JPH01102435A - Optical modulator - Google Patents
Optical modulatorInfo
- Publication number
- JPH01102435A JPH01102435A JP26039087A JP26039087A JPH01102435A JP H01102435 A JPH01102435 A JP H01102435A JP 26039087 A JP26039087 A JP 26039087A JP 26039087 A JP26039087 A JP 26039087A JP H01102435 A JPH01102435 A JP H01102435A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- extra
- high frequencies
- optical modulator
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 32
- 239000002887 superconductor Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 claims abstract description 4
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims abstract 3
- 230000008878 coupling Effects 0.000 claims abstract 3
- 238000010168 coupling process Methods 0.000 claims abstract 3
- 238000005859 coupling reaction Methods 0.000 claims abstract 3
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract 2
- 239000007772 electrode material Substances 0.000 claims abstract 2
- 239000006185 dispersion Substances 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 abstract description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract 1
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 241000275031 Nica Species 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は光変調器に関し、特に進行波型先方向性結合
器を用いた高速光変調器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical modulator, and more particularly to a high-speed optical modulator using a traveling wave type forward coupler.
第2図は例えば、アイイーイーイー ジャーナル オブ
クワオンタム エレクトロニクス(IHRI! Jo
urnal of Quantum I!1ectro
nica ) Qf!−16巻、754真に示された従
来の進行波型光変調器の構成図であり、図において、l
はLiNbO5誘電体基板、2a、 2bは基板1に
Ti拡散することにより形成された光導波路、3は光導
波路2a、2b上に形成されたAJI電極、4a、4b
はそれぞれマイクロ波進行波の入力リード線、出力リー
ド線、5a、5bはそれぞれ入力光、出力光である。Figure 2 shows, for example, the International Journal of Quantum Electronics (IHRI! Jo
Urnal of Quantum I! 1electro
nica ) Qf! This is a configuration diagram of a conventional traveling wave optical modulator shown in Vol. 16, 754, and in the figure, l
is a LiNbO5 dielectric substrate, 2a and 2b are optical waveguides formed by diffusing Ti on the substrate 1, 3 is an AJI electrode formed on the optical waveguides 2a and 2b, 4a and 4b
are an input lead wire and an output lead wire for microwave traveling waves, respectively, and 5a and 5b are input light and output light, respectively.
次に動作について説明する。Next, the operation will be explained.
入力光5aは常に一定強度の連続(cw)光であり、進
行波マイクロ波信号がない時にはcw光が入射された光
導波路2aの出力端にそのまま送り出される。マイクロ
波進行波が入力リード線4aから入力されたとき、この
マイクロ波と同期して進行する入射光の一部が、誘電体
基板1の電気光学効果により他の光導波路2b側に結合
される。The input light 5a is always continuous (cw) light with a constant intensity, and when there is no traveling wave microwave signal, it is sent out as it is to the output end of the optical waveguide 2a into which the cw light is input. When a traveling microwave wave is input from the input lead wire 4a, a part of the incident light traveling in synchronization with the microwave is coupled to the other optical waveguide 2b side due to the electro-optic effect of the dielectric substrate 1. .
つまり、マイクロ波信号に対応した変調光が光導波路2
bの出力として得られる。In other words, the modulated light corresponding to the microwave signal is transmitted through the optical waveguide 2.
It is obtained as the output of b.
従来の光変調器は以上のように構成されているので、変
調速度はマイクロ波の進行するAjl電極の周波数分散
特性によって律則されるため、変調周波数は最高5〜1
0GHzに制限されていた。Since the conventional optical modulator is configured as described above, the modulation speed is determined by the frequency dispersion characteristics of the Ajl electrode through which the microwave propagates, so the modulation frequency is at most 5 to 1.
It was limited to 0GHz.
この発明は上記のような問題点を解消するためになされ
たもので、超高速の光変調を行うことのできる光変調器
を得ることを目的とする。The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an optical modulator that can perform ultra-high-speed optical modulation.
この発明に係る光変調器は、マイクロ波伝幡用電橿とし
て、超伝導電極を用いたものである。The optical modulator according to the present invention uses a superconducting electrode as a microwave propagation cable.
この発明における光変調器は、マイクロ波伝幡用電極と
して、超伝導電極を用いたので、周波数分散を非常に小
さくでき、超高周波数(THzオーダ)まで変調が可能
となる。Since the optical modulator of the present invention uses a superconducting electrode as the electrode for microwave propagation, frequency dispersion can be made very small, and modulation up to extremely high frequencies (THz order) is possible.
以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例による光変調器の構成図で
ある0図において、21は電気光学効果ををするペロブ
スカイト型構造の強誘電体基板、2a、2bはこの基板
21上にTi拡散等で形成された光導波路、23は超伝
導電極、4 a * 4 bはそれぞれマイクロ波の
入力リード線、出力リード線、5a、5bはそれぞれ入
力光、出力光である。FIG. 1 is a block diagram of an optical modulator according to an embodiment of the present invention. In FIG. An optical waveguide formed by diffusion etc., 23 is a superconducting electrode, 4a*4b are microwave input lead wires and output lead wires, respectively, and 5a and 5b are input light and output light, respectively.
動作原理は従来例で述べた、進行波型光方向性結合器を
用いた進行波型光変調器と同様である。The operating principle is the same as that of the traveling wave optical modulator using the traveling wave optical directional coupler described in the conventional example.
本発明の本質は、光変調器の一部を構成するマイクロ波
ストリップ線路23として、従来の常伝導Ba−Cu−
0系酸化物超伝導体はペロブスカイト型誘電体基板(例
えば5rTiO*やLiNb0り等)上に単結晶成長す
る。また、超伝導体で形成されたマイクロ波ストリップ
線路23は超伝導体固有のギャップエネルギー以下の周
波数に対して周波数分散が非常に小さく、超高周波の伝
送線としての能力に優れている0例えば、上記Y−Ba
−Cu−0系酸化物趨伝導体のギャップエネルギーは3
0meVもあり、約THz (10”Hz)までの超高
周波の伝送が可能であり、このため、THzオーダにお
ける超高周波による光変調が可能となる。The essence of the present invention is that the conventional normal conduction Ba-Cu-
The 0-based oxide superconductor is grown as a single crystal on a perovskite dielectric substrate (for example, 5rTiO*, LiNb0, etc.). In addition, the microwave strip line 23 made of a superconductor has very small frequency dispersion for frequencies below the gap energy inherent in superconductors, and has excellent performance as an ultra-high frequency transmission line.For example, Above Y-Ba
-The gap energy of Cu-0 based oxide trend conductor is 3
0 meV, it is possible to transmit ultra-high frequencies up to about THz (10''Hz), and therefore optical modulation using ultra-high frequencies on the THz order becomes possible.
以上のように、この発明の光変調器によれば、マイクロ
波ストリップ線路電極として超伝導体を用いたので、T
l1zオーダにおける超高周波による光変調が可能とな
る効果がある。As described above, according to the optical modulator of the present invention, since a superconductor is used as the microwave strip line electrode, T
This has the effect of making it possible to perform optical modulation using ultra-high frequencies on the l1z order.
第1図はこの発明の一実施例による光変調器の構成図、
第2図は従来の光変調器の構成図である。
1は誘電体基板、2a、2bは光導波路、3は電極、4
a、4bはそれぞれマイクロ波の人、出力リード線、5
a、5bはそれぞれ人、出力光、21はペロブスカイト
型結晶構造を有する誘電体基板、23はマイクロ波スト
リップ線路としての高温超伝導薄膜電極である。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a configuration diagram of an optical modulator according to an embodiment of the present invention;
FIG. 2 is a block diagram of a conventional optical modulator. 1 is a dielectric substrate, 2a and 2b are optical waveguides, 3 is an electrode, 4
a, 4b are microwave connectors, output lead wires, 5
21 is a dielectric substrate having a perovskite crystal structure, and 23 is a high temperature superconducting thin film electrode as a microwave strip line. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (2)
の光導波路と、該2つの光導波路間の結合定数を進行波
によって変化させる進行波型光方向性結合器とを備えた
光変調器において、上記2つの光導波路間の結合定数を
電気光学効果により変化させるための電極材料として、
超伝導体を使用したことを特徴とする光変調器。(1) A dielectric substrate, two optical waveguides formed on the dielectric substrate, and a traveling wave optical directional coupler that changes the coupling constant between the two optical waveguides by a traveling wave. In the optical modulator, as an electrode material for changing the coupling constant between the two optical waveguides by electro-optic effect,
An optical modulator characterized by using a superconductor.
iO_3等のペロブスカイト型構造を有する結晶を用い
、上記超伝導電極としてLa−Ba−Cu−O系あるい
はY−Ba−Cu−O系の酸化物超伝導体を使用したこ
とを特徴とする特許請求の範囲第1項記載の光変調器。(2) As the dielectric substrate, LiNbO_3, SrT
A patent claim characterized in that a crystal having a perovskite structure such as iO_3 is used, and a La-Ba-Cu-O-based or Y-Ba-Cu-O-based oxide superconductor is used as the superconducting electrode. The optical modulator according to the range 1 above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26039087A JPH01102435A (en) | 1987-10-15 | 1987-10-15 | Optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26039087A JPH01102435A (en) | 1987-10-15 | 1987-10-15 | Optical modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01102435A true JPH01102435A (en) | 1989-04-20 |
Family
ID=17347254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26039087A Pending JPH01102435A (en) | 1987-10-15 | 1987-10-15 | Optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01102435A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
US6855992B2 (en) | 2001-07-24 | 2005-02-15 | Motorola Inc. | Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same |
US6885065B2 (en) | 2002-11-20 | 2005-04-26 | Freescale Semiconductor, Inc. | Ferromagnetic semiconductor structure and method for forming the same |
US6965128B2 (en) | 2003-02-03 | 2005-11-15 | Freescale Semiconductor, Inc. | Structure and method for fabricating semiconductor microresonator devices |
US6992321B2 (en) | 2001-07-13 | 2006-01-31 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials |
US7045815B2 (en) | 2001-04-02 | 2006-05-16 | Freescale Semiconductor, Inc. | Semiconductor structure exhibiting reduced leakage current and method of fabricating same |
US7342276B2 (en) | 2001-10-17 | 2008-03-11 | Freescale Semiconductor, Inc. | Method and apparatus utilizing monocrystalline insulator |
-
1987
- 1987-10-15 JP JP26039087A patent/JPH01102435A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7045815B2 (en) | 2001-04-02 | 2006-05-16 | Freescale Semiconductor, Inc. | Semiconductor structure exhibiting reduced leakage current and method of fabricating same |
US6992321B2 (en) | 2001-07-13 | 2006-01-31 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials |
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
US6855992B2 (en) | 2001-07-24 | 2005-02-15 | Motorola Inc. | Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same |
US7342276B2 (en) | 2001-10-17 | 2008-03-11 | Freescale Semiconductor, Inc. | Method and apparatus utilizing monocrystalline insulator |
US6885065B2 (en) | 2002-11-20 | 2005-04-26 | Freescale Semiconductor, Inc. | Ferromagnetic semiconductor structure and method for forming the same |
US6965128B2 (en) | 2003-02-03 | 2005-11-15 | Freescale Semiconductor, Inc. | Structure and method for fabricating semiconductor microresonator devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5076655A (en) | Antenna-fed electro-optic modulator | |
US4709978A (en) | Mach-Zehnder integrated optical modulator | |
KR950000406B1 (en) | All-optical modulator and optical signal modulation method | |
CA2114662C (en) | Periodic domain reversal electro-optic modulator | |
US6411747B2 (en) | Waveguide type optical device | |
JP2713087B2 (en) | Waveguide optical device | |
EP0562695A1 (en) | Controllable polarisation transformer | |
US5991491A (en) | Optical waveguide type device for reducing microwave attenuation | |
JPH08122722A (en) | Waveguide type optical device | |
US6504640B2 (en) | Resonant optical modulators with zero chirp | |
JPH07500431A (en) | optical switching device | |
JPH09197358A (en) | Waveguide type optical device | |
JP2806425B2 (en) | Waveguide type optical device | |
JPH01102435A (en) | Optical modulator | |
JP3043614B2 (en) | Waveguide type optical device | |
JP2848454B2 (en) | Waveguide type optical device | |
JPH04172316A (en) | Wave guide type light control device | |
Booth | LiNbO3 integrated optic devices for coherent optical fibre systems | |
JPH10142567A (en) | Waveguide type optical device | |
JP2871645B2 (en) | Waveguide type optical device | |
Izutsu et al. | Band operation of guided-wave light modulators with filter-type coplanar electrodes | |
JP2848455B2 (en) | Waveguide type optical device | |
JPH02170142A (en) | Waveguide type optical control device and driving method thereof | |
Rizzi et al. | Electro-optic intensity modulator for broadband optical communications | |
Thylen et al. | High speed LiNbO3 integrated optics modulators and switches |