(a) shows the integrated amplitude value of a current signal proportional to mechanical system vibration, and the amplitude of the current signal generated by the piezoelectric sensor. Integral value 9 Figure 2 (b) is a graph showing the relationship between the phase difference between current and voltage proportional to mechanical system vibration, drive frequency, and rotation speed and drive frequency. (C) is a graph showing the relationship between torque and rotational speed for each input voltage to the transformer, (b) is for the present invention, (C) is for the conventional one, and Fig. 3 is for another implementation of the present invention. FIG. 4 is an exploded perspective view of a conventional ultrasonic motor, FIG. 5 is a block diagram of a conventional ultrasonic motor drive device, and FIG. 6 is a block diagram of a conventional ultrasonic motor drive device. A block diagram of the drive device, Fig. 7 is an admittance characteristic diagram of the piezoelectric material that makes up the ultrasonic motor, Fig. 8 is an equivalent circuit diagram of the piezoelectric material that makes up the ultrasonic motor, and Fig. 9 is proportional to mechanical system vibration. The waveform diagram at points A, B, and C of the current detection circuit, and Figure 10 is a graph showing the relationship between the phase difference between the current and voltage, the drive frequency, and the rotation speed and drive frequency, which are proportional to the mechanical vibration of the ultrasonic motor. be. 1.2...Piezoelectric body, 4...Stator,
14... Rotor, 22... Drive circuit,
24.25... Resistance, 26.27...
Capacitor, 28, 29.30. 31.32.33・
... Resistor, 34... Operational amplifier, 35.
35a...Current detection circuit proportional to mechanical system vibration, 36...Voltage detection circuit, 37...Phase difference detection circuit, 38.39...Resistance , 40...
...Operation amplifier, 41...Reference voltage source, 4
2... Differential amplifier circuit, 43... Error amplifier, 44... Variable oscillator, 50...
Phase difference detector, 51... Current level detection circuit,
52.53... Resistor, 54... Operational amplifier, 55... Reference voltage source, 56...
Error amplifier, 57...Resistor, 58...
Piezoelectric sensor, 59...detector. Name of agent: Patent attorney Toshio Nakao and one other person Figure 4 [F] -/ l l Figure 7 Figure 8 Figure 9
Claims (5)
動に比例した電流を検出する電流検出手段と、前記圧電
体に印加される電圧を検出する電圧検出手段と、前記電
流検出手段からの信号と電圧検出手段からの信号の位相
差を検出する位相差検出手段と、前記電流検出手段で検
出した電流の電流レベルを検出するとともに基準電圧源
と該電流レベルを比較する電流レベル検出手段と、前記
位相差検出手段からの信号と前記電流レベル検出手段か
らの信号により前記圧電体に流れる機械系振動に比例し
た電流と前記位相差をそれぞれ一定とするよう発振周波
数を可変する可変発振器と、前記可変発振器からの信号
に基づいて駆動用電圧を供給する駆動回路とからなる超
音波モータの駆動装置。(1) Current detection means for detecting a current proportional to mechanical vibration flowing through a piezoelectric body constituting an ultrasonic motor; voltage detection means for detecting a voltage applied to the piezoelectric body; phase difference detection means for detecting a phase difference between the signal and the signal from the voltage detection means; and current level detection means for detecting the current level of the current detected by the current detection means and comparing the current level with a reference voltage source. , a variable oscillator that varies an oscillation frequency so that a current proportional to mechanical vibration flowing through the piezoelectric body and the phase difference are kept constant based on a signal from the phase difference detection means and a signal from the current level detection means; An ultrasonic motor drive device comprising a drive circuit that supplies a drive voltage based on a signal from the variable oscillator.
た電流レベル検出回路と、基準電圧源と、前記電流レベ
ル検出回路と基準電圧源をそれぞれ入力端に接続した誤
差増幅器とから構成された特許請求の範囲第1項記載の
超音波モータの駆動装置。(2) The current level detection means is composed of a current level detection circuit connected to the current detection means, a reference voltage source, and an error amplifier having input terminals connected to the current level detection circuit and the reference voltage source, respectively. An ultrasonic motor drive device according to claim 1.
さに応じて、一定にすべき前記圧電体に流れる機械系振
動に比例した電流の設定を変える手段を備えた特許請求
の範囲第2項記載の超音波モータの駆動装置。(3) According to the magnitude of the drive voltage applied to the piezoelectric body from a drive circuit, the setting of a current proportional to the mechanical system vibration flowing through the piezoelectric body, which should be kept constant, is changed. 2. The ultrasonic motor drive device according to item 2.
回路とを接続する抵抗を備えた特許請求の範囲第3項記
載の超音波モータの駆動装置。(4) The ultrasonic motor drive device according to claim 3, further comprising a resistor for connecting the input terminal of the error amplifier of the current level detection means and the drive circuit.
る圧電センサからなる特許請求の範囲第1〜4項のいず
れかに記載の超音波モータの駆動装置。(5) The ultrasonic motor drive device according to any one of claims 1 to 4, wherein the current detection means is a piezoelectric sensor that receives mechanical vibration of a piezoelectric body as input.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62262116A JPH01107672A (en) | 1987-10-16 | 1987-10-16 | Driving gear for ultrasonic wave motor |
US07/260,505 US4888514A (en) | 1987-10-16 | 1988-10-13 | Driving apparatus for ultrasonic motor |
DE3835090A DE3835090A1 (en) | 1987-10-16 | 1988-10-14 | DRIVE DEVICE FOR A ULTRASONIC MOTOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62262116A JPH01107672A (en) | 1987-10-16 | 1987-10-16 | Driving gear for ultrasonic wave motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01107672A true JPH01107672A (en) | 1989-04-25 |
Family
ID=17371267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62262116A Pending JPH01107672A (en) | 1987-10-16 | 1987-10-16 | Driving gear for ultrasonic wave motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01107672A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6139870A (en) * | 1984-07-27 | 1986-02-26 | Marcon Electronics Co Ltd | Piezoelectric linear motor |
-
1987
- 1987-10-16 JP JP62262116A patent/JPH01107672A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6139870A (en) * | 1984-07-27 | 1986-02-26 | Marcon Electronics Co Ltd | Piezoelectric linear motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4888514A (en) | Driving apparatus for ultrasonic motor | |
US5130619A (en) | Drive control apparatus for an ultrasonic motor | |
JP2737420B2 (en) | Ultrasonic motor drive system | |
JPH0667224B2 (en) | Ultrasonic motor drive | |
JPH09163769A (en) | Ultrasonic motor apparatus | |
JPS622869A (en) | Supersonic motor drive device | |
JPS631379A (en) | Driving circuit for ultrasonic motor | |
JPH01107672A (en) | Driving gear for ultrasonic wave motor | |
JP2532516B2 (en) | Ultrasonic motor drive | |
JPS63140678A (en) | Driving gear of ultrasonic motor | |
JP2558709B2 (en) | Ultrasonic motor drive | |
JPS61221585A (en) | Drive circuit of vibration wave motor | |
JP3495810B2 (en) | Vibration wave motor device | |
JP2924455B2 (en) | Driving method of ultrasonic motor | |
JP2543106B2 (en) | Ultrasonic motor drive | |
JP2636280B2 (en) | Driving method of ultrasonic motor | |
JPS61224885A (en) | Vibration wave motor | |
JP2605333B2 (en) | Ultrasonic motor drive | |
JP2577485B2 (en) | Driving method of ultrasonic motor | |
JPS6292782A (en) | Ultrasonic motor device | |
JPH02303379A (en) | Ultrasonic motor | |
JP3141525B2 (en) | Ultrasonic motor drive control method | |
JPS63202278A (en) | Driver circuit for ultrasonic motor | |
JPH09215352A (en) | Speed controller of ultrasonic motor | |
JPH0667233B2 (en) | Ultrasonic motor device |