JPH01102395A - Sludge height measurement on steam generator tube plate - Google Patents
Sludge height measurement on steam generator tube plateInfo
- Publication number
- JPH01102395A JPH01102395A JP62259612A JP25961287A JPH01102395A JP H01102395 A JPH01102395 A JP H01102395A JP 62259612 A JP62259612 A JP 62259612A JP 25961287 A JP25961287 A JP 25961287A JP H01102395 A JPH01102395 A JP H01102395A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- height
- temperature
- tube plate
- steam generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 45
- 238000005259 measurement Methods 0.000 title description 2
- 239000007791 liquid phase Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 5
- 239000007790 solid phase Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000009825 accumulation Methods 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/48—Devices or arrangements for removing water, minerals or sludge from boilers ; Arrangement of cleaning apparatus in boilers; Combinations thereof with boilers
- F22B37/483—Devices or arrangements for removing water, minerals or sludge from boilers ; Arrangement of cleaning apparatus in boilers; Combinations thereof with boilers specially adapted for nuclear steam generators
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は加圧水型原子炉において使用される蒸気発生器
の運転中に、管板上に堆積して行き終には伝熱管材料の
腐食を引き起こすスラッジの高さを随時測定することが
できる蒸気発生器管板上スラッジ高さ計測法に係る。DETAILED DESCRIPTION OF THE INVENTION [Object of the invention] (Industrial field of application) The present invention is directed to the use of steam generators that are deposited on tube sheets and eventually transmitted during operation of steam generators used in pressurized water nuclear reactors. This invention relates to a method for measuring the height of sludge on a steam generator tube plate, which can measure the height of sludge that causes corrosion of heat tube materials at any time.
(従来の技術)
加圧水型原子炉においては、原子炉で発生させた高温高
圧水を蒸気発生器で蒸気に変換して、発電機を駆動する
蒸気タービンに供給するようにしている。(Prior Art) In a pressurized water reactor, high-temperature, high-pressure water generated in the reactor is converted into steam by a steam generator, and the steam is supplied to a steam turbine that drives a generator.
第4図は従来のこの種の蒸気発生器の一例を示す、上端
部を大径とした円筒状の容器1の小径部内には内筒2が
同心的に収容され、内筒2の底部には多数の逆U字状伝
熱管3の端部を支持する管板4が設けられている。内筒
2内の多数の逆U字状伝熱管3は頂部の湾曲部を揃えて
、それ等の各脚片が管板4の直径に平行な線上にあるよ
う配置され、サポート5で支持されている。また、容器
1上部の大径部内には、気水分離を行うセパレータ6、
分離された蒸気を乾燥するドライヤ7が設けられ、容器
1下端には内筒2内の管板4に1次水を供給する1次水
入口8、同じく管板4からの1次水を流出させる1次水
出口9がそれぞれ設けられている。また、容器1上端側
面には2次水出口10が、上端面中央には蒸気出口11
がそれぞれ設けられている。なお、容器1と内筒2との
間にはダウンカマ12が形成されている。FIG. 4 shows an example of a conventional steam generator of this kind. An inner cylinder 2 is housed concentrically in the small diameter part of a cylindrical container 1 with a large diameter at the upper end. A tube plate 4 is provided to support the ends of a large number of inverted U-shaped heat exchanger tubes 3. A large number of inverted U-shaped heat exchanger tubes 3 in the inner cylinder 2 are arranged so that the curved portions of their tops are aligned, each of their legs is on a line parallel to the diameter of the tube plate 4, and supported by a support 5. ing. Also, in the large diameter part at the top of the container 1, there is a separator 6 for separating air and water.
A dryer 7 for drying the separated steam is provided, and a primary water inlet 8 is provided at the lower end of the container 1 to supply primary water to the tube sheet 4 in the inner cylinder 2, and a primary water inlet 8 for supplying primary water to the tube sheet 4 in the inner cylinder 2 also allows the primary water to flow out from the tube sheet 4. A primary water outlet 9 is provided for each water outlet. In addition, a secondary water outlet 10 is provided on the side surface of the upper end of the container 1, and a steam outlet 11 is provided in the center of the upper end surface.
are provided for each. Note that a downcomer 12 is formed between the container 1 and the inner cylinder 2.
上記構成の従来の蒸気発生器においては、次のようにし
て蒸気の発生がなされる。すなわち、原子炉で発生した
高温高圧水は、蒸気発生器の容器1の下部の1次水入口
8から容器1内に入り、管板4に固定された多数の逆U
字状伝熱管3内を流れ、1次水出口9から流出する。低
温の2次水は、容器1上部側面の2次水入口10から容
器1内に入り、ダウンカマ12を流下して管板4上方に
設けた通路を経由して内筒2内に入り、内筒2内を上昇
する。この上昇中に2次水は、逆U字状伝熱管3内を流
れる1次水と熱交換して高温となる。In the conventional steam generator having the above configuration, steam is generated in the following manner. That is, high-temperature, high-pressure water generated in the reactor enters the vessel 1 from the primary water inlet 8 at the bottom of the vessel 1 of the steam generator, and enters the vessel 1 through a number of inverted U-Us fixed to the tube plate 4.
It flows inside the shape heat exchanger tube 3 and flows out from the primary water outlet 9. Low-temperature secondary water enters the container 1 from the secondary water inlet 10 on the upper side of the container 1, flows down the downcomer 12, enters the inner cylinder 2 via a passage provided above the tube plate 4, and enters the inner cylinder 2. It ascends inside the cylinder 2. During this rising, the secondary water exchanges heat with the primary water flowing inside the inverted U-shaped heat exchanger tube 3 and becomes high temperature.
一方、圧力はほぼ一定であるから高温の2次水は飽和圧
力以下となり、沸騰することとなる。これにより、内筒
2内には気液2相流が生じる。この気液2相流はさらに
上昇を続け、セパレータ6において蒸気と液体(水)と
に分離され、蒸気はドライヤ7において乾き度を高めら
れて蒸気出口11からタービンに送られ、液体はダウン
カマ12を経由して再び内筒2内に流入する。On the other hand, since the pressure is approximately constant, the high temperature secondary water becomes below the saturation pressure and boils. As a result, a gas-liquid two-phase flow is generated within the inner cylinder 2. This gas-liquid two-phase flow continues to rise further and is separated into steam and liquid (water) in the separator 6. The dryness of the steam is increased in the dryer 7 and sent to the turbine from the steam outlet 11, and the liquid is transferred to the downcomer 12. It flows into the inner cylinder 2 again via .
第5図は管板4近傍の部分を拡大して示す。この図に示
すように、ダウンカマ12を下降して来た2次水の下降
流30および逆U字状伝熱管3の脚片の間を下降して来
た下降流30は、管板4上方で反転して逆U字状伝熱管
3の間を上昇する上昇流40を形成する。FIG. 5 shows an enlarged view of the vicinity of the tube plate 4. As shown in this figure, the downward flow 30 of the secondary water that has descended through the downcomer 12 and the downward flow 30 that has descended between the legs of the inverted U-shaped heat exchanger tubes 3 are directed toward the upper part of the tube sheet 4. , and forms an upward flow 40 that rises between the inverted U-shaped heat exchanger tubes 3 .
上記構成の従来の蒸気発生器においては、管板4上方の
2次水の流れが第6図に示すように、反転した下降流3
0が合流し、上昇流40に転じる逆U字状伝熱管3の脚
片の束のほぼ中央で流れに澱み部33を生じる。図中3
2は2次水の流線を示している。この澱み部33には、
第5図、第7図、第8図に示すように、スラッジの堆積
部25を生じる。この堆積部25は第8図に示すように
、逆U字状伝熱管3を包囲して管板4上に堆積し、その
上面は固液混合堆積層26が覆うこととなる。In the conventional steam generator having the above configuration, the flow of secondary water above the tube plate 4 is reversed and the downward flow 3 is reversed as shown in FIG.
A stagnation portion 33 is created in the flow approximately at the center of the bundle of leg pieces of the inverted U-shaped heat exchanger tube 3 where the two converge and turn into an upward flow 40 . 3 in the diagram
2 shows streamlines of secondary water. In this stagnation part 33,
As shown in FIGS. 5, 7, and 8, a sludge accumulation portion 25 is formed. As shown in FIG. 8, this deposited portion 25 surrounds the inverted U-shaped heat exchanger tube 3 and is deposited on the tube plate 4, and its upper surface is covered with a solid-liquid mixed deposited layer 26.
この固液混合堆積層26は、2次水の流により多少上下
動をするが、その間に2次水中のC1−が濃縮され逆U
字状伝熱管3に局所的腐食35を生じるおそれがあった
。This solid-liquid mixed sedimentary layer 26 moves up and down somewhat due to the flow of secondary water, but during this time C1- in the secondary water is concentrated and the reverse U
There was a possibility that local corrosion 35 would occur in the shape heat exchanger tube 3.
(発明が解決しようとする問題点)
従来は逆U字状伝熱管の前記の局所的腐食を防止するに
は、JI子炉の定検時に管板上のスラッジを大掛かりな
装置を使用し、多大な時間を費やして除去することによ
っていた。この定検時ごとののスラッジ除去が伝熱管の
局所的腐食の防止上乗して妥当であるかは疑問であるが
、原子炉の運転中は堆積しつつあるスラッジの高さ等を
計測することはできず、原子炉を停止させてもスラッジ
の除去を行うべきか否かを判断することはできない。(Problems to be Solved by the Invention) Conventionally, in order to prevent the above-mentioned local corrosion of inverted U-shaped heat exchanger tubes, a large-scale device was used to remove sludge from the tube sheets during periodic inspections of JI subfurnaces. It took a lot of time to remove it. Although it is questionable whether removing sludge at each periodic inspection is appropriate in addition to preventing local corrosion of heat transfer tubes, it is important to measure the height of sludge that is accumulating during reactor operation. It is not possible to determine whether sludge should be removed even if the reactor is shut down.
また、上記から明らかなように伝熱管の局所的腐食はス
ラッジ高さ位置にほぼ対応するものであるから、堆積ス
ラッジの高さから伝熱管の健全性診断、検査ポイントの
限定等が可能なものと考えられているが、原子炉運転中
に堆積スラッジの高さを計測できない現状では実現不可
能である。Furthermore, as is clear from the above, local corrosion of heat exchanger tubes roughly corresponds to the sludge height position, so it is possible to diagnose the health of heat exchanger tubes and limit inspection points based on the height of accumulated sludge. However, it is currently not possible to measure the height of accumulated sludge during reactor operation.
本発明は上記の事情に基づきなされたもので。The present invention has been made based on the above circumstances.
原子炉運転中に堆積しつつあるスラッジの高さを測定す
ることができる蒸気発生器管板上スラッジ高さ計測法を
提供することを目的としている。It is an object of the present invention to provide a method for measuring the height of sludge on a steam generator tube sheet, which is capable of measuring the height of sludge that is being accumulated during nuclear reactor operation.
(問題点を解決するための手段)
本発明の蒸気発生器管板上スラッジ高さ計測法は、加圧
水型原子炉において使用される蒸気発生器の多数の伝熱
管を支持する管板上方の温度分布を随時計測して温度分
布プロファイルを求め、この温度分布プロファイルに現
れる管板上に堆積したスラッジ(固相)と液相の境界に
おける急激な温度勾配から、管板上のスラッジ高さを求
めることを特徴とする。(Means for Solving the Problems) The method for measuring the height of sludge on a steam generator tube sheet according to the present invention is to measure the temperature above a tube sheet that supports a large number of heat transfer tubes of a steam generator used in a pressurized water reactor. The temperature distribution profile is obtained by measuring the distribution at any time, and the sludge height on the tube sheet is determined from the sharp temperature gradient at the boundary between the sludge (solid phase) deposited on the tube sheet and the liquid phase that appears in this temperature distribution profile. It is characterized by
(作用)
上記構成の本発明蒸気発生器管板上スラッジ高さ計測法
においては、堆積したスラッジと液相の境界において、
温度プロファイルに急激な温度勾配が生じることを利用
して堆積スラッジ高さを知るようにしたものであるから
、原子炉の運転中でも随時スラッジ高さの計測を実施す
ることができる。(Function) In the method for measuring the height of sludge on a steam generator tube plate of the present invention having the above configuration, at the boundary between the accumulated sludge and the liquid phase,
Since the height of the accumulated sludge is determined by utilizing the occurrence of a sharp temperature gradient in the temperature profile, the height of the sludge can be measured at any time even during operation of the nuclear reactor.
(実施例)
第1図A、Bは本発明の計測法の根拠となる管板からの
高さ方向の温度分布プロファイルを示す図である。第1
図Aは管板上にスラッジ堆積のない場合であって、この
図から管板上にスラッジのない場合には管板から上方に
離間するにつれ、温度は緩やかに下降することが分かる
。第1図Bはそ管板上にスラッジの堆積がある場合であ
って、この図からスラッジ高さHの固液相界面に対応す
る位置に急激な温度勾配が生じていることが分かる。な
お、これ等の図中50は平均温度測定値、51は温度変
動幅、52は温度分布プロファイル、53は温度勾配を
示している。(Example) FIGS. 1A and 1B are diagrams showing temperature distribution profiles in the height direction from the tube sheet, which are the basis of the measurement method of the present invention. 1st
Figure A shows a case where there is no sludge deposited on the tubesheet, and it can be seen from this figure that when there is no sludge on the tubesheet, the temperature gradually decreases as the temperature moves upward from the tubesheet. FIG. 1B shows a case where sludge is deposited on the tube plate, and it can be seen from this figure that a sharp temperature gradient occurs at a position corresponding to the solid-liquid phase interface at the sludge height H. In these figures, 50 indicates the average temperature measurement value, 51 indicates the temperature fluctuation width, 52 indicates the temperature distribution profile, and 53 indicates the temperature gradient.
上記の現象から、温度分布プロファイルを常時amし、
第1図Bの温度勾配の出現を検知すれば堆積したスラッ
ジの高さHを計測し得ることが分かる。而して、その精
度は温度計測点間隔により定められるので、必要に応じ
て前記間隔を十分細かくすればよく、また温度分布は原
子炉の運転中随時計測可能であるから、結果として随時
スラッジ堆積高さを求めることができる。From the above phenomenon, the temperature distribution profile is constantly am
It can be seen that the height H of the accumulated sludge can be measured by detecting the appearance of the temperature gradient shown in FIG. 1B. Since the accuracy is determined by the interval between temperature measurement points, the interval can be made sufficiently fine as necessary, and since the temperature distribution can be measured at any time during the operation of the reactor, as a result, sludge accumulation can be prevented at any time. You can find the height.
スラッジ堆積のない場合には、温度分布プロファイルは
第1図Aに示すように滑らかな曲線となるから、スラッ
ジ堆積の有無を判定することも可能である。When there is no sludge accumulation, the temperature distribution profile becomes a smooth curve as shown in FIG. 1A, so it is also possible to determine the presence or absence of sludge accumulation.
さらに、液相中での温度計測値は液相の流れのために変
動幅51が大きいのに対し、スラッジ堆積部(固相)で
の変動幅51はほとんどOであるから、その変動幅の境
界をスラッジ堆積高さHと対応させることができる。Furthermore, while the temperature measurement value in the liquid phase has a large fluctuation range 51 due to the flow of the liquid phase, the fluctuation range 51 in the sludge accumulation part (solid phase) is almost O. The boundary can correspond to the sludge accumulation height H.
なお、前記両者を併せ用いてスラッジ高さHを同定すれ
ばより確実な値を得ることができる。Note that if the sludge height H is identified using both of the above, a more reliable value can be obtained.
本発明はこれを利用して原子炉の運転中に管板上のスラ
ッジ堆積状態を知り得るようにしたものである。The present invention utilizes this to make it possible to know the state of sludge accumulation on a tube sheet during operation of a nuclear reactor.
第2図は本発明の計測法の一実施例の模式的断面図であ
る。この図において、管板4には伝熱管と平行に棒状の
温度計測器]23を設置し、この温度計測器には管板4
より上方に軸方向に等間隔で分布して複数筒の温度セン
サ13aを取り付けである。このような温度計測器13
により管板4上方の温度分布プロファイルを得ることが
できるから、前記説明したところに従いスラッジ堆積高
さHを随時水めることができる。なお、温度センサ13
aとしては代表的なものとして例えば熱電対が考えられ
る。このような温度センサのリード線を蒸気発生器の容
器外に流体密に引出すことは容易であり、運転中の計測
も当然可能である。FIG. 2 is a schematic cross-sectional view of an embodiment of the measurement method of the present invention. In this figure, a rod-shaped temperature measuring device] 23 is installed on the tube sheet 4 in parallel with the heat transfer tubes, and this temperature measuring device is attached to the tube sheet 4.
A plurality of cylinders of temperature sensors 13a are attached at equal intervals in the axial direction further upward. Such a temperature measuring device 13
Since the temperature distribution profile above the tube plate 4 can be obtained, the sludge accumulation height H can be adjusted at any time according to the above explanation. Note that the temperature sensor 13
A typical example of a is a thermocouple. It is easy to lead the lead wire of such a temperature sensor out of the steam generator container in a fluid-tight manner, and measurement during operation is of course possible.
第3図は本発明の他の実施例の模式的断面図である。こ
の実施例では伝熱管3表面に軸方向に等間隔に分布して
複数の温度センサ13aが取り付けられている。この実
施例においても前記実施例と同様にしてスラッジ堆積高
さHの同定を行うことができる。FIG. 3 is a schematic cross-sectional view of another embodiment of the invention. In this embodiment, a plurality of temperature sensors 13a are attached to the surface of the heat exchanger tube 3, distributed at equal intervals in the axial direction. In this embodiment as well, the sludge accumulation height H can be identified in the same manner as in the previous embodiment.
而して、上記の温度計測器を管板上に分布して複数筒設
置すればスラッジ堆積状態を立体的に把握することがで
きる。If a plurality of the above-mentioned temperature measuring devices are distributed and installed on the tube plate, the state of sludge accumulation can be grasped three-dimensionally.
[発明の効果]
上記から明らかなように本発明の蒸気発生器においては
、管板上のスラッジの堆積の有無、またはその堆積状態
を原子炉運転中随時知ることができるから、スラッジの
堆積により生じるおそれのある伝熱管の局所的な腐食の
発生思想な部位を推定することができ、共用期間中検査
における診断、検査ポイントを限定することができる。[Effects of the Invention] As is clear from the above, in the steam generator of the present invention, the presence or absence of sludge accumulation on the tube sheet or its accumulation state can be known at any time during reactor operation. It is possible to estimate the possible locations of localized corrosion of the heat exchanger tubes, and it is possible to limit diagnosis and inspection points during inspections during the shared use period.
よって、診断、検査に要する作業の簡略化1時間の短縮
が可能となり、検査の信頼性が向上される。Therefore, the work required for diagnosis and testing can be simplified and shortened by one hour, and the reliability of testing is improved.
さらに、本発明の計測法によれば原子炉の運転中スラッ
ジの堆積が多いと判断される状況の発生を検知すること
ができるので、大きなトラブルが発生する前に処置を取
ることができるから、結果的に蒸気発生器の安全性を向
上させることができる。Furthermore, according to the measurement method of the present invention, it is possible to detect the occurrence of a situation in which it is determined that there is a large amount of sludge accumulation during the operation of a nuclear reactor, so that measures can be taken before a major problem occurs. As a result, the safety of the steam generator can be improved.
第1図A、Bは本発明の詳細な説明するための線図、第
2図は本発明の一実施例の模式的断面図、第3図は他の
実施例の模式的断面図、第4図は従来の蒸気発生器の全
体を二部を切除して示す斜視図、第5図は前記従来例の
要部の縦断面図、第6図は前記従来例における2次水の
流を示す模式図、第7図は前記要部の平面図、第8図は
前記従来例におけるスラッジ堆積部の模式的断面図であ
る。1A and 1B are diagrams for explaining the present invention in detail, FIG. 2 is a schematic cross-sectional view of one embodiment of the present invention, FIG. 3 is a schematic cross-sectional view of another embodiment, and FIG. Fig. 4 is a perspective view showing the entire conventional steam generator with two parts cut away, Fig. 5 is a longitudinal sectional view of the main parts of the conventional example, and Fig. 6 shows the flow of secondary water in the conventional example. FIG. 7 is a plan view of the main part, and FIG. 8 is a schematic cross-sectional view of the sludge accumulation section in the conventional example.
Claims (1)
伝熱管を支持する管板上方の温度分布を随時計測して温
度分布プロファイルを求め、この温度分布プロファイル
に現れる管板上に堆積したスラッジ(固相)と液相の境
界における急激な温度勾配から、管板上のスラッジ高さ
を求めることを特徴とする蒸気発生器管板上スラッジ高
さ計測法。The temperature distribution above the tube sheet that supports the many heat transfer tubes of the steam generator used in pressurized water reactors is measured at any time to determine the temperature distribution profile, and the sludge ( A method for measuring the height of sludge on a steam generator tube sheet, which is characterized by determining the height of sludge on the tube sheet from the sharp temperature gradient at the boundary between the solid phase and the liquid phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62259612A JPH01102395A (en) | 1987-10-16 | 1987-10-16 | Sludge height measurement on steam generator tube plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62259612A JPH01102395A (en) | 1987-10-16 | 1987-10-16 | Sludge height measurement on steam generator tube plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01102395A true JPH01102395A (en) | 1989-04-20 |
Family
ID=17336505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62259612A Pending JPH01102395A (en) | 1987-10-16 | 1987-10-16 | Sludge height measurement on steam generator tube plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01102395A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563803A (en) * | 1992-03-19 | 1996-10-08 | Hitachi, Ltd. | Fluidized-bed equipment and pressurized fluidized-bed (combustion) combined cycle apparatus |
WO2006038109A2 (en) | 2004-10-01 | 2006-04-13 | Merloni Termosanitari S.P.A. | Accumulator water heater, flange for accumulator water heater and control method for water heater scaling |
-
1987
- 1987-10-16 JP JP62259612A patent/JPH01102395A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563803A (en) * | 1992-03-19 | 1996-10-08 | Hitachi, Ltd. | Fluidized-bed equipment and pressurized fluidized-bed (combustion) combined cycle apparatus |
WO2006038109A2 (en) | 2004-10-01 | 2006-04-13 | Merloni Termosanitari S.P.A. | Accumulator water heater, flange for accumulator water heater and control method for water heater scaling |
WO2006038109A3 (en) * | 2004-10-01 | 2006-07-13 | Merloni Termosanitari Spa | Accumulator water heater, flange for accumulator water heater and control method for water heater scaling |
CN101069038B (en) | 2004-10-01 | 2010-08-25 | 阿利斯顿特莫股份公司 | Accumulator electric water heater, flange for accumulator electric water heater and control method for water heater scaling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103698102B (en) | A kind of interbank High Temperature High Pressure vehicle repair major flow pattern experimental provision and discrimination method | |
CN110057865B (en) | Secondary side boiling heat transfer analysis device of marine steam generator | |
CN101929969A (en) | Contact thermal resistance test equipment with cooling device | |
US4251220A (en) | Apparatus for and method of determining high pressure, high temperature feedwater contaminants | |
JPH01102395A (en) | Sludge height measurement on steam generator tube plate | |
JPS58172534A (en) | Sampling device for fluid of steam turbine system | |
CN103018135B (en) | Marshall tester | |
CN101915781A (en) | Contact thermal resistance testing equipment with compensating heating device | |
CN201348530Y (en) | Boiler drum water level non-contact measurement device | |
US20080083276A1 (en) | Condensing chamber design | |
CN100445702C (en) | Steam water-level high precision, high reliability electrode sensor | |
CN107527665A (en) | Nuclear power station steam generator supporting plate state monitoring method | |
JP3872587B2 (en) | Boiler thermal conductivity decreasing substance adhesion judgment device | |
CN106680006A (en) | Split tube-shell type waste heat boiler experiment system and method | |
CN203704851U (en) | Top part supporting plate local heat treatment deformation monitoring auxiliary device | |
JPS56133613A (en) | Liquid level gauge system | |
JP7349269B2 (en) | Method and device for detecting sludge accumulation locations, and sludge accumulation location detection program | |
CN2240714Y (en) | High-precision sampling measure tuble for steam manifold electric contact water level gauge | |
CN210108742U (en) | Steam generator thermal hydraulic performance test simulator | |
JP3679829B2 (en) | Steam generator water leak monitoring device | |
CN110132786A (en) | A kind of steam box mass dryness fraction detection device and mass dryness fraction detection method | |
SU573718A1 (en) | Steam boiler drum water level measuring device | |
SE8305398D0 (en) | TRANSDUCER FOR DETERMINING IF STEAM GENERATOR TUBES ARE LOCKED IN AT SUPPORT PLATE | |
Liu et al. | Experimental Study of the Effect of Inclination Angle on the Heat Transfer Characteristics of Steam Condensation in the Vertical Tube | |
CN217359689U (en) | Carbon base is useless pyrolysis oil normal water productivity survey device admittedly |