[go: up one dir, main page]

JPH01106919A - Cooling device of engine - Google Patents

Cooling device of engine

Info

Publication number
JPH01106919A
JPH01106919A JP26335487A JP26335487A JPH01106919A JP H01106919 A JPH01106919 A JP H01106919A JP 26335487 A JP26335487 A JP 26335487A JP 26335487 A JP26335487 A JP 26335487A JP H01106919 A JPH01106919 A JP H01106919A
Authority
JP
Japan
Prior art keywords
valve
cooling water
temperature
engine
thermostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26335487A
Other languages
Japanese (ja)
Inventor
Toshimasa Maeda
前田 敏正
Naoki Nagano
直樹 長野
Tatsuya Yoshida
善田 達也
Hisanori Nakane
中根 久典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26335487A priority Critical patent/JPH01106919A/en
Publication of JPH01106919A publication Critical patent/JPH01106919A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To reduce any cooling loss and improve fuel consumption by connecting a branch conduit having a thermostat valve for setting high temperature in parallel to a branch conduit having a thermostat valve for setting low temperature and a switching valve for releasing itself under high loads. CONSTITUTION:A cooling water conduit 3x between the exit side of an engine 1 and a radiator 2 is divided on its way into the first branch conduit 3a and the second branch conduit 3b. A bypass conduit 7 is communicated to the first branch conduit 3a on the direct upstream side of a thermostat valve 5 for setting thigh temperature (about 100 deg.C). A thermostat valve 6 for setting low temperature (about 82 deg.C) is provided in the second branch conduit 3b and a switching valve 9 is arranged in series on the downstream side thereof. The switching valve 9 is controlled by means of ECU 16 provided with a load sensor 17 connected thereto and vacuum is introduced during high load operation via a three way solenoid valve 14 in order that the second branch conduit 2b is released.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンとラジェータとの間の冷却水通路に
サーモスタット弁を備えたエンジンの冷却装置の改良に
関し、特に、エンジン冷却水温度の高温安定化対策に関
する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement in an engine cooling system equipped with a thermostatic valve in a cooling water passage between an engine and a radiator. Concerning stabilization measures.

(従来の技術) 一般に、この種のエンジンの冷却装置においては、サー
モスタット弁の開弁温度を高く設定する場合には、比較
的高温の冷却水がラジェータをバイパスしてエンジンに
循環するので、冷却損失を低減できて、燃費の向上を図
れる利点がある。
(Prior art) Generally, in this type of engine cooling system, when the opening temperature of the thermostat valve is set high, relatively high temperature cooling water bypasses the radiator and circulates to the engine, so cooling This has the advantage of reducing losses and improving fuel efficiency.

一方、上記の如くサーモスタット弁の開弁温度を高く設
定する場合、エンジンの高負荷運転が一時的に行なわれ
た時には、サーモスタット弁はその応答性上閉状態を維
持するため、シリンダブロックの壁温の急上昇を招くこ
とがあり、耐久性が低下する懸念が生じる。
On the other hand, when the opening temperature of the thermostat valve is set high as described above, when the engine is temporarily operated at a high load, the thermostat valve maintains its closed state due to its responsiveness, so the wall temperature of the cylinder block increases. This may lead to a sudden increase in the amount of water, raising concerns about decreased durability.

そこで、エンジン冷却性を良好に確保しながら燃費の向
上を図るべく、例えば冷却水通路に開弁温度を高く設定
したサーモスタット弁を介設すると共に、該サーモスタ
ット弁をバイパスするバイパス通路を設け、該バイパス
通路にエンジン高負荷時に開く開閉弁を設けることによ
り、エンジン低負荷時には、バイパス通路を閉じた状態
として、上記サーモスタット弁の開閉作動に基づき冷却
水温度を比較的高く維持して燃費の向上を図ると共に、
エンジン高負荷時には、開閉弁の開作動に基づきサーモ
スタット弁の閉時でも冷却水をバイパス通路を経てラジ
ェータに流して、シリンダブロックの壁温の急上昇を抑
制して、エンジン耐久性を良好に確保することが考えら
れる。
Therefore, in order to improve fuel efficiency while ensuring good engine cooling performance, for example, a thermostatic valve with a high opening temperature is provided in the cooling water passage, and a bypass passage is provided to bypass the thermostat valve. By providing an on-off valve in the bypass passage that opens when the engine is under high load, the bypass passage is closed when the engine is under low load, and the cooling water temperature is maintained relatively high based on the opening and closing operation of the thermostat valve, improving fuel efficiency. Along with planning,
When the engine is under high load, the opening operation of the on-off valve allows cooling water to flow through the bypass passage to the radiator even when the thermostat valve is closed, suppressing a sudden rise in cylinder block wall temperature and ensuring good engine durability. It is possible that

しかし、以上の如く単に開閉弁を設ける場合には、この
開閉弁は、通常、バタフライバルブや往復開閉バルブで
構成される関係上、前者で構成した場合には、バイパス
通路内壁とバルブ外周との間の間隙から冷却水が漏れる
。また、後者で構成する場合には、間隙は生じないもの
の、冷却水の圧力変動や振動等で一時的に開弁して、同
様に冷却水が漏れる。従って、共に冷却水の漏れに起因
して、特にエンジンの暖機運転時にはその暖機性能が低
下する憾みが生じる。
However, when simply providing an on-off valve as described above, this on-off valve is usually composed of a butterfly valve or a reciprocating on-off valve, and when the former is used, the inner wall of the bypass passage and the outer circumference of the valve are Cooling water leaks from the gap between the parts. Furthermore, in the case of the latter configuration, although no gap is created, the valve may open temporarily due to pressure fluctuations or vibrations of the cooling water, and the cooling water similarly leaks. Therefore, due to the leakage of cooling water, the warm-up performance of the engine deteriorates, especially when the engine is being warmed up.

そのため、上記の開閉弁に加えて、上記開弁温度の高い
サーモスタット弁とは別途のサーモスタット弁を設け、
該サーモスタット弁の開弁温度を上記サーモスタット弁
の開弁温度よりも低い温度に設定して、該サーモスタッ
ト弁の良好なシール性により開閉弁からの冷却水漏れを
防止しつつ、エンジン低負荷時には、開閉弁の閉作動に
より高温設定側のサーモスタット弁によりラジェータへ
の冷却水循環を開始させて燃費の向上を図る一方、エン
ジン高負荷時には、開閉弁の開状態に基づき低温設定側
のサーモスタット弁によりラジェータへの冷却水循環を
開始させて、シリンダブロックの壁温の急上昇を抑制す
ることが考えられる。
Therefore, in addition to the above-mentioned on-off valve, a thermostatic valve separate from the above-mentioned thermostatic valve with a high opening temperature is provided.
The opening temperature of the thermostatic valve is set to a temperature lower than the opening temperature of the thermostatic valve, and the good sealing properties of the thermostatic valve prevent leakage of cooling water from the opening/closing valve, while at the time of low engine load, When the on-off valve closes, the thermostatic valve on the high-temperature setting side starts circulating cooling water to the radiator, improving fuel efficiency. On the other hand, when the engine is under high load, the thermostatic valve on the low-temperature setting side starts circulating cooling water to the radiator based on the open state of the on-off valve. It is conceivable to start the circulation of cooling water to suppress the sudden rise in the wall temperature of the cylinder block.

そこで、上記の考えを踏まえて、従来、例えば特公昭5
4−9665号公報に開示されるものでは、高温設定側
のサーモスタット弁と低温設定側のサーモスタット弁と
を冷却水通路中に直列に設けると共に、高温設定側のサ
ーモスタット弁をバイパスするバイパス通路を設け、該
バイパス通路にエンジン高負荷時に開く開閉弁を介設し
て、開閉弁のシール性を低温設定側のサーモスタット弁
でもって補償しつつ、エンジン高負荷時でのシリンダブ
ロックの壁温の急上昇を開閉弁の開作動でもって有効に
抑制してエンジン冷却性を良好に確保しながら、冷却水
温度を比較的高温に保持して燃費の向上を図るようにし
ている。
Therefore, based on the above idea, conventionally, for example,
4-9665, a thermostat valve on the high-temperature setting side and a thermostat valve on the low-temperature setting side are provided in series in a cooling water passage, and a bypass passage is provided to bypass the thermostat valve on the high-temperature setting side. By interposing an on-off valve that opens when the engine is under high load in the bypass passage, the sealing performance of the on-off valve is compensated by a thermostatic valve on the low-temperature setting side, and a sudden rise in the wall temperature of the cylinder block is prevented when the engine is under high load. While effectively suppressing the opening operation of the on-off valve to ensure good engine cooling performance, the cooling water temperature is maintained at a relatively high temperature to improve fuel efficiency.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、エンジン低負荷時
で冷却水温度の高温時、例えば高速・高負荷状態から低
速運転や停車に移行した際には、走行風が入り難くてラ
ジェータの放熱量が低下し、冷却水温度が急上昇するも
のの、この時には開閉弁は閉状態にあるから、バイパス
通路は閉じられていて、冷却水は上記直列に配置した2
個のサーモスタット弁を経てラジェータとエンジンとの
間を循環することになる。その結果、この2個のサーモ
スタット弁が冷却水の流通抵抗になって、冷却水の循環
量が減少し、エンジン冷却性が不十分となる欠点がある
(Problems to be Solved by the Invention) However, in the above conventional system, when the engine is under low load and the cooling water temperature is high, for example, when transitioning from high speed and high load conditions to low speed operation or stopping, the running wind Although it is difficult to enter the radiator, the amount of heat dissipated from the radiator decreases, and the temperature of the cooling water rises rapidly.However, at this time, the on-off valve is in the closed state, so the bypass passage is closed, and the cooling water is
It circulates between the radiator and the engine via several thermostatic valves. As a result, these two thermostat valves act as resistance to the flow of cooling water, reducing the amount of circulating water and resulting in insufficient engine cooling performance.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、上記の如く高温設定側のサーモスタット弁と開閉
弁とに加えて、低温設定側のサーモスタット弁を別途設
ける場合、この2個のサーモスタット弁を直列に配置す
るのではなく、冷却水通路に並列に配置することにより
、エンジン低負荷時で且つ高冷却水温度時では、1個の
サーモスタット弁のみを経て冷却水をラジェータに流通
させて冷却水の流通抵抗を低減し、その分、冷却水の循
環量を増量して、常にエンジン冷却性を良好に確保する
と共に、低温設定側のサーモスタット弁でもって開閉弁
のシール性を補償しながら、冷却水温度を比較的高温に
保持して、燃費の向上を図ることにある。
The present invention has been made in view of these points, and its purpose is to provide a separate thermostat valve for low temperature setting in addition to the thermostat valve and on-off valve for high temperature setting as described above. By arranging the thermostatic valves in parallel in the cooling water passage instead of in series, when the engine load is low and the cooling water temperature is high, the cooling water can flow to the radiator through only one thermostatic valve. This reduces the flow resistance of the coolant and increases the amount of coolant circulated accordingly, ensuring good engine cooling at all times.The thermostat valve on the low temperature setting side compensates for the sealing of the opening/closing valve. At the same time, the objective is to maintain the cooling water temperature at a relatively high temperature to improve fuel efficiency.

−6= (問題点を解決するための手段) 以上の目的を達成するため、本発明の解決手段は、エン
ジンとラジェータとの間の冷却水通路に開弁温度の異な
る複数のサーモスタット弁を設けると共に、開閉弁等の
制御弁でもって、エンジン低負荷時には上記開弁温度の
高い高温設定側のサーモスタット弁によりラジェータへ
の冷却水循環を開始させる一方、エンジン高負荷時には
開弁温度の低い低温設定側のサーモスタット弁によりラ
ジェータへの冷却水循環を開始させるようにしたエンジ
ンの冷却装置を対象とする。そして、上記冷却水通路の
途中に、上記サーモスタット弁と同数の分岐冷却水通路
を並列に設け、該各分岐冷却水通路に上記複数のサーモ
スタット弁を各々設けると共に、上記低温設定側のサー
モスタット弁を設けた分岐冷却水通路に上記制御弁を設
ける構成としたものである。
-6= (Means for solving the problem) In order to achieve the above object, the solution of the present invention provides a plurality of thermostatic valves with different opening temperatures in the cooling water passage between the engine and the radiator. At the same time, with a control valve such as an on-off valve, when the engine is under low load, the thermostatic valve on the high temperature setting side where the valve opening temperature is high starts the circulation of cooling water to the radiator, while when the engine is under high load, the cooling water circulation is started on the low temperature setting side where the valve opening temperature is low. The subject matter is an engine cooling system in which a thermostatic valve starts circulating cooling water to a radiator. In the middle of the cooling water passage, the same number of branch cooling water passages as the thermostat valves are provided in parallel, each branch cooling water passage is provided with the plurality of thermostat valves, and the thermostat valve on the low temperature setting side is provided. The above-mentioned control valve is provided in the provided branch cooling water passage.

(作用) 以上の構成により、本発明では、エンジン低負荷時には
、開閉弁等の制御弁の閉作動により、冷却水は低温設定
側のサーモスタット弁を設けた分岐冷却水通路には流通
せず、ラジェータへの冷却水循環が、他の分岐冷却水通
路に設けた。開弁温度の高い高温設定側のサーモスタッ
ト弁により開始するので、冷却水温度をその高温側の開
弁温度にまで高く保持できて、冷却損失を低減でき、燃
費の向上を図ることができる。
(Function) With the above configuration, in the present invention, when the engine load is low, the cooling water does not flow to the branch cooling water passage provided with the thermostatic valve on the low temperature setting side by closing the control valve such as the on-off valve. Cooling water circulation to the radiator was provided in another branch cooling water passage. Since the operation is started by the thermostat valve on the high-temperature setting side with a high valve opening temperature, the cooling water temperature can be maintained high to the high-temperature side valve opening temperature, reducing cooling loss and improving fuel efficiency.

一方、エンジン高負荷時には、上記開閉弁等の制御弁の
開作動により、冷却水は低温設定側のサーモスタット弁
を設けた分岐冷却水通路を流通可能になって、ラジェー
タへの冷却水循環がこの開弁温度の低い低温設定側のサ
ーモスタット弁により開始されるので、エンジンのシリ
ンダブロックの壁温の急上昇が可及的に抑制されて、エ
ンジンの耐久性が良好に確保される。
On the other hand, when the engine is under high load, the opening operation of the control valves such as the above-mentioned on-off valves allows the cooling water to flow through the branched cooling water passage provided with the thermostatic valve on the low-temperature setting side, and the cooling water circulation to the radiator is interrupted by this opening. Since it is started by the thermostatic valve on the low temperature setting side where the valve temperature is low, a sudden increase in the wall temperature of the cylinder block of the engine is suppressed as much as possible, and good durability of the engine is ensured.

しかも、各分岐冷却水通路では、この各冷却水通路に各
々設けた複数のサーモスタット弁の良好なシール性によ
り、その冷却水漏れが確実に防止されるので、特に、エ
ンジン暖機運転時には、その暖機性能が向上する。
In addition, in each branch cooling water passage, cooling water leakage is reliably prevented due to the good sealing properties of the plurality of thermostat valves installed in each cooling water passage, so especially when the engine is warmed up, Warm-up performance is improved.

さらに、複数のサーモスタット弁は、各々、並列に設け
た分岐冷却水通路に配置されているので、上記開閉弁等
の制御弁が閉作動するエンジン低負荷時には、この制御
弁と共に設けた低温設定側のサーモスタット弁を有する
分岐冷却水通路には流通せず、冷却水の高温時には、高
温設定側のサーモスタット弁を設けた分岐冷却水通路の
みを経てラジェータに流通するので、低温設定側のサー
モスタット弁を経ない分、冷却水の流通抵抗が軽減され
て、冷却水の循環量が増量し、エンジン冷却性の向上を
図ることができる。
Furthermore, since the plurality of thermostat valves are each arranged in parallel branch cooling water passages, when the engine load is low, when the control valves such as the on-off valves are closed, the low-temperature setting side When the cooling water is at high temperature, it flows to the radiator only through the branch cooling water passage equipped with the thermostat valve on the high temperature setting side, so the thermostatic valve on the low temperature setting side is Because of this, the flow resistance of the coolant is reduced, the amount of coolant circulated is increased, and engine cooling performance can be improved.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係るエンジンの冷却装置の全
体概略構成を示す。同図において、1はエンジン、2は
エンジン1前方に設けられたラジェータ、3はエンジン
1とラジェータ2とを連通接続する冷却水通路であって
、該冷却水通路3の途中には、ウォータポンプ4が介設
されていて、該ウォータポンプ4により低温の冷却水を
図中矢印で示す如くエンジン1に流通させた後、その出
口側(図中上側)の冷却水通路3×を経てラジェータ2
に流通させて冷却し、その後、エンジン流入側の冷却水
通路3Yを経て再びエンジン1に流通させるように構成
されている。
FIG. 1 shows an overall schematic configuration of an engine cooling device according to an embodiment of the present invention. In the figure, 1 is an engine, 2 is a radiator provided in front of the engine 1, 3 is a cooling water passage that communicates and connects the engine 1 and the radiator 2, and a water pump is installed in the middle of the cooling water passage 3. 4 is interposed, and after the water pump 4 circulates low-temperature cooling water to the engine 1 as shown by the arrow in the figure, it passes through the cooling water passage 3x on the outlet side (upper side in the figure) to the radiator 2.
The cooling water is cooled by flowing through the cooling water passageway 3Y on the engine inflow side, and then passed through the engine 1 again through the cooling water passage 3Y on the engine inflow side.

而して、上記エンジン1出口側とラジェータ2との間の
冷却水通路3×は、その途中で、第1分岐冷却水通路3
aと、第2分岐冷却水通路3bとに複数(2つ)に分岐
され、該各分岐冷却水通路3a、3bには、各々、サー
モスタット弁5,6が設けられていると共に、第1分岐
冷却水通路3aには、サーモスタット弁5の直上流側に
て、上記ウォータポンプ4上流側の冷却水通路3Yに連
通ずるバイパス通路7が連通接続されている。
Thus, the cooling water passage 3x between the engine 1 outlet side and the radiator 2 is connected to the first branch cooling water passage 3 midway therebetween.
a and a second branch cooling water passage 3b, each branch cooling water passage 3a, 3b is provided with a thermostat valve 5, 6, respectively. A bypass passage 7 that communicates with the cooling water passage 3Y upstream of the water pump 4 is connected to the cooling water passage 3a immediately upstream of the thermostat valve 5.

上記第1分岐冷却水通路3aのサーモスタット弁5は、
第2図に詳示するように、冷却水の温度を感知して膨縮
するワックスで構成された感温部5aと、該感温部5a
上部に一端が挿着され、弁座5bを開閉する弁体5cと
、該弁体5Cを閉弁方向に付勢するスプリング5dと、
上記感温部5aに連結され、ワックスの膨張により下方
に突出するロッド5eと、該ロッド5eの下端部に設け
られバイパス通路7を開閉する弁体5fとを有している
。そして、該サーモスタット弁5の開弁温度は比較的高
温の設定温度T+−+(例えば100°C)に設定され
ている。よって、上記第1分岐冷却水通路3aを流通す
る冷却水の温度がこの設定温度TH(100℃)以下の
場合には、感温部5aの収縮動作により弁体5cを上方
に移動させて弁座5bに着座させて第1分岐冷却水通路
3aを閉じ、エンジン1からの冷却水が跨第1分岐冷却
水通路3aを経てラジェータ2に流通するのを阻止する
と共に、上記弁体5Cの上方移動に伴い下側の弁体5r
が上方に移動してバイパス通路7を開き、エンジン1か
らの冷却水を該バイパス通路7を経てエンジン1に循環
させる。一方、第1分岐冷却水通路3aを流通する冷却
水の温度が上記設定温度TH(100℃)を越えると、
感温部5aが膨張するのに伴い弁体5Cがスプリング5
dの付勢力に抗して下方に移動して弁座5bから離れて
開作動し、第1分岐冷却水通路3aの通路面積を増大さ
せて、冷却水がラジェータ2に流入するのを許容すると
共に、下側の弁体5fが感温部5aの膨張に伴い下方に
移動して、バイパス通路7端部の通路面積を小さくして
、バイパス通路7への流量を減少させるように構成され
ている。
The thermostatic valve 5 of the first branch cooling water passage 3a is
As shown in detail in FIG. 2, there is a temperature sensing part 5a made of wax that expands and contracts by sensing the temperature of the cooling water;
A valve body 5c whose one end is inserted into the upper part and opens and closes the valve seat 5b, and a spring 5d which biases the valve body 5C in the valve closing direction.
It has a rod 5e connected to the temperature sensing section 5a and protruding downward as the wax expands, and a valve body 5f provided at the lower end of the rod 5e to open and close the bypass passage 7. The opening temperature of the thermostatic valve 5 is set to a relatively high set temperature T+-+ (for example, 100° C.). Therefore, when the temperature of the cooling water flowing through the first branch cooling water passage 3a is lower than the set temperature TH (100°C), the valve body 5c is moved upward by the contraction operation of the temperature sensing portion 5a, and the valve body 5c is closed. It is seated on the seat 5b to close the first branch cooling water passage 3a, to prevent the cooling water from the engine 1 from flowing to the radiator 2 through the first branch cooling water passage 3a, and to prevent the cooling water from flowing over the valve body 5C. As the lower valve body 5r moves
moves upward to open the bypass passage 7 and circulate the cooling water from the engine 1 through the bypass passage 7 to the engine 1. On the other hand, if the temperature of the cooling water flowing through the first branch cooling water passage 3a exceeds the set temperature TH (100°C),
As the temperature sensing part 5a expands, the valve body 5C is moved by the spring 5.
It moves downward against the biasing force of d, moves away from the valve seat 5b, and operates to open, increasing the passage area of the first branched cooling water passage 3a and allowing the cooling water to flow into the radiator 2. At the same time, the lower valve body 5f is configured to move downward as the temperature sensing portion 5a expands, thereby reducing the passage area at the end of the bypass passage 7 and reducing the flow rate to the bypass passage 7. There is.

一方、第2分岐冷却水通路3bのサーモスタット弁6は
、上記サーモスタット弁5と同様に、冷却水の温度に応
動する感温部6aと、該感温部6aに装着されて弁座6
bを開閉する弁体6Cと、該弁体6cを閉弁方向に付勢
するスプリング6dとを有している。そして、該サーモ
スタット弁6の開弁温度は、上記第1分岐冷却水通路3
aのサーモスタット弁5の開弁温度TH(100°C)
よりも低温側で従来とほぼ同様の値の設定温度TL(例
えば82℃)に設定されている。よって、第2分岐冷却
水通路3bを流通する冷却水の温度がこの設定温度TL
(82℃)以下の場合には、弁体6Cを弁座6bに着座
させて第2分岐冷却水通路3aを閉じ、ラジェータ2へ
の冷却水の流入を阻止−12= する一方、第2分岐冷却水通路3bを流通する冷却水の
温度が上記設定温度TL(82℃)を越えると、感温部
6aの膨張に伴い弁体6cが弁座6bから離座して開作
動し、第2分岐冷却水通路3bの通路面積を増大させて
、ラジェータ2への冷却水の流入を許容するように構成
されている。
On the other hand, the thermostatic valve 6 of the second branch cooling water passage 3b, like the thermostatic valve 5 described above, includes a temperature sensing part 6a that responds to the temperature of the cooling water, and a valve seat 6 attached to the temperature sensing part 6a.
It has a valve body 6C that opens and closes the valve body 6C, and a spring 6d that biases the valve body 6c in the valve closing direction. The opening temperature of the thermostatic valve 6 is determined by the first branch cooling water passage 3.
Opening temperature TH of thermostatic valve 5 of a (100°C)
The set temperature TL (for example, 82° C.) is set on the lower temperature side and is approximately the same value as the conventional one. Therefore, the temperature of the cooling water flowing through the second branch cooling water passage 3b is the set temperature TL.
(82° C.) or lower, the valve body 6C is seated on the valve seat 6b to close the second branch cooling water passage 3a and prevent the cooling water from flowing into the radiator 2. When the temperature of the cooling water flowing through the cooling water passage 3b exceeds the set temperature TL (82° C.), the valve body 6c separates from the valve seat 6b due to the expansion of the temperature sensing portion 6a and operates to open the second valve. The passage area of the branched cooling water passage 3b is increased to allow cooling water to flow into the radiator 2.

また、上記第2分岐冷却水通路3bには、上記の如く設
定温度TL(82℃)で開く低温設定側のサーモスタッ
ト弁6の下流側にて、急なエンジンの負荷変動に応じて
該第2分岐冷却水通路3bを開閉する制御弁としての往
復開閉式の開閉弁9が設けられている。該開閉弁9は、
第2分岐冷却水通路3bに設けた弁座3Kに離着塵する
弁体9aを有し、該弁体9aには、ロッド9bを介して
ダイヤフラム装置10に連結されている。該ダイヤフラ
ム装置10は、上記ロッド9bが連結されたダイヤフラ
ム11によって2つの圧力室12a、12bに仕切られ
、下側の圧力室12bにはバネ12cが縮装されている
と共に、該下側の圧力室12bは負圧通路13を介して
エンジン1のスロットル弁下流側の吸気通路(図示せず
)に連通されている。また、該負圧通路13の途中には
、第1図に示す如く三方ソレノイド弁14及び、その吸
気通路側に一方弁15が介設されている。該三方ソレノ
イド弁14はECU16により作動制御されるものであ
り、該ECU16には、エンジン1の負荷状態を検出す
る負荷センサ17のエンジン負荷信号が入力されている
。そして、上記ECU1Bは、エンジン低負荷時には、
スロットル弁下流の吸気負圧を圧力室12bに導入させ
、エンジン高負荷時には、大気圧を圧力室12bに導入
させるよう三方ソレノイド弁14を作動制御する機能を
有する。
Further, in the second branch cooling water passage 3b, the second branch cooling water passage 3b is provided downstream of the thermostat valve 6 on the low temperature setting side that opens at the set temperature TL (82°C) as described above. A reciprocating on-off valve 9 is provided as a control valve that opens and closes the branch cooling water passage 3b. The on-off valve 9 is
It has a valve body 9a that collects dust on a valve seat 3K provided in the second branch cooling water passage 3b, and is connected to the diaphragm device 10 via a rod 9b. The diaphragm device 10 is partitioned into two pressure chambers 12a and 12b by a diaphragm 11 to which the rod 9b is connected, and a spring 12c is compressed in the lower pressure chamber 12b, and the lower pressure chamber 12b is compressed. The chamber 12b communicates with an intake passage (not shown) downstream of the throttle valve of the engine 1 via a negative pressure passage 13. Furthermore, as shown in FIG. 1, a three-way solenoid valve 14 and a one-way valve 15 are interposed in the middle of the negative pressure passage 13 on the intake passage side. The operation of the three-way solenoid valve 14 is controlled by an ECU 16, and an engine load signal from a load sensor 17 that detects the load state of the engine 1 is input to the ECU 16. Then, the ECU 1B, when the engine is under low load,
It has a function of controlling the operation of the three-way solenoid valve 14 so that the intake negative pressure downstream of the throttle valve is introduced into the pressure chamber 12b, and when the engine is under high load, atmospheric pressure is introduced into the pressure chamber 12b.

以上の構成により、エンジン低負荷時には、ダイヤフラ
ム装置10の圧力室12bへの負圧の導入によりダイヤ
フラム11をバネ12cに抗して下方に偏倚させ、それ
に伴い開閉弁9の弁体9aを下方に移動させて弁座3K
に着座させ、第2分岐冷却水通路3bを閉じる。一方、
エンジン高負荷時には、圧力室12bへの大気圧の導入
によリバネ12cの付勢力でダイヤフラム11を逆に上
方に偏倚させて、開閉弁9の弁体9aを弁座3Kから離
座させ、第2分岐冷却水通路3bを開くように構成され
ている。
With the above configuration, when the engine load is low, the diaphragm 11 is biased downward against the spring 12c by introducing negative pressure into the pressure chamber 12b of the diaphragm device 10, and accordingly, the valve body 9a of the on-off valve 9 is biased downward. Move the valve seat 3K
and close the second branch cooling water passage 3b. on the other hand,
When the engine is under high load, atmospheric pressure is introduced into the pressure chamber 12b, and the diaphragm 11 is biased upward by the biasing force of the spring 12c, causing the valve body 9a of the on-off valve 9 to separate from the valve seat 3K. It is configured to open a two-branch cooling water passage 3b.

さらに、18はエンジン出口側の冷却水通路3×の冷却
水温度を検出する水温センサであって、その水温信号は
上記ECU1Bに入力されている。
Further, 18 is a water temperature sensor that detects the temperature of the cooling water in the cooling water passage 3x on the engine outlet side, and the water temperature signal is inputted to the ECU 1B.

而して、該ECU16は、上記水温センサ18の出力信
号に基づき、エンジン出口側の冷却水温度が、上記第1
分岐冷却水通路3aのサーモスタット弁5の開弁温度T
H(100℃)よりも所定値(例えば6℃)だけ高い温
度(106℃)以上に達した場合には、エンジン1の負
荷状態に拘らず、ダイヤフラム装置10の圧力室12b
に強制的に大気圧を導入するよう三方ソレノイド弁14
を作動制御する機能を併有していて、冷却水温度が高い
温度(106℃)以上に達すれば、強制的に開閉弁9を
開作動させて、第2分岐冷却水通路3bからもラジェー
タ2に冷却水を流通させて、その分、冷却水流量を増量
し、エンジン冷却性能の向上を図るようにした制御手段
19を構成している。
Based on the output signal of the water temperature sensor 18, the ECU 16 determines whether the cooling water temperature on the engine outlet side is equal to or less than the first temperature.
Opening temperature T of thermostatic valve 5 of branch cooling water passage 3a
When the temperature reaches 106°C or higher, which is higher than H (100°C) by a predetermined value (for example, 6°C), the pressure chamber 12b of the diaphragm device 10 is closed regardless of the load condition of the engine 1.
Three-way solenoid valve 14 to forcefully introduce atmospheric pressure into the
When the cooling water temperature reaches a high temperature (106°C) or higher, the on-off valve 9 is forcibly opened and the radiator 2 is also supplied from the second branch cooling water passage 3b. A control means 19 is configured to allow cooling water to flow through the engine, increase the flow rate of the cooling water accordingly, and improve engine cooling performance.

加えて、上記第1分岐冷却水通路3aと、第2分岐冷却
水通路3bとにおいて、前者の絞り部分の長さdlと、
後者の絞り部分の長さdlとは、第2図に示す如く、d
 、 <d 2の関係に設定されていて、開閉弁9の閉
じたエンジン低負荷時には、冷却水温度が上記高温設定
側のサーモスタット弁5の開弁温度TH(100℃)を
越えた場合にも、上記開閉弁9の強制的な開作動温度(
106℃)未満の状態では、開閉弁9の閉作動に伴い、
上記通路面積の狭い第1分岐冷却水通路3aでもって、
ラジェータ2への冷却水流量を少量に制限して、冷却水
温度を可及的に高温に保持し、燃費の低減効果を向上さ
せるようにしている。
In addition, in the first branch cooling water passage 3a and the second branch cooling water passage 3b, the length dl of the constricted portion of the former,
The length dl of the latter aperture portion is d as shown in FIG.
, <d2, and when the engine load is low with the on-off valve 9 closed, even if the cooling water temperature exceeds the valve opening temperature TH (100°C) of the thermostatic valve 5 on the high temperature setting side. , the forcible opening operation temperature of the on-off valve 9 (
106°C), as the on-off valve 9 closes,
With the first branch cooling water passage 3a having a narrow passage area,
The flow rate of cooling water to the radiator 2 is limited to a small amount to maintain the temperature of the cooling water as high as possible, thereby improving the effect of reducing fuel consumption.

また、第1図において、20はエンジン1内の一部の冷
却水をウォータポンプ4上流側に戻すヒータ通路であっ
て、該ヒータ通路20の途中には、車室内を暖房空調す
るヒータ21と、該ヒータ21の下流側でヒータ通路2
0を開閉制御する2個の開閉弁22.23が介設されて
いる。該一方の開閉弁22は、ヒータ21の0N−OF
F制御用であり、他方の開閉弁23は、上記開閉弁9の
開時に閉作動して、冷却水の全量をラジェータ2に循環
させて、エンジン冷却性の向上を図るものである。
Further, in FIG. 1, reference numeral 20 denotes a heater passage that returns part of the cooling water in the engine 1 to the upstream side of the water pump 4. In the middle of the heater passage 20, there is a heater 21 that heats and air-conditions the interior of the vehicle. , the heater passage 2 on the downstream side of the heater 21
Two on-off valves 22 and 23 are interposed to control the opening and closing of 0. The one on-off valve 22 is ON-OF of the heater 21.
The other on-off valve 23 is used for F control, and is closed when the on-off valve 9 is opened to circulate the entire amount of cooling water to the radiator 2, thereby improving engine cooling performance.

したがって、上記実施例においては、エンジン1の低負
荷時において、冷却水の温度が高温側の設定温度T+(
100℃)以下の場合には、低温設定側のサーモスタッ
ト弁6がその開弁温度TL(82℃)を越える冷却水温
度の状態では開状態にあるものの、開閉弁9が閉作動し
ていて、第2分岐冷却水通路3bは閉じられている。ま
た、高温設定側のサーモスタット弁5は閉状態にあって
、エンジン出口側の冷却水通路3×を閉じられていると
共に、バイパス通路7は開かれる。このことにより、エ
ンジン1からの冷却水は、全て、このバイパス通路7を
流れてエンジン1に戻り、その結果、その冷却水温度が
上昇して、上記高温側の設定温度TH(100℃)に至
るので、冷却損失が軽減されて、燃費の向上が図られる
Therefore, in the above embodiment, when the engine 1 is under low load, the temperature of the cooling water is the set temperature T+(
100°C) or lower, the thermostat valve 6 on the low temperature setting side is in the open state when the cooling water temperature exceeds the valve opening temperature TL (82°C), but the on-off valve 9 is closed. The second branch cooling water passage 3b is closed. Further, the thermostat valve 5 on the high temperature setting side is in a closed state, thereby closing the cooling water passage 3x on the engine outlet side and opening the bypass passage 7. As a result, all the cooling water from the engine 1 flows through this bypass passage 7 and returns to the engine 1, and as a result, the temperature of the cooling water rises to the set temperature TH (100°C) on the high temperature side. As a result, cooling loss is reduced and fuel efficiency is improved.

一方、エンジン1の高負荷時には、開閉弁9が= 17
− 開作動する。このことにより、エンジン1とラジェータ
2との間の冷却水の流通が低温設定側のサーモスタット
弁6で開始される。この場合、低温側の設定温度TL(
82℃)以下のときには、この低温設定側のサーモスタ
ット弁6は閉状態にあるものの、この開弁温度Tc(8
2℃)が従来と同様の値であるので、シリンダヘッドの
壁温の急上昇を招く恐れは少ない。また、冷却水温度が
低温側の設定温度TL(82℃)を越えるときには、高
温側の設定温度T)−1(100℃)以下のときでもシ
リンダヘッドの壁温の急上昇を招く懸念が強くなるもの
の、このときには、低温設定側のサーモスタット弁6が
開作動して、冷却水が第2分岐冷却水通路3bを経てラ
ジェータ2に流通して、良好に冷却されるので、シリン
ダヘッドの壁温の急上昇が有効に防止されて、エンジン
1の耐久性が良好に確保される。
On the other hand, when the engine 1 is under high load, the on-off valve 9 becomes = 17.
− Operates to open. As a result, the flow of cooling water between the engine 1 and the radiator 2 is started at the thermostatic valve 6 on the low temperature setting side. In this case, the set temperature TL (
When the temperature is lower than 82°C, the thermostat valve 6 on the low temperature setting side is in the closed state;
2° C.) is the same value as in the past, there is little risk of a sudden rise in the wall temperature of the cylinder head. Furthermore, when the cooling water temperature exceeds the set temperature TL (82°C) on the low-temperature side, there is a strong concern that the wall temperature of the cylinder head will rise rapidly even when the set temperature T)-1 (100°C) on the high-temperature side is below. However, at this time, the thermostat valve 6 on the low temperature setting side is opened, and the cooling water flows through the second branch cooling water passage 3b to the radiator 2 and is properly cooled, so that the wall temperature of the cylinder head decreases. Rapid rise is effectively prevented, and the durability of the engine 1 is ensured well.

また、エンジン1の低負荷時には、開閉弁9は閉状態に
あるものの、その構成が往復開閉式であるが故に、冷却
水の圧力変動等に起因して一時的一  18 − に開作動するが、その上流側の第2分岐冷却水通路3b
には、低温設定側のサーモスタット弁6が配置されてい
るので、これが閉状態にある冷却水温度の低温時(低温
側の設定温度TL(82℃)以下の時)では、この低温
設定側のサーモスタット弁6の良好なシール性により一
上記開閉弁9のシール性が補償される。
Furthermore, when the engine 1 is under low load, the on-off valve 9 is in a closed state, but since its structure is of a reciprocating type, it may open temporarily due to fluctuations in the pressure of the cooling water. , the second branch cooling water passage 3b on the upstream side thereof
Since the thermostat valve 6 on the low-temperature setting side is arranged in The good sealing performance of the thermostatic valve 6 compensates for the sealing performance of the above-mentioned on-off valve 9.

加えて、高温設定側のサーモスタット弁5は第1分岐冷
却水通路3aに設けられ、低温設定側のサーモスタット
弁6は開閉弁9と共に上記第1分岐冷却水通路3aとは
並列関係にある第2分岐冷却水通路3bに設けられてい
るので、上記開閉弁9の閉じるエンジン低負荷時には、
冷却水は、その温度が高温側の設定温度TH(100℃
)を越える高温度の状態では、開状態にある高温設定側
のサーモスタット弁5のみを経て第1分岐冷却水通路3
aからラジェータ2に流通することになり、上記低温設
定側のサーモスタット弁6を経ないで流通する分だけ、
冷却水の流通抵抗を低減することができ、エンジン冷却
性能の向上を図ることかできる。
In addition, the thermostat valve 5 on the high temperature setting side is provided in the first branch cooling water passage 3a, and the thermostat valve 6 on the low temperature setting side is provided in the second branch cooling water passage 3a, which is in parallel relationship with the opening/closing valve 9. Since it is provided in the branch cooling water passage 3b, when the engine load is low, the on-off valve 9 is closed.
The temperature of the cooling water is set at the high temperature side TH (100℃
), the first branch cooling water passage 3 passes through only the thermostat valve 5 on the high temperature setting side which is in the open state.
The amount that flows from a to the radiator 2 without passing through the thermostatic valve 6 on the low temperature setting side,
The flow resistance of cooling water can be reduced, and engine cooling performance can be improved.

しかも、冷却水温度が高温側の設定温度TH(100℃
)よりも高い温度(106℃)以上に達した場合には、
エンジン1の負荷状態に拘らず、開閉弁9が制御手段1
9により強制的に開制御されて、第1分岐冷却水通路3
aと共に第2分岐冷却水通路3bが開かれるので、ラジ
ェータ2への冷却水流量が増量して、エンジン冷却性能
がより一層向上することになる。
Moreover, the cooling water temperature is the set temperature TH (100℃) on the high temperature side.
), if the temperature reaches 106°C or higher,
Regardless of the load condition of the engine 1, the on-off valve 9 is controlled by the control means 1.
9 forcibly opens the first branch cooling water passage 3.
Since the second branch cooling water passage 3b is opened together with the second branch cooling water passage 3b, the flow rate of cooling water to the radiator 2 is increased, and the engine cooling performance is further improved.

尚、上記実施例では、開閉弁9のアクチュエータをダイ
ヤフラム装置10で構成して機械的に開閉作動させたが
、その他、電気的に開閉作動させてもよいのは勿論であ
る。
In the above embodiment, the actuator of the on-off valve 9 is constituted by a diaphragm device 10 and is operated mechanically to open and close, but it is of course possible to open and close electrically.

(発明の効果) 以上説明したように、本発明のエンジンの冷却装置によ
れば、並列に配置した分岐冷却水通路の1つに、開弁温
度を高く設定した高温設定側のサーモスタット弁を設け
ると共に、他の分岐冷却水通路に、エンジン高負荷時に
開く制御弁と、上記サーモスタット弁よりも開弁温度を
低く設定した低温設定側のサーモスタット弁とを設けた
ので、エンジンの高負荷運転時でのシリンダブロックの
壁温の急上昇を制御弁の開作動に基づくラジェータへの
冷却水の流通により有効に防止して、エンジン耐久性を
良好に確保しつつ、上記制御弁のシール性を低温設定側
のサーモスタット弁でもって補償しながら、エンジン冷
却水の温度を高温設定側のサーモスタット弁により可及
的に高く維持して冷却損失を低減でき、燃費の向上を図
ることができる。しかも、エンジン低負荷時で且つ冷却
水温度が上記高温側の設定温度を越えるときには、エン
ジン冷却水を高温設定側のサーモスタット弁のみを経て
ラジェータに流通させて、低温側のサーモスタット弁を
経ない分、冷却水の流通抵抗を低減でき、エンジン冷却
性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the engine cooling system of the present invention, one of the branch cooling water passages arranged in parallel is provided with a thermostatic valve on the high temperature setting side with a high valve opening temperature. At the same time, we installed a control valve that opens when the engine is under high load, and a low-temperature setting thermostat valve that opens at a lower opening temperature than the above-mentioned thermostat valve, in the other branch cooling water passages, so that it can be opened during high-load engine operation. A sudden rise in the wall temperature of the cylinder block is effectively prevented by the flow of cooling water to the radiator based on the opening operation of the control valve, ensuring good engine durability while maintaining the sealing performance of the control valve on the low-temperature setting side. While compensating with the thermostat valve, the temperature of the engine cooling water can be maintained as high as possible by the thermostat valve on the high temperature setting side, thereby reducing cooling loss and improving fuel efficiency. Moreover, when the engine is under low load and the cooling water temperature exceeds the set temperature on the high temperature side, the engine cooling water is passed through the radiator only through the thermostat valve on the high temperature side, and does not flow through the thermostat valve on the low temperature side. , the flow resistance of cooling water can be reduced, and engine cooling performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体概略構成図
、第2図は第1図の要部を示す具体的構成図である。 1・・・エンジン、2・・・ラジェータ、3・・・冷却
水通路、3a・・・第1分岐冷却水通路、3b・・・第
2分岐冷却水通路、5・・・高温設定側のサーモスタッ
ト弁、6・・・高温設定側のサーモスタット弁、9・・
・開閉弁、10・・・ダイヤフラム装置、14・・・三
方ソレノイド弁、16・・・ECU、19・・・制御手
段。
The drawings show an embodiment of the present invention, with FIG. 1 being a general schematic diagram, and FIG. 2 being a specific diagram showing the main parts of FIG. 1. 1... Engine, 2... Radiator, 3... Cooling water passage, 3a... First branch cooling water passage, 3b... Second branch cooling water passage, 5... High temperature setting side Thermostat valve, 6... Thermostat valve on high temperature setting side, 9...
- Opening/closing valve, 10...Diaphragm device, 14...Three-way solenoid valve, 16...ECU, 19...Control means.

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンとラジエータとの間の冷却水通路に設け
られた開弁温度の異なる複数のサーモスタット弁と、エ
ンジン低負荷時には上記開弁温度の高い高温設定側のサ
ーモスタット弁によりラジエータへの冷却水循環を開始
させる一方、エンジン高負荷時には開弁温度の低い低温
設定側のサーモスタット弁によりラジエータへの冷却水
循環を開始させる制御弁とを備えたエンジンの冷却装置
であって、上記冷却水通路の途中には、上記サーモスタ
ット弁と同数の分岐冷却水通路が並列に設けられ、該各
分岐冷却水通路に上記複数のサーモスタット弁が各々設
けられているとともに、上記低温設定側のサーモスタッ
ト弁を設けた分岐冷却水通路に上記制御弁が設けられて
いることを特徴とするエンジンの冷却装置。
(1) Cooling water is circulated to the radiator by multiple thermostatic valves with different opening temperatures installed in the cooling water passage between the engine and the radiator, and when the engine is under low load, the thermostatic valve on the high-temperature setting side has a higher opening temperature. The engine cooling device is equipped with a control valve that starts cooling water circulation to the radiator by a thermostat valve on the low-temperature setting side with a low valve opening temperature when the engine is under high load, and a control valve that starts cooling water circulation to the radiator. is a branch cooling system in which the same number of branch cooling water passages as the thermostat valves are provided in parallel, each of the branch cooling water passages is provided with the plurality of thermostat valves, and the thermostat valve on the low temperature setting side is provided. An engine cooling device characterized in that a water passage is provided with the above control valve.
(2)制御弁は、冷却水温度が高温設定側のサーモスタ
ット弁の開弁温度よりも所定値だけ高い温度に達したと
き、該制御弁を強制的に開作動させる制御手段を備えて
いるエンジンの冷却装置。
(2) The control valve is an engine equipped with a control means that forcibly opens the control valve when the cooling water temperature reaches a predetermined value higher than the opening temperature of the thermostat valve on the high temperature setting side. cooling system.
JP26335487A 1987-10-19 1987-10-19 Cooling device of engine Pending JPH01106919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26335487A JPH01106919A (en) 1987-10-19 1987-10-19 Cooling device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26335487A JPH01106919A (en) 1987-10-19 1987-10-19 Cooling device of engine

Publications (1)

Publication Number Publication Date
JPH01106919A true JPH01106919A (en) 1989-04-24

Family

ID=17388313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26335487A Pending JPH01106919A (en) 1987-10-19 1987-10-19 Cooling device of engine

Country Status (1)

Country Link
JP (1) JPH01106919A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231707A (en) * 2010-04-28 2011-11-17 Mikuni Corp Coolant regulating valve
WO2013042588A1 (en) * 2011-09-22 2013-03-28 株式会社ミクニ Coolant control valve apparatus
US10697349B2 (en) 2018-03-28 2020-06-30 Komatsu Ltd. Engine cooling device and engine system
CN115053055A (en) * 2020-02-12 2022-09-13 日本恒温器株式会社 Valve unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231707A (en) * 2010-04-28 2011-11-17 Mikuni Corp Coolant regulating valve
WO2013042588A1 (en) * 2011-09-22 2013-03-28 株式会社ミクニ Coolant control valve apparatus
JP2013068162A (en) * 2011-09-22 2013-04-18 Mikuni Corp Coolant control valve device
CN103814198A (en) * 2011-09-22 2014-05-21 株式会社三国 Coolant control valve apparatus
US9429064B2 (en) 2011-09-22 2016-08-30 Mikuni Corporation Coolant control valve apparatus
US10697349B2 (en) 2018-03-28 2020-06-30 Komatsu Ltd. Engine cooling device and engine system
CN115053055A (en) * 2020-02-12 2022-09-13 日本恒温器株式会社 Valve unit
EP4105457A4 (en) * 2020-02-12 2024-03-20 Nippon Thermostat Co., Ltd. Valve unit
US12152528B2 (en) 2020-02-12 2024-11-26 Nippon Thermostat Co., Ltd. Valve unit

Similar Documents

Publication Publication Date Title
JPH0768897B2 (en) Engine cooling system
US4319547A (en) Liquid-cooled internal combustion engine
JP3179971U (en) Combustion engine cooling system
JPH0259289B2 (en)
JPH08165925A (en) Cooling water circulating device for egr cooler of internal combustion engine
US11459936B2 (en) Electronic thermostat for split cooling of an engine and an engine cooling system using the same
JPH01106919A (en) Cooling device of engine
JP2006348793A (en) Exhaust gas recirculation device for internal combustion engine
JP2950879B2 (en) Cooling system for internal combustion engine
KR20200016081A (en) Control method of cooling system
JPS6345488B2 (en)
JP2003120296A (en) Cooling system of engine
JP4522018B2 (en) Internal combustion engine cooling structure
JP4292883B2 (en) Engine cooling system
JPH06212970A (en) Cooling device of engine
JPH11182241A (en) Cooling device for internal combustion engine
JPH06193443A (en) Cooling device for engine
GB2286039A (en) Engine cooling system
JP4492240B2 (en) Engine cooling system
CN114991932A (en) Vehicle and engine thereof
JP2001271644A (en) Engine oil temperature adjusting method and oil temperature adjusting device
JPH0571341A (en) Cooling device of engine
JPH0988598A (en) Thermostat valve
JPS61237820A (en) Coolant temperature controller for panel radiator
US10815870B2 (en) Control method of cooling system