[go: up one dir, main page]

JPH01101504A - Method for pair identification of optical fiber - Google Patents

Method for pair identification of optical fiber

Info

Publication number
JPH01101504A
JPH01101504A JP62259354A JP25935487A JPH01101504A JP H01101504 A JPH01101504 A JP H01101504A JP 62259354 A JP62259354 A JP 62259354A JP 25935487 A JP25935487 A JP 25935487A JP H01101504 A JPH01101504 A JP H01101504A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
light source
loss
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259354A
Other languages
Japanese (ja)
Inventor
Koji Arakawa
孝二 荒川
Koji Yoshida
幸司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62259354A priority Critical patent/JPH01101504A/en
Publication of JPH01101504A publication Critical patent/JPH01101504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To suppress the application of residual distortion to the coat of an optical fiber without exerting influence to optical transmission characteristics upon an active line by using a light source in a wavelength area increasing an optical loss for bend as compared with the wavelength of a light source used for optical transmission for reference light. CONSTITUTION:A reference light source 3 having wavelength generating a loss larger than the increment of an optical loss for the bend 4 of an optical fiber in the wavelength area of the light source used for optical transmission and having a loss almost equal or less to/than the optical transmission loss of the optical fiber is used. A fiber 2-1 is bent, a photodetecting sensor 5 is arranged on a position in the range where a bent angle along the optical fiber 2-1 from the start of bend of the fiber 2-1 on the incident end side of the reference light source 3 in the direction reverse to the incident side of the light source 3 is pi/4-3 and pi/4 radian to identify the core 2-1 about the sensor 5. Consequently, the optical fiber can be identified without exerting influence to optical transmission characteristics upon an active line and without generating an extremely small bend such that residual distortion is applied to the coat of the optical fiber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ファイバケーブル内の光ファイバ心線を対照
する光ファイバ心線対照方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical fiber comparison method for comparing optical fibers in an optical fiber cable.

従来の技術及び発明が解決しようとする問題点従来の光
心線対照器は、光伝送に使用されている波長領域と同一
の波長領域(例えば1.3μm)の光信号を、対照しよ
うとする光ファイバ心線の片端から参照光として入射し
、その後対照したい光ファイバ心線には極端に小さな曲
げを与え、その曲げ部から参照光の漏れ光を検知するこ
とによシ、光ファイバ心線の対照を行っている。しかし
、この場合曲げ部の曲率は大きいので、光ファイバ心線
中を伝搬する光信号に注目すると曲げによって非常に大
きな光損失の増加が生じる。そのため、もし誤って商用
信号の伝送に使用されている心線(以下、活回線と呼称
する)を曲げた時には活回線の光伝送特性への影響を与
え符号誤シ等を生じさせるという危険性があった。特に
、伝送容量の大きい8M型光ファイバ心線を対照する場
合には、ガイド構造の相違から漏れ光を大きくするため
にGI型光ファイバ心線よりさらに大きく曲げなければ
検知できない。さらに、心線対照時に光ファイバ心線に
与える曲率は非常に大きいので、心線対照後は光ファイ
バ心線被覆に曲げによる残留ひずみが加わるという欠点
もあった。
Conventional techniques and problems to be solved by the invention Conventional optical core line contrasters attempt to contrast optical signals in the same wavelength range (for example, 1.3 μm) as the wavelength range used for optical transmission. The reference light enters the optical fiber from one end, and then the optical fiber to be compared is given an extremely small bend, and the leakage of the reference light from the bend is detected. We are conducting a comparison of However, in this case, the curvature of the bent portion is large, so when focusing on the optical signal propagating in the optical fiber, the bending causes a very large increase in optical loss. Therefore, if you accidentally bend the core wire used for transmitting commercial signals (hereinafter referred to as the live line), there is a risk that the optical transmission characteristics of the live line may be affected and code errors may occur. was there. In particular, when comparing an 8M type optical fiber coated wire with a large transmission capacity, it cannot be detected unless it is bent more than a GI type optical fiber coated wire in order to increase the leakage light due to the difference in guide structure. Furthermore, since the curvature given to the optical fiber during fiber comparison is very large, there is also a drawback that residual strain is applied to the optical fiber coating after fiber comparison due to bending.

本発明はこれらの欠点を除去するため、光ファイバケー
ブルの活回線には光伝送特性への影響を与えることなく
、かつ光ファイイく心線被覆に残留ひずみが加わるよう
な極端に小さな曲げを与えることもない光ファイバ心線
対照方法を提供することにある。
In order to eliminate these drawbacks, the present invention applies an extremely small bend to the live line of an optical fiber cable without affecting the optical transmission characteristics and which causes residual strain to be added to the optical fiber sheathing. An object of the present invention is to provide a method for comparing optical fiber cores without any trouble.

問題点を解決するための手段 本発明は、複数心からなる光ファイバケーブル内の光フ
ァイバ心線を対照する光ファイバ心線対照方法において
、伝送に使用されている光源の波長領域における光ファ
イバ心線の曲げに対する光損失増加量よシも大きな損失
が生じ、かつ光ファイバの光伝送損失量がほぼ同等、そ
れ以下となる波長を有する参照光ファイバ心線に曲げを
加え、前記参照光源入射端側の前記光ファイバ心線の°
曲げ始めから前記参照光源入射側とは反対方向へ前記光
ファイバ心線に沿った曲げ角がπ/4〜3、π/4ラジ
アンの範囲の位置に受光センサを配設し、光ファイバ心
線を対照するにある。
Means for Solving the Problems The present invention provides an optical fiber core comparison method for comparing optical fiber cores in an optical fiber cable consisting of a plurality of cores. A reference optical fiber core wire having a wavelength that causes a larger loss than the increase in optical loss due to bending, and the optical transmission loss of the optical fiber is approximately equal to or less than that, is bent, and the reference light source input end side is bent. ° of the optical fiber core wire
A light receiving sensor is disposed at a position where the bending angle is in the range of π/4 to 3, π/4 radian along the optical fiber from the beginning of bending in the direction opposite to the reference light source incident side, and the optical fiber is To contrast.

作用 本発明は前記構成によシ光ファイバケーブルの活回線に
は光伝送特性への影響を与えることなく、かつ光ファイ
バ心線被覆に残留ひずみが加わるような極端に小さな曲
げを与えないで対照できる。
Effect of the Invention The present invention uses the above-mentioned configuration to provide a live line of an optical fiber cable without affecting the optical transmission characteristics and without subjecting the optical fiber cable to extremely small bends that would add residual strain to the coated optical fiber. can.

実施例 第1図は本発明の光ファイバ心線対照方法の一実施例の
原理図を示す。
Embodiment FIG. 1 shows a principle diagram of an embodiment of the optical fiber core comparison method of the present invention.

図において、lは光ファイバケーブル、2は光ファイバ
心線、2−/は対照心線、2−2は活回線、3は参照光
源、≠は光ファイバ心線の曲げ部、jは漏洩光検出部、
Aは光ファイバ心線の対照位置、を示す。
In the figure, l is the optical fiber cable, 2 is the optical fiber core, 2-/ is the control core, 2-2 is the active line, 3 is the reference light source, ≠ is the bent part of the optical fiber, and j is the leakage light. Detection unit,
A shows the symmetrical position of the optical fiber.

第2図は8M型光ファイバ心線の曲げに対する光損失波
長特性の代表例(曲げ径20wxψの場合)である。
FIG. 2 is a typical example of the optical loss wavelength characteristics of an 8M type optical fiber with respect to bending (when the bending diameter is 20 w x ψ).

第1図に示すように、光ファイバテーブル/内の複数心
からなる光ファイバ心線は対照心線2−/の片端から参
照光3を入射し、光ファイバ心線2−/の対照位置Aに
おいては光ファイバ心線コー/に曲げを与えて、曲げ付
与部弘から参照光3の漏れ光を光ファイバ心線−げ部≠
近傍に設けられた受光センサjで検知して光ファイバ心
線2−/の対照を行う。
As shown in FIG. 1, a reference beam 3 is incident on a plurality of optical fibers in an optical fiber table/ from one end of a reference fiber 2-/, and a reference beam 3 is inputted at a reference position A of the optical fiber 2-/. bends the optical fiber core, and directs the leakage light of the reference beam 3 from the bending section to the optical fiber core ≠
It is detected by a light receiving sensor j provided nearby and the optical fiber core wire 2-/ is compared.

従来では、この参照光3は活回@2−2の光伝送に使用
している波長と同じ波長を用いている。
Conventionally, this reference light 3 uses the same wavelength as the wavelength used for optical transmission of the active cycle @2-2.

一方、第2図に示すように、曲げ径20mψにおける8
M型光ファイバ心線の曲げに対する光損失波長特性は、
通常の光伝送に用いられている1、3μmにおいては光
損失の増加はほとんどない。
On the other hand, as shown in Fig. 2, 8
The optical loss wavelength characteristics for bending of M-type optical fiber are as follows:
At 1 to 3 μm, which is used for normal optical transmission, there is almost no increase in optical loss.

しかし、波長が1.1μm以下、あるいは1.4μm以
上の波長範囲では曲げによる光損失増加が認められる。
However, in a wavelength range of 1.1 μm or less or 1.4 μm or more, an increase in optical loss due to bending is observed.

そこで、本発明ではこれらの範囲の波長領域を有する光
源を参照光3に用いて光ファイバ心線の対照を実施する
ものである。これにより、たとえ誤って活回線2−2の
光ファイバ心線を曲げて対照しようとしても光伝送特性
への影響は全く生じない。
Therefore, in the present invention, a light source having a wavelength range within these ranges is used as the reference light 3 to perform comparison of the optical fiber cores. As a result, even if an attempt is made to compare the optical fiber core wire of the active line 2-2 by mistake, the optical transmission characteristics will not be affected at all.

すなわち、1.3μmの波長を光伝送に使用している光
ファイバケーブルを対照する場合の実施例について具体
的に説明すると以下のとおりである。
That is, an example in which an optical fiber cable using a wavelength of 1.3 μm is used for optical transmission will be specifically described below.

第2図に示すようにS M型光ファイバ心線を20+a
+ψで曲げた場合、波長1.55μmにおいては約数d
Bの光損失増加が生じる。しかし、1.3μmにおいて
は光損失増加は全く生じない状態である。そこで、参照
光3に波長1.55μmの光源を用いれば、光ファイバ
心線の対照位置Aにおいて光ファイバ心線−げ部≠から
参照光3の漏れ光を漏洩光検出jで検知できるので、対
照心線2−/の対照が簡易にできる。
As shown in Figure 2, the SM type optical fiber core is 20+A
When bent at +ψ, at a wavelength of 1.55 μm, it is approximately several d
B's optical loss increases. However, at 1.3 μm, no increase in optical loss occurs at all. Therefore, if a light source with a wavelength of 1.55 μm is used as the reference light 3, the leakage light of the reference light 3 can be detected from the bent part of the optical fiber at the reference position A of the optical fiber by the leakage light detection j. The comparison of the control core wire 2-/ can be easily performed.

したがって、前記条件で光ファイバ心線の対照を実施す
れば、たとえ活回線2−2を対照のため誤って曲げたと
しても、1.3μmにおいては光損失増加はないので全
く問題ない。
Therefore, if the optical fiber core wires are compared under the above conditions, even if the live line 2-2 is erroneously bent for the purpose of comparison, there is no problem at all since there is no increase in optical loss at 1.3 μm.

また参照光の光源の波長として1.55μm近傍の光フ
ァイバの低損失領域を使用すると、最近の光ファイバの
光損失特性は1.3μmより低損失であることから、参
照光の伝送可能距離が長くなるので、参照光の光ファイ
バの入射端末から光ファイバ心線対照位置までの距離を
長くとることができ、遠距離での心線対照が容易となる
利点がある。
Furthermore, if a low-loss region of an optical fiber near 1.55 μm is used as the light source wavelength of the reference light, the optical loss characteristics of recent optical fibers are lower than 1.3 μm, so the possible transmission distance of the reference light is Since the length is longer, the distance from the reference light input end of the optical fiber to the optical fiber core comparison position can be increased, which has the advantage of facilitating fiber core comparison over a long distance.

第3図は漏洩光量の曲げ角依存性測定系であって、乙は
元ファイバ心線曲げ治具、θは受光センサ位置である。
FIG. 3 shows a bending angle dependence measurement system for the amount of leaked light, where B is the original fiber core bending jig and θ is the light receiving sensor position.

第4図は漏洩光量の受光センサ位置依存性である。第4
図から受光センサ位置θが約π/2ラジアン付近で漏洩
光量検出パワーのピーク値が存在することがわかる。
FIG. 4 shows the dependence of the amount of leaked light on the position of the light receiving sensor. Fourth
It can be seen from the figure that the peak value of the leakage light amount detection power exists when the light receiving sensor position θ is around π/2 radians.

そこで、光心線対照可能なパワーレベルは第4図内の点
線レベル以上であるので、受光センサの位置をπ/4〜
3、π/4ラジアンに設定すればよいことが明らかとな
る。
Therefore, since the power level that can be compared with the optical center line is higher than the dotted line level in Figure 4, the position of the light receiving sensor is adjusted from π/4 to
It becomes clear that the value should be set to 3.π/4 radians.

なお、参照光3の漏れ光の感度の向上するためには、光
源側と受光部側とを信号に同期をとる、曲げ付与部を複
数箇所設ける、など種々工夫すればよい。
In order to improve the sensitivity of the leakage light of the reference light 3, various measures may be taken such as synchronizing the light source side and the light receiving section side with a signal, providing a plurality of bending sections, etc.

また活回巌2−2の許容光損失変動(AGCが作動する
範囲)内であれば、光ファイバ心線の曲率が大きい程、
さらにS/N比を向上することができるので曲げ径約1
5■ψまで小さくすることが可能である。
Also, within the allowable optical loss variation of the active recovery 2-2 (range in which AGC operates), the larger the curvature of the optical fiber, the more
Furthermore, since the S/N ratio can be improved, the bending diameter is approximately 1
It is possible to reduce it to 5■ψ.

第5図は本発明の光ファイバ心線の曲げ付与装置の実施
例の斜視図を示す。
FIG. 5 shows a perspective view of an embodiment of a bending device for optical fiber according to the present invention.

図において、7は凸形曲げ部、♂は凹形曲げ部である。In the figure, 7 is a convex bent portion, and ♂ is a concave bent portion.

光ファイバ心線の曲げ付与装置の構成を説明するO 凸形曲げ部7は長方形の基部7Aの中央より長辺部の側
面よシ直角に突出する断面形状がU字形で下部が半円形
の略半円柱体7Bを一体に構成し、半円柱体7Bの外周
全面にその軸線方向に直角に光ファイバ心線収納溝7−
/を設け、基部7Aの両翼部に下方に貫通する円形の孔
7Cを設けて構成する凹形曲げ部tは長方形板状体に構
成し、上面部中央に一端面に開口する断面半円形の溝部
rhを構成し、溝部FAの基部の左右に摺動柱lrBを
植設する。凸形曲げ部7の孔7cに凹形曲げ部gの摺動
柱fBを挿入し、溝部FAに半円柱体7BIJ″−嵌合
できるよう構成する。
The configuration of the optical fiber bending device will be explained. The convex bending portion 7 has a U-shaped cross section that projects perpendicularly from the center of the rectangular base 7A to the side surface of the long side, and has a semicircular lower portion. The semi-cylindrical body 7B is integrally constructed, and an optical fiber core storage groove 7- is formed on the entire outer circumference of the semi-cylindrical body 7B at right angles to the axial direction thereof.
/ and circular holes 7C penetrating downward in both wing parts of the base 7A.The concave bent part t is formed into a rectangular plate-like body, and has a semicircular cross section with an opening at one end in the center of the upper surface part. A groove rh is formed, and sliding columns lrB are planted on the left and right sides of the base of the groove FA. The sliding column fB of the concave bent part g is inserted into the hole 7c of the convex bent part 7, and the semi-cylindrical body 7BIJ'' can be fitted into the groove part FA.

第6図は光ファイバ心線−げ時の横断面図であって、j
−/は受光センサである。
FIG. 6 is a cross-sectional view of the optical fiber when it is being spun.
-/ is a light receiving sensor.

本実施例は光ファイバ心線の曲げ角度がπラジアンで、
かつ受光センサj−/を漏洩光が最大となる凹形曲げ部
ざのほぼ中央(π/2ラジアン)の位置に取り付けた場
合について示している。したがって、このように曲げ付
与部を対照形にすると光ファイバ心線の参照光入射端方
向に関係なく対照が可能である。
In this example, the bending angle of the optical fiber is π radian,
Also, the case where the light receiving sensor j-/ is attached at a position approximately in the center (π/2 radian) of the concave bending portion where the leakage light is maximum is shown. Therefore, by making the bending portions symmetrical in this way, the bending portions can be symmetrical regardless of the direction of the reference light incident end of the optical fiber core.

発明の効果 本発明の光ファイバ心線対照方法では、光伝送に使用し
ている光源の波長より、曲げに対する光損失量が大きく
なる波長領域の光源を参照先に用いるので、曲げ径を極
端に小さくする必要がない。
Effects of the Invention In the optical fiber core comparison method of the present invention, a light source in a wavelength region where the amount of optical loss due to bending is larger than the wavelength of the light source used for optical transmission is used as a reference, so the bending diameter cannot be set to an extreme value. There's no need to make it smaller.

したがって、活回線を誤って対照した(曲げた)場合に
も、光伝送特性への影響を与える恐れが全くないという
効果を生ずる。
Therefore, even if the live line is erroneously compared (bent), there is no risk of affecting the optical transmission characteristics.

また光ファイバ心線の曲げ付与部における受光センサの
位置を漏洩光が最大となるπ/4〜3π/4の範囲に規
定しているので、漏洩光を効率よく検出することが可能
である。また光ファイバ心線−げ付与部の構造を受光セ
ンサ位置2中心として、対称形にすれば光ファイバ心線
対照時に参照光源の入射端方向に関係なく対照すること
が可能である。
Furthermore, since the position of the light receiving sensor in the bending portion of the optical fiber is defined in the range of π/4 to 3π/4 where the leakage light is maximum, it is possible to efficiently detect the leakage light. Furthermore, by making the structure of the optical fiber core part symmetrical with respect to the light receiving sensor position 2, it is possible to compare the optical fiber cores regardless of the incident end direction of the reference light source.

さらに、本発明の方法においては、光ファイバ心線被覆
の曲がりぐせなどの残留ひずみを与えることなく参照で
きる効果を生ずる。
Furthermore, the method of the present invention produces the effect that reference can be made without imparting residual strain such as bending of the optical fiber coating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバ心線対照方法の実施例の原
理図、第2図は8M型光ファイバ心線の曲げに対する光
損失波長特性の代表例(曲げ径20wψの場合)、第3
図は漏洩光量の曲げ角度依存性測定系、第4図は漏洩光
量の漏洩光検出部位置依存性、第5図は光ファイバ心線
の曲げ付与装置の実施例の斜視図、第6図は光ファイバ
心線−げ時の横断面図、を示す。 l:光ファイバテーブル、2:光ファイバ心線、コー/
:対照心線、λ−2=活回線、 3:参照光、lA:光ファイバ心線−げ部、!=漏洩光
検出部、j−/:受光センサ、A:光ファイバ心線の対
照位置、 6:光ファイバ心線−げ治具、 θ:光ファイバ心線曲げ角、 7:凸形曲げ部、7−/:光ファイバ心線収納溝、lr
:凹形曲げ部。 特許出願人  日本電信電話株式会社 代理人弁理士  阿  部    功 4 : :L7y(′+−t4Jh f4F    r
 ”kl ’に’光嫂出6p第1図 第2図 ft9L4−y4!イ”ft 61(hadン第4図 7コ 6寸タ船11°却 ! 第5− 第6図
Fig. 1 is a principle diagram of an embodiment of the optical fiber comparison method of the present invention, Fig. 2 is a typical example of optical loss wavelength characteristics with respect to bending of an 8M type optical fiber (when the bending diameter is 20wψ), and Fig. 3
The figure shows a measurement system for the bending angle dependence of the amount of leaked light, FIG. 4 shows the dependence of the amount of leaked light on the position of the leakage light detection part, FIG. FIG. 2 shows a cross-sectional view of the optical fiber when it is being spun. l: Optical fiber table, 2: Optical fiber core, core/
: Reference fiber, λ-2=live line, 3: Reference light, lA: Optical fiber core, ! = leakage light detection unit, j-/: light receiving sensor, A: contrast position of optical fiber coated wire, 6: optical fiber coated wire bending jig, θ: optical fiber coated wire bending angle, 7: convex bent portion, 7-/: Optical fiber core storage groove, lr
: Concave bend. Patent applicant: Nippon Telegraph and Telephone Corporation Representative Patent Attorney Isao Abe 4: :L7y('+-t4Jh f4F r
"kl" 6p Figure 1 Figure 2 ft9L4-y4! ft 61 (hadn Figure 4 7) 6-inch boat 11°! Figure 5- Figure 6

Claims (1)

【特許請求の範囲】[Claims]  複数心からなる光ファイバケーブル内の光ファイバ心
線を対照する光ファイバ心線対照方法において、伝送に
使用されている光源の波長領域における光ファイバ心線
の曲げに対する光損失増加量よりも大きな損失が生じ、
かつ光ファイバの光伝送損失量がほぼ同等、それ以下と
なる波長を有する参照光ファイバ心線に曲げを加え、前
記参照光源入射端側の前記光ファイバ心線の曲げ始めか
ら前記参照光源入射側とは反対方向へ前記光ファイバ心
線に沿った曲り角がπ/4〜3、π/4ラジアンの範囲
の位置に受光センサを配設し、光ファイバ心線を対照す
る光ファイバ心線対照方法。
In an optical fiber comparison method that compares optical fibers in an optical fiber cable consisting of multiple fibers, the loss is greater than the increase in optical loss due to bending of the optical fiber in the wavelength range of the light source used for transmission. arise,
A reference optical fiber having a wavelength at which the optical transmission loss of the optical fiber is approximately the same or less is bent, and from the beginning of bending the optical fiber on the reference light source input end side to the reference light source input side. An optical fiber coated wire comparison method in which a light receiving sensor is disposed at a position where the bending angle along the optical fiber coated wire is in the range of π/4 to 3, π/4 radians in the opposite direction to the optical fiber coated wire, and the optical fiber coated wire is compared. .
JP62259354A 1987-10-14 1987-10-14 Method for pair identification of optical fiber Pending JPH01101504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259354A JPH01101504A (en) 1987-10-14 1987-10-14 Method for pair identification of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259354A JPH01101504A (en) 1987-10-14 1987-10-14 Method for pair identification of optical fiber

Publications (1)

Publication Number Publication Date
JPH01101504A true JPH01101504A (en) 1989-04-19

Family

ID=17332944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259354A Pending JPH01101504A (en) 1987-10-14 1987-10-14 Method for pair identification of optical fiber

Country Status (1)

Country Link
JP (1) JPH01101504A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220803A (en) * 1988-07-08 1990-01-24 Kansai Terekomu Technol:Kk Free line identifying method for optical fiber cable
WO1992009873A1 (en) * 1990-11-30 1992-06-11 The Furukawa Electric Co., Ltd. Method of identifying optical cables
EP1757966A3 (en) * 2005-08-23 2007-12-19 KT Corporation Apparatus and method for identification of optical cable
JP2008275536A (en) * 2007-05-02 2008-11-13 Fujikura Ltd Optical fiber bending head and optical fiber identification device
JP2009204490A (en) * 2008-02-28 2009-09-10 Fujikura Ltd Coated optical fiber comparison method and coated optical fiber comparison device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220803A (en) * 1988-07-08 1990-01-24 Kansai Terekomu Technol:Kk Free line identifying method for optical fiber cable
WO1992009873A1 (en) * 1990-11-30 1992-06-11 The Furukawa Electric Co., Ltd. Method of identifying optical cables
US5331392A (en) * 1990-11-30 1994-07-19 The Furukawa Electric Co., Ltd. Method of identifying an optical cable
EP1757966A3 (en) * 2005-08-23 2007-12-19 KT Corporation Apparatus and method for identification of optical cable
JP2008275536A (en) * 2007-05-02 2008-11-13 Fujikura Ltd Optical fiber bending head and optical fiber identification device
JP2009204490A (en) * 2008-02-28 2009-09-10 Fujikura Ltd Coated optical fiber comparison method and coated optical fiber comparison device

Similar Documents

Publication Publication Date Title
US4118100A (en) Optical couplers for light emitting diodes and detectors
US6422764B1 (en) Clamping mechanism for an optical fiber
US4802723A (en) Optical fiber tap
KR840002529A (en) Micro Curved Fiber Tapped Delay Line
US4605281A (en) Self-aligning fiber optic connector
JPS6064311A (en) Fiber optical coupler system
JPH01101504A (en) Method for pair identification of optical fiber
JPH0251133A (en) Apparatus for hetrodyne detection or homodyne detection of light signal beam optically
US4367011A (en) Optical fiber connector and means and method for centering optical fibers
KR890002996B1 (en) Axial aligning device for optical fiber
GB2049220A (en) Optical fiber terminator and means and method for centering optical fiber
JPS5879212A (en) Connector for optical conductor
US6835005B2 (en) Method for fusion splicing optical fibers
US9664851B2 (en) Optical assembly
JPH01237509A (en) Optical fiber contrasting device
US4908677A (en) Method of examining the states of alignment of glass fibers of a pair of ribbon fiber cables
US4705347A (en) Optical fiber coupler
JPS61221712A (en) Optical connector ferrule and how to connect the ferrule to optical fiber
JPS63298305A (en) Optical fiber contrasting method
JPS63266333A (en) Water immersion detection sensor
JPH0643056A (en) Optical fiber cable for pressure sensor
JPS62175706A (en) Contrasting method for tape type optical fiber core
JPH1019723A (en) Method for identifying strand of coated optical fiber ribbon
JP2006119358A (en) Pair identifier for optical-fiber
JPS63151906A (en) Reference device for optical fiber tape core