[go: up one dir, main page]

JPH01107539A - Microwave plasma processor - Google Patents

Microwave plasma processor

Info

Publication number
JPH01107539A
JPH01107539A JP62264536A JP26453687A JPH01107539A JP H01107539 A JPH01107539 A JP H01107539A JP 62264536 A JP62264536 A JP 62264536A JP 26453687 A JP26453687 A JP 26453687A JP H01107539 A JPH01107539 A JP H01107539A
Authority
JP
Japan
Prior art keywords
substrate
magnetic field
sample
plasma
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62264536A
Other languages
Japanese (ja)
Inventor
Katsuzo Ukai
鵜飼 勝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP62264536A priority Critical patent/JPH01107539A/en
Publication of JPH01107539A publication Critical patent/JPH01107539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To control the direction of charged particles of electrons, ions incident to a substrate and to uniformly process the surface of the substrate by disposing a correction plate made of a ferromagnetic material in a sample stand. CONSTITUTION:A correction plate 31 made of a ferromagnetic material is so disposed in a sample stand 5 that lines of magnetic force relating to a divergent magnetic field are directed perpendicularly to the surface of a substrate 6. Accordingly, the direction of the lines of magnetic force of the divergent magnetic field formed by a magnetic coil 3 provided around a discharge chamber 2 is controlled perpendicularly to the front lace of the substrate 8 with the central position '0' and the end Q on the surface of a sample 6 by the plate 31 made of the ferromagnetic material provided in the stand 5, and plasma generated in the chamber 2 and produced in a sample chamber 1 at the gradient of the divergent magnetic field 7 is incident perpendicularly to the surface of the substrate 6 along the lines of magnetic force. Thus, since the direction of the charged particles incident to the substrate can be controlled perpendicularly thereto, substantially the whole surface of the substrate can be uniformly processed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、いわゆるECRに代表されるマイクロ波を使
ったプラズマ処理装置に間し、半導体デバイスの製造等
において、基板表面への薄膜形成、基板表面のエツチン
グ、表面改質等の製造プロセスに適用して特に効果があ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to a plasma processing apparatus using microwaves such as so-called ECR, and is used to form a thin film on the surface of a substrate in the manufacture of semiconductor devices, etc. It is particularly effective when applied to manufacturing processes such as substrate surface etching and surface modification.

(従来の技術) 従来のこの種の技術は、冷陰極放電を使いながら太いビ
ーム(イオン、電子、ラジカルあるいはこれらの組合わ
せ)を取り出すことができるので、多方面に使用されて
きた。第2図は従来のマイクロ波プラズマ処理装置を示
したものである。符号15は真空容器であり、当該真空
容器15は、試料室1と放電室2とから構成されている
。放電室2内には、ガス導入系9から所定のガズを導入
するとともに、導波管8から導入窓16を介して2.4
5 G Hzのマイクロ波を導入する。そして、放電室
2の周囲に設けた磁気コイル3による磁場の強度が87
5ガウスのとき、この磁場とマイクロ波の電場との相互
作用により、放電室2内において電子サイクロトロン共
鳴(ECR)が起こり、高密度プラズマが生成する。そ
して、この生成したプラズマは、磁気コイル3により形
成される発散磁界の勾配と相互作用して、上記試料室1
と上記放電室2との境界付近に設けたプラズマ引き出し
窓12から試料室1に引き出される。そして、このプラ
ズマが試料台5に載置された基板6の表面に入射し、例
えばエツチング等の所定の表面処理が行われる。
(Prior Art) This type of conventional technology has been used in many fields because it can extract a thick beam (ions, electrons, radicals, or a combination thereof) while using cold cathode discharge. FIG. 2 shows a conventional microwave plasma processing apparatus. Reference numeral 15 denotes a vacuum container, and the vacuum container 15 is composed of a sample chamber 1 and a discharge chamber 2. A predetermined gas is introduced into the discharge chamber 2 from the gas introduction system 9, and 2.4 gas is introduced from the waveguide 8 through the introduction window 16.
Introducing 5 GHz microwave. The strength of the magnetic field generated by the magnetic coil 3 provided around the discharge chamber 2 is 87.
When the magnetic field is 5 Gauss, electron cyclotron resonance (ECR) occurs in the discharge chamber 2 due to the interaction between this magnetic field and the electric field of the microwave, and high-density plasma is generated. This generated plasma then interacts with the gradient of the diverging magnetic field formed by the magnetic coil 3, and the above-mentioned sample chamber 1
The plasma is extracted into the sample chamber 1 through a plasma extraction window 12 provided near the boundary between the plasma and the discharge chamber 2. Then, this plasma is incident on the surface of the substrate 6 placed on the sample stage 5, and a predetermined surface treatment such as etching is performed.

なお、符号4は試料室1内を所定の圧力に排気する排気
装置、10は試料室1内に所定のガスを導入するガス導
入系、11は放電室2を冷却するための冷却水人出口で
ある。
In addition, the reference numeral 4 is an exhaust device that exhausts the inside of the sample chamber 1 to a predetermined pressure, 10 is a gas introduction system that introduces a predetermined gas into the sample chamber 1, and 11 is a cooling water outlet for cooling the discharge chamber 2. It is.

上記マイクロ波プラズマ処理装置は、以下のような秀れ
た特徴を持っている。すなわち、ECRで活性度が非常
に高くなったプラズマを、発散磁界を活用して適度に調
整されたエネルギーで取り出し基板6に入射させている
ので、プラズマの高活性と、限定されたエネルギーを有
するイオン、電子の基板6への入射による複合効果によ
り、効率良く基板表面上に損傷の少ないエツチングなど
の表面処理を行うことができる。
The microwave plasma processing apparatus described above has the following excellent features. In other words, since the plasma whose activity level has become extremely high due to ECR is taken out and made incident on the substrate 6 with appropriately adjusted energy using a divergent magnetic field, the plasma has high activity and limited energy. Due to the combined effect of ions and electrons incident on the substrate 6, surface treatment such as etching can be efficiently performed on the substrate surface with less damage.

また、当該処理装置は、10−3〜IPaの範囲のガス
圧力で処理を行うため、方向性の良いエツチングが可能
であり、微細パターンの形成に有効である。
Further, since the processing apparatus performs processing at a gas pressure in the range of 10 -3 to IPa, etching with good directionality is possible and is effective in forming fine patterns.

(発明が解決しようとする問題点) しかしながら、上記従来の装置ではエツチング形状の面
内均一性やエツチング速度の面内均一性など基板上の処
理の均一性に関しては必ずしも十分ではない面があり、
特に基板6の面積が大きくなるにつれてこの傾向が顕著
であった。
(Problems to be Solved by the Invention) However, the conventional apparatus described above is not necessarily sufficient in terms of uniformity of processing on the substrate, such as in-plane uniformity of etching shape and in-plane uniformity of etching speed.
This tendency was particularly noticeable as the area of the substrate 6 became larger.

この点について第3図に従って説明する。すなわち、E
CR条件を得るための前記磁気コイル3による磁界は、
放電室2内でECR条件を満たすだけでなく、試料室1
内に有用な発散磁界を形成する。しかし、試料台5上で
の磁界を考えた場合、第3図(a)に示すように、試料
台5の中心位置Oと端部Qとでは磁力線方向が同一では
ない。即ち、基板6の中心位置Oでは、第2図の矢印H
7のように基板6に垂直になるような磁界が形成され、
一方、基板6の端部Qては、第2図の矢印H2のように
基板6に斜めになるような磁界が形成されている。その
結果、放電室2から発散磁界により引き出された電子、
イオンは形成された磁力線に沿って基板に入射する。
This point will be explained with reference to FIG. That is, E
The magnetic field by the magnetic coil 3 for obtaining the CR condition is:
In addition to satisfying ECR conditions in discharge chamber 2, sample chamber 1
forming a useful diverging magnetic field within. However, when considering the magnetic field on the sample stage 5, the directions of the lines of magnetic force are not the same at the center position O and the end Q of the sample stage 5, as shown in FIG. 3(a). That is, at the center position O of the substrate 6, the arrow H in FIG.
A magnetic field is formed perpendicular to the substrate 6 as shown in 7.
On the other hand, at the end Q of the substrate 6, a magnetic field is formed that is oblique to the substrate 6, as indicated by an arrow H2 in FIG. As a result, electrons extracted from the discharge chamber 2 by the divergent magnetic field,
Ions are incident on the substrate along the formed magnetic field lines.

このときのエツチング断面形状を示したのが第3図(1
))、(C)である。ここで符号17はフォトレジスト
等のマスク材であり、18はポリシリコン等の被エツチ
ング物質である。第3図(b)は基板6の中心位置0の
エツチング断面形状を示しており、垂直になっている。
Figure 3 (1) shows the cross-sectional shape of the etching at this time.
)), (C). Here, reference numeral 17 is a mask material such as photoresist, and 18 is a material to be etched such as polysilicon. FIG. 3(b) shows the etched cross-sectional shape at the center position 0 of the substrate 6, which is vertical.

また、第3図(C)は、基板6の端部Qでのエツチング
断面形状を示しており、斜めにエツチングされているた
め実用上使用できなくなる。
Further, FIG. 3(C) shows the etched cross-sectional shape at the end Q of the substrate 6, which is obliquely etched, making it unusable for practical use.

このような現象は基板面積が大きくなるにつれて顕著と
なり、基板面積に対して使用できる部分が中心部分に限
られてしまうという問題がある。
This phenomenon becomes more noticeable as the substrate area increases, and there is a problem in that the usable portion of the substrate area is limited to the central portion.

また、1つの放電室2に対して1つの試料台5しか持っ
ておらず、複数個の基板を一度に処理するためには、放
電室2のキャビティの径やECR条件を得るための磁気
コイル3を大きくしなければならず、装置の大型化につ
ながるともに高価になるという問題があった。
In addition, each discharge chamber 2 has only one sample stage 5, and in order to process multiple substrates at once, a magnetic coil is required to obtain the diameter of the cavity of the discharge chamber 2 and the ECR conditions. 3 had to be made larger, which led to the problem of making the device larger and more expensive.

(本発明の目的) 本発明の目的は、基板へ入射する電子、イオンなどの荷
電粒子の方向を制御して基板表面を均一に処理できるよ
うにしたマイクロ波プラズマ処理装置の提供にある。
(Object of the present invention) An object of the present invention is to provide a microwave plasma processing apparatus that can uniformly process the surface of a substrate by controlling the direction of charged particles such as electrons and ions that are incident on the substrate.

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のように構成さ
れている。すなわち、マイクロ波発生手段と、磁場発生
手段と、放電室とから成るプラズマ発生手段と、処理す
る基板を設置した試料室とを備え、前記マイクロ波発生
手段からマイクロ波をプラズマ発生室に導入する一方、
磁場発生手段により磁場を印加することによってマイク
ロ波による電場と磁場との相互作用により放電室内にお
いて電子サイクロトロン共鳴を起こさせ高密度プラズマ
を生成し、この生成したプラズマを発散磁界によって試
料室に引出し、該プラズマを用いて前記試料室内に設け
た試料台に載置した基板の表面を処理するマイクロ波プ
ラズマ処理装置において、前記発散磁界に係る磁力線が
基板表面に対して垂直方向を向くように、前記試料台内
部に強磁性体からなる補正板を配置したことを特徴とし
ている。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. That is, it is equipped with a plasma generation means consisting of a microwave generation means, a magnetic field generation means, and a discharge chamber, and a sample chamber in which a substrate to be processed is installed, and the microwave is introduced from the microwave generation means into the plasma generation chamber. on the other hand,
By applying a magnetic field by the magnetic field generating means, electron cyclotron resonance is caused in the discharge chamber by the interaction between the electric field and the magnetic field due to microwaves, and high-density plasma is generated, and the generated plasma is drawn out to the sample chamber by a divergent magnetic field. In a microwave plasma processing apparatus that processes the surface of a substrate placed on a sample stage provided in the sample chamber using the plasma, It is characterized by a correction plate made of ferromagnetic material placed inside the sample stage.

(作用) 上記のように構成することによって、放電室2の周囲に
設けられた磁気コイル3により形成される発散磁界の磁
力線の方向を、試料台5内部に設けた強磁性体からなる
補正板31によって試料6表面での中心位置0と端部Q
で基板6表面のほぼ前面に対して共に垂直方向に制御さ
れこれによフて放電室2において生成され発散磁界7の
勾配により試料室l内に取り出されるプラズマは、この
磁力線に沿って基板6.6′表面に垂直に入射する。
(Function) By configuring as described above, the correction plate made of a ferromagnetic material provided inside the sample stage 5 can adjust the direction of the lines of magnetic force of the divergent magnetic field formed by the magnetic coil 3 provided around the discharge chamber 2. 31, the center position 0 and the edge Q on the surface of the sample 6
The plasma generated in the discharge chamber 2 and taken out into the sample chamber l by the gradient of the divergent magnetic field 7 flows along the magnetic field lines to the substrate 6. .6' is incident perpendicularly to the surface.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。なお
、マイクロ波の電場と磁場との相互作用により電子サイ
クロトロン共鳴を起こしプラズマを生成する過程につい
ては従来と同様であるので1、これについての説明は省
略するとと←に、従来技術と同一の構成部材については
同一符号をもって説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. Note that the process of generating plasma by causing electron cyclotron resonance due to the interaction between the electric field and magnetic field of microwaves is the same as in the conventional technology. The members will be explained using the same reference numerals.

第1図は、本発明の1実施例を示したものである。FIG. 1 shows one embodiment of the present invention.

本実施例の装置構成上の特徴の一つは、発散磁界の勾配
によって試料室1内に取り出されたプラズマが試料室1
内に設置した試料台5上の基板表面の全面に渡って同一
方向に入射できるように制御するために、試料台5の内
部に磁力線方向を調節することができる強磁性体からな
る補正板31を配置した点にある。
One of the features of the device configuration of this embodiment is that the plasma extracted into the sample chamber 1 due to the gradient of the divergent magnetic field is
In order to control the incidence in the same direction over the entire surface of the substrate on the sample stand 5 installed inside the sample stand 5, a correction plate 31 made of a ferromagnetic material capable of adjusting the direction of the lines of magnetic force is installed inside the sample stand 5. It is located at the point where the is placed.

当該補正板31は、ポールピースの役目を果たし、形成
された発散磁界に係る磁力線は、補正板31方向に向っ
て形成されるので、基板表面に対して広範囲に渡って垂
直方向になり、したがって磁力線に沿って基板に入射す
るプラズマ中の荷電粒子は基板6に対して垂直に入射す
るようになる。
The correction plate 31 serves as a pole piece, and the lines of magnetic force related to the formed divergent magnetic field are formed in the direction of the correction plate 31, so they are perpendicular to the substrate surface over a wide range, and therefore Charged particles in the plasma that are incident on the substrate along the lines of magnetic force become incident on the substrate 6 perpendicularly.

実験によれば従来のマイクロ波プラズマ処理装置では、
基板表面の全面に対し、エツチング形状において実用上
問題なく使用できる部分は、基板の中心部分50%程度
であったが、本構成によれば、基板表面の全面に渡って
エツチング形状は均一となり、実用上使用できる部分は
ほぼ全面にまで拡大することが分かった。
According to experiments, with conventional microwave plasma processing equipment,
The part of the entire surface of the substrate that can be etched without any problems in practice was about 50% of the central portion of the substrate, but with this configuration, the etched shape is uniform over the entire surface of the substrate. It has been found that the area that can be used for practical purposes expands to almost the entire surface.

上記実施例においてはエツチングを主体に説明したが、
基板表面のエツチング処理に限定されるものではなく、
電子サイクロトロン共鳴により生成されたプラズマを利
用するものであれば、半導体デバイスの製造等において
、基板表面への薄膜形成、表面改質等の製造プロセスお
いても本発明を適用することができる。
In the above embodiment, etching was mainly explained, but
It is not limited to etching the substrate surface;
As long as plasma generated by electron cyclotron resonance is utilized, the present invention can be applied to manufacturing processes such as thin film formation on a substrate surface and surface modification in the manufacturing of semiconductor devices.

(発明の効果) 本発明のマイクロ波プラズマ処理装置によれば、基板へ
入射する荷電粒子の方向を垂直に制御することができる
ため、基板表面のほぼ全面に渡って均一な処理を行うこ
とができる。きる。
(Effects of the Invention) According to the microwave plasma processing apparatus of the present invention, since the direction of charged particles incident on the substrate can be controlled vertically, uniform processing can be performed over almost the entire surface of the substrate. can. Wear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示したマイクロ波プラズマ処
理装置の概略図、第2図は従来のマイクロ波プラズマ処
理装置の概略図、第3図(a)は処理される基板の表面
図、第3図(b)及び(C)はエツチング形状を示した
部分断面図である。 1・・・試料室、2・・・放電室、3・・・磁気コイル
、5・・・試料台、6・・・基板、7、発散磁界、8・
・・導波管、14・・・プラズマ発生手段、31・・・
補正板。 A −p: S7 B −B’
Fig. 1 is a schematic diagram of a microwave plasma processing apparatus showing an embodiment of the present invention, Fig. 2 is a schematic diagram of a conventional microwave plasma processing apparatus, and Fig. 3(a) is a surface diagram of a substrate to be processed. , FIGS. 3(b) and 3(c) are partial cross-sectional views showing the etched shape. DESCRIPTION OF SYMBOLS 1... Sample chamber, 2... Discharge chamber, 3... Magnetic coil, 5... Sample stage, 6... Substrate, 7, Diverging magnetic field, 8...
... Waveguide, 14... Plasma generation means, 31...
correction board. A-p: S7 B-B'

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波発生手段と、磁場発生手段と、放電室とか
ら成るプラズマ発生手段と、処理する基板を設置した試
料室とを備え、前記マイクロ波発生手段からマイクロ波
を放電室に導入する一方、磁場発生手段により磁場を印
加することによってマイクロ波による電場と磁場との相
互作用により放電室内において電子サイクロトロン共鳴
を起こさせ高密度プラズマを生成し、この生成したプラ
ズマを発散磁界によって試料室に引出し、該プラズマを
用いて前記試料室内に設けた試料台に載置した基板の表
面を処理するマイクロ波プラズマ処理装置において、前
記発散磁界に係る磁力線が基板表面に対して垂直方向を
向くように、前記試料台内部に強磁性体からなる補正板
を配置したことを特徴とするマイクロ波プラズマ処理装
置。
The plasma generating means includes a microwave generating means, a magnetic field generating means, and a discharge chamber, and a sample chamber in which a substrate to be processed is installed. By applying a magnetic field by the generating means, electron cyclotron resonance is caused in the discharge chamber by the interaction between the electric field and the magnetic field caused by microwaves, thereby generating high-density plasma, and the generated plasma is drawn into the sample chamber by a divergent magnetic field. In a microwave plasma processing apparatus that uses plasma to process the surface of a substrate placed on a sample stage provided in the sample chamber, the sample is A microwave plasma processing apparatus characterized in that a correction plate made of a ferromagnetic material is arranged inside the stand.
JP62264536A 1987-10-20 1987-10-20 Microwave plasma processor Pending JPH01107539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264536A JPH01107539A (en) 1987-10-20 1987-10-20 Microwave plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264536A JPH01107539A (en) 1987-10-20 1987-10-20 Microwave plasma processor

Publications (1)

Publication Number Publication Date
JPH01107539A true JPH01107539A (en) 1989-04-25

Family

ID=17404627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264536A Pending JPH01107539A (en) 1987-10-20 1987-10-20 Microwave plasma processor

Country Status (1)

Country Link
JP (1) JPH01107539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213658A (en) * 1990-10-26 1993-05-25 Mitsubishi Denki Kabushiki Kaisha Plasma processing method
US5228940A (en) * 1990-10-03 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Fine pattern forming apparatus
US5246532A (en) * 1990-10-26 1993-09-21 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228940A (en) * 1990-10-03 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Fine pattern forming apparatus
US5292401A (en) * 1990-10-03 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Method of forming a fine pattern
US5213658A (en) * 1990-10-26 1993-05-25 Mitsubishi Denki Kabushiki Kaisha Plasma processing method
US5246532A (en) * 1990-10-26 1993-09-21 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus

Similar Documents

Publication Publication Date Title
EP0300447B1 (en) Method and apparatus for treating material by using plasma
US7034285B2 (en) Beam source and beam processing apparatus
JPH08107101A (en) Plasma processing apparatus and plasma processing method
JPH06342771A (en) Dry etching apparatus
JPH0362517A (en) Microwave plasma processor
JPH01107539A (en) Microwave plasma processor
JP2709162B2 (en) Microwave plasma processing equipment
JPH02312231A (en) Dryetching device
JPH0250429A (en) Plasma processing apparatus
JPH02156526A (en) Microwave plasma treating system
JPH0415921A (en) Method and apparatus for activating plasma
JPS6343324A (en) Plasma shower equipment
JPH0530500B2 (en)
JP3686563B2 (en) Semiconductor device manufacturing method and plasma processing apparatus
JPH0717147Y2 (en) Plasma processing device
JPH025413A (en) Plasma processor
JP3071450B2 (en) Microwave plasma processing equipment
JPH0222486A (en) Microwave plasma treating equipment
JPH0578849A (en) High magnetic field microwave plasma treating device
JPH0361387A (en) Microwave plasma treating device
JPH065549A (en) Ecr plasma ion generation device
JPH01254245A (en) Microwave plasma treating device
JPS602388B2 (en) ion etching equipment
JPH0294628A (en) Plasma generation apparatus
JPS611025A (en) Plasma processing apparatus