[go: up one dir, main page]

JP7660540B2 - Secondary battery state diagnostic method and state diagnostic device - Google Patents

Secondary battery state diagnostic method and state diagnostic device Download PDF

Info

Publication number
JP7660540B2
JP7660540B2 JP2022051770A JP2022051770A JP7660540B2 JP 7660540 B2 JP7660540 B2 JP 7660540B2 JP 2022051770 A JP2022051770 A JP 2022051770A JP 2022051770 A JP2022051770 A JP 2022051770A JP 7660540 B2 JP7660540 B2 JP 7660540B2
Authority
JP
Japan
Prior art keywords
state
secondary battery
charge
relationship
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022051770A
Other languages
Japanese (ja)
Other versions
JP2023144673A (en
Inventor
耕平 本蔵
健士 井上
雅浩 米元
茂樹 平澤
宏明 小西
誠仁 望月
陽介 澄川
伸也 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2022051770A priority Critical patent/JP7660540B2/en
Priority to PCT/JP2023/001776 priority patent/WO2023188723A1/en
Publication of JP2023144673A publication Critical patent/JP2023144673A/en
Application granted granted Critical
Publication of JP7660540B2 publication Critical patent/JP7660540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、二次電池の状態診断方法および状態診断装置に関する。 The present invention relates to a method and device for diagnosing the state of a secondary battery.

リチウムイオン電池等の二次電池は、充放電の繰り返し時や、高温環境下での保管時等に、電池特性が劣化することが知られている。二次電池の劣化が進行すると、電圧降下や容量低下を生じる。そのため、二次電池の劣化の進行度合に応じて、電圧や電流の制御が行われている。 It is known that the battery characteristics of secondary batteries such as lithium-ion batteries deteriorate when they are repeatedly charged and discharged, or when they are stored in high-temperature environments. As deterioration of a secondary battery progresses, voltage drops and capacity reductions occur. For this reason, voltage and current are controlled according to the degree of deterioration of the secondary battery.

従来、二次電池を適切に制御するために、劣化状態(State of Health:SOH)の診断が行われている。二次電池の劣化は、正極や負極の不可逆的反応や、電極以外の要素、例えば、電解液、集電体等の変質によって起こる。二次電池の劣化は、電極や電極以外の要素の個別の劣化の結果であることが知られている。二次電池の使用中には、劣化の要因に応じた適切な制御が望まれるため、二次電池の劣化状態を非破壊で診断する方法が求められている。 Conventionally, diagnosis of the state of health (SOH) has been performed to appropriately control secondary batteries. Deterioration of secondary batteries occurs due to irreversible reactions at the positive and negative electrodes, and alteration of elements other than the electrodes, such as the electrolyte and current collectors. It is known that deterioration of secondary batteries is the result of individual deterioration of the electrodes and elements other than the electrodes. Since appropriate control according to the cause of deterioration is desired during use of secondary batteries, a non-destructive method for diagnosing the deterioration state of secondary batteries is required.

特許文献1には、二次電池の内部情報検知方法が記載されている。この方法では、正極単独や負極単独の充放電カーブを利用することによって、正極の状態や負極の状態を非破壊で定量的に評価している。正極単独の充放電カーブと負極単独の充放電カーブとを重ね合わせ計算して、二次電池の充放電カーブを再現している。 Patent Document 1 describes a method for detecting internal information of a secondary battery. In this method, the state of the positive electrode and the state of the negative electrode are evaluated non-destructively and quantitatively by using the charge/discharge curves of the positive electrode alone and the negative electrode alone. The charge/discharge curves of the positive electrode alone and the charge/discharge curves of the negative electrode alone are superimposed and calculated to reproduce the charge/discharge curve of the secondary battery.

特許文献2には、二次電池の内部情報検出装置が記載されている。この装置では、一定容量の充電と充電の休止とを繰り返すことで被検知電池を間欠的に充電するよう間欠充電制御を行っている。二次電池の電圧等の充電特性の情報は、二次電池を間欠充電する過程で取得されている。 Patent document 2 describes a device for detecting internal information about a secondary battery. In this device, intermittent charging control is performed to intermittently charge the detected battery by repeatedly charging a fixed capacity and pausing charging. Information about the charging characteristics of the secondary battery, such as its voltage, is acquired during the process of intermittently charging the secondary battery.

特開2009-080093号公報JP 2009-080093 A 国際公開第2014/147753号International Publication No. 2014/147753

二次電池の劣化状態を診断するにあたり、特許文献1では、正極材料固有の充放電カーブと、負極材料固有の充放電カーブと、補正パラメータとに基づいて、二次電池の充放電カーブを計算した後、実測に基づく二次電池の充放電カーブと、測定に基づく二次電池の充放電カーブとを比較している。しかし、充放電カーブには、放電量等の充電状態と電位や電位変化率との関係と、二次電池の内部抵抗による電圧上昇および電圧降下の影響が含まれる。電位や電位変化率のみを指標とする方法では、劣化に伴う内部抵抗の変化が大きい場合に、診断の精度が低くなるという課題がある。 In diagnosing the deterioration state of a secondary battery, in Patent Document 1, the charge/discharge curve of the secondary battery is calculated based on the charge/discharge curve specific to the positive electrode material, the charge/discharge curve specific to the negative electrode material, and correction parameters, and then the charge/discharge curve of the secondary battery based on actual measurements is compared with the charge/discharge curve of the secondary battery based on measurements. However, the charge/discharge curve includes the relationship between the charge state (e.g., the discharge amount) and the potential and potential change rate, as well as the effects of voltage rise and voltage drop due to the internal resistance of the secondary battery. Methods that use only the potential and potential change rate as indicators have the problem that the accuracy of diagnosis is low when the change in internal resistance due to deterioration is large.

特許文献2では、診断対象である二次電池の充電特性の情報を取得する際に、間欠的に充電を行っている。しかし、間欠的に充放電を行う方法では、所定の条件で充放電を行うための充放電装置や、使用時の回路から二次電池を取り外す作業、或いは定期的なスイッチ切り替え作業が必要になる。特殊な装置や作業が必要になるため、二次電池のユーザ自身で情報を取得するのが容易でなく、汎用性が低いという課題がある。また、間欠的に充放電を行う方法では、電池情報を取得するのに時間がかかる。 In Patent Document 2, intermittent charging is performed when obtaining information on the charging characteristics of the secondary battery to be diagnosed. However, methods of intermittent charging and discharging require a charging and discharging device for charging and discharging under specified conditions, the task of removing the secondary battery from the circuit when in use, or periodic switching operations. Because special equipment and operations are required, it is not easy for users of secondary batteries to obtain the information themselves, and there is an issue that versatility is low. Furthermore, with methods of intermittent charging and discharging, it takes time to obtain battery information.

そこで、本発明は、二次電池の劣化状態を簡便な操作で取得できる情報に基づいて高精度に診断することができる二次電池の状態診断方法および二次電池の状態診断装置を提供することを目的とする。 The present invention aims to provide a method and device for diagnosing the condition of a secondary battery that can diagnose the deterioration state of a secondary battery with high accuracy based on information that can be obtained through simple operations.

上記の課題を解決するため、本発明に係る二次電池の状態診断方法は、二次電池の劣化状態を診断する状態診断方法であって、劣化状態を表すパラメータで補正された二次電池の充電状態と開回路電圧との関係と、劣化状態を表すパラメータで補正された二次電池の充電状態と内部抵抗との関係とを求める工程と、補正された前記二次電池の充電状態と開回路電圧との関係と、補正された前記二次電池の充電状態と内部抵抗との関係とに基づいて、二次電池の充電状態と閉回路電圧との関係を示す計算結果を求める工程と、二次電池の充電状態と閉回路電圧との関係を示す測定結果と、前記二次電池の充電状態と閉回路電圧との関係を示す計算結果とを比較する工程と、前記比較結果に基づいて前記二次電池の劣化状態の診断結果を示す前記パラメータを特定する工程と、を含み、前記二次電池の充電状態と閉回路電圧との関係を示す測定結果は、二次電池の充電過程または放電過程において、前記二次電池の充電状態毎の測定を連続的に行って取得される。 In order to solve the above problems, a secondary battery state diagnosis method according to the present invention is a state diagnosis method for diagnosing a deterioration state of a secondary battery, and includes the steps of: determining a relationship between the state of charge and open circuit voltage of the secondary battery corrected by a parameter representing the deterioration state, and a relationship between the state of charge and internal resistance of the secondary battery corrected by a parameter representing the deterioration state; determining a calculation result indicating the relationship between the state of charge and closed circuit voltage of the secondary battery based on the corrected relationship between the state of charge and open circuit voltage of the secondary battery and the corrected relationship between the state of charge and internal resistance of the secondary battery; comparing a measurement result indicating the relationship between the state of charge and closed circuit voltage of the secondary battery with a calculation result indicating the relationship between the state of charge and closed circuit voltage of the secondary battery; and identifying the parameter indicating the diagnosis result of the deterioration state of the secondary battery based on the comparison result, wherein the measurement result indicating the relationship between the state of charge and closed circuit voltage of the secondary battery is obtained by continuously measuring each state of charge of the secondary battery during the charging process or discharging process of the secondary battery.

また、本発明に係る二次電池の状態診断装置は、二次電池の劣化状態を診断する状態診断装置であって、前記二次電池の充電状態と閉回路電圧との関係を示す測定データを取得する取得部と、正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データ、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データ、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データ、および、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データを記憶した記憶部と、劣化状態を表すパラメータで補正された前記参照データに基づいて、二次電池の充電状態と開回路電圧との関係を示す第1計算データ、および、二次電池の充電状態と内部抵抗との関係を示す第2計算データを生成し、前記第1計算データおよび前記第2計算データに基づいて、二次電池の充電状態と閉回路電圧との関係を示す第3計算データを生成し、前記測定データと前記第3計算データとを比較する演算部と、を備え、前記測定データは、二次電池の充電過程または放電過程において、前記二次電池の充電状態毎の測定を連続的に行って取得された後に、前記取得部に入力される。 In addition, the secondary battery state diagnostic device according to the present invention is a state diagnostic device for diagnosing the deterioration state of a secondary battery, and includes an acquisition unit for acquiring measurement data showing the relationship between the charge state and closed circuit voltage of the secondary battery, a memory unit for storing reference data showing the relationship between the charge state of the positive electrode and the open circuit potential of the positive electrode specific to the positive electrode material, reference data showing the relationship between the charge state of the positive electrode and the internal resistance of the positive electrode specific to the positive electrode material, reference data showing the relationship between the charge state of the negative electrode and the open circuit potential of the negative electrode specific to the negative electrode material, and reference data showing the relationship between the charge state of the negative electrode and the internal resistance of the negative electrode specific to the negative electrode material, and a correction unit for correcting the deterioration state with a parameter indicating the deterioration state. A calculation unit generates first calculation data indicating the relationship between the charge state of the secondary battery and the open circuit voltage, and second calculation data indicating the relationship between the charge state of the secondary battery and the internal resistance based on the reference data obtained, generates third calculation data indicating the relationship between the charge state of the secondary battery and the closed circuit voltage based on the first calculation data and the second calculation data, and compares the measurement data with the third calculation data, and the measurement data is input to the acquisition unit after being acquired by continuously measuring each charge state of the secondary battery during the charging or discharging process of the secondary battery.

本発明によると、二次電池の劣化状態を簡便な操作で取得できる情報に基づいて高精度に診断することができる二次電池の状態診断方法および二次電池の状態診断装置を提供することができる。 The present invention provides a method and device for diagnosing the condition of a secondary battery that can diagnose the deterioration state of a secondary battery with high accuracy based on information that can be obtained through simple operations.

本実施形態に係る二次電池の状態診断装置の構成を示す図である。1 is a diagram showing a configuration of a secondary battery state diagnosis device according to an embodiment of the present invention; 二次電池の劣化状態の診断の処理を示すフローチャートである。4 is a flowchart showing a process for diagnosing a deterioration state of a secondary battery. 電極の充電状態と開回路電位との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the charged state of an electrode and the open circuit potential. 電極の充電状態と開回路電位との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the charged state of an electrode and the open circuit potential. 電極の充電状態と内部抵抗との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the charged state and the internal resistance of an electrode. 電極の充電状態と内部抵抗との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the charged state and the internal resistance of an electrode. 二次電池の充電状態と開回路電位との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the state of charge and the open circuit potential of a secondary battery. 二次電池の充電状態と内部抵抗との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the state of charge and the internal resistance of a secondary battery. 二次電池の充電状態と閉回路電位との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the state of charge of a secondary battery and a closed circuit potential.

以下、本発明の一実施形態に係る二次電池の状態診断方法および二次電池の状態診断装置について説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。 The following describes a method and device for diagnosing the state of a secondary battery according to one embodiment of the present invention. Note that the same reference numerals are used to designate common components in the following figures, and duplicate descriptions will be omitted.

本実施形態に係る二次電池の状態診断方法は、二次電池の劣化状態を診断する方法に関する。診断対象の二次電池としては、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池、ニッケル水素二次電池、鉛二次電池等が挙げられる。診断対象の二次電池としては、リチウムイオン二次電池が特に好ましい。 The secondary battery state diagnosis method according to this embodiment relates to a method for diagnosing the deterioration state of a secondary battery. Examples of secondary batteries to be diagnosed include lithium ion secondary batteries, sodium ion secondary batteries, magnesium ion secondary batteries, calcium ion secondary batteries, zinc secondary batteries, aluminum ion secondary batteries, nickel-hydrogen secondary batteries, and lead secondary batteries. As the secondary battery to be diagnosed, a lithium ion secondary battery is particularly preferable.

本実施形態に係る二次電池の状態診断方法では、診断対象である二次電池の劣化状態を診断するための情報として、二次電池の充電状態と閉回路電圧(Closed circuit voltage:CCV)との関係を用いる。二次電池の充電状態毎の閉回路電圧の測定に基づいて、二次電池の劣化状態や、二次電池が備える電極毎の劣化状態を、非破壊で個別に診断することができる。 In the secondary battery state diagnosis method according to this embodiment, the relationship between the charge state of the secondary battery and the closed circuit voltage (CCV) is used as information for diagnosing the deterioration state of the secondary battery to be diagnosed. Based on the measurement of the closed circuit voltage for each charge state of the secondary battery, the deterioration state of the secondary battery and the deterioration state of each electrode of the secondary battery can be diagnosed individually and non-destructively.

本実施形態に係る二次電池の状態診断方法では、診断対象である二次電池の充電状態毎の閉回路電圧を、二次電池の充電過程または放電過程において、途中に充放電の切り替えを挟むことなく連続的に測定する。二次電池の閉回路電圧は、互いに異なる充電状態における測定結果を含むように、連続的な充電過程、または、連続的な放電過程のうちで、必要に応じて測定間隔を空けて連続的に測定される。 In the secondary battery state diagnosis method according to this embodiment, the closed circuit voltage for each charge state of the secondary battery to be diagnosed is continuously measured during the charging or discharging process of the secondary battery without switching between charging and discharging. The closed circuit voltage of the secondary battery is continuously measured during the continuous charging or discharging process with measurement intervals as necessary so as to include measurement results in different charge states.

二次電池の充電状態と閉回路電圧との関係は、二次電池の充電状態と開回路電圧(Open circuit voltage:OCV)との関係と、二次電池の充電状態と内部抵抗との関係とに基づいて計算できる。また、二次電池の充電状態と開回路電圧との関係は、正極の充電状態と開回路電圧との関係と、負極の充電状態と開回路電位との関係に基づいて計算できる。二次電池の充電状態と内部抵抗との関係は、正極の充電状態と内部抵抗との関係と、負極の充電状態と内部抵抗との関係と、電極以外の要素の抵抗に基づいて計算できる。 The relationship between the state of charge and the closed circuit voltage of a secondary battery can be calculated based on the relationship between the state of charge and the open circuit voltage (OCV) of the secondary battery, and the relationship between the state of charge and the internal resistance of the secondary battery. The relationship between the state of charge and the open circuit voltage of the secondary battery can be calculated based on the relationship between the state of charge and the open circuit voltage of the positive electrode, and the relationship between the state of charge and the open circuit potential of the negative electrode. The relationship between the state of charge and the internal resistance of a secondary battery can be calculated based on the relationship between the state of charge and the internal resistance of the positive electrode, the relationship between the state of charge and the internal resistance of the negative electrode, and the resistance of elements other than the electrodes.

そのため、本実施形態に係る二次電池の状態診断方法では、電極毎の充電状態と開回路電圧との関係や、電極毎の充電状態と内部抵抗との関係を、参照情報として予め用意しておく。これらの関係を、正極や負極、電極以外の要素の劣化状態を表す劣化状態パラメータで補正する。劣化状態パラメータで補正された関係同士を組み合わせると、劣化状態が仮定された二次電池の充電状態と閉回路電圧との関係を計算上で再現できる。 Therefore, in the secondary battery state diagnosis method according to this embodiment, the relationship between the state of charge and the open circuit voltage for each electrode, and the relationship between the state of charge and the internal resistance for each electrode are prepared in advance as reference information. These relationships are corrected with degradation state parameters that represent the degradation state of elements other than the positive electrode, negative electrode, and electrodes. By combining relationships corrected with the degradation state parameters, the relationship between the state of charge and the closed circuit voltage of a secondary battery assumed to be in a degraded state can be reproduced by calculation.

したがって、実測に基づく測定結果と、再現に基づく劣化状態が仮定された計算結果とを比較すると、測定結果と計算結果との一致性に基づいて、実際の劣化状態を推定することができる。測定結果と計算結果との一致性に基づいて、仮定的に設定された劣化状態パラメータが、真値に向けて近似される。劣化状態パラメータは、正極や負極、電極以外の要素の劣化度合を表すため、劣化状態パラメータの解を求めることにより、二次電池の劣化状態や、二次電池の電極毎の劣化状態を評価することができる。 Therefore, by comparing the measurement results based on actual measurements with the calculation results in which the deterioration state based on reproduction is assumed, the actual deterioration state can be estimated based on the agreement between the measurement results and the calculation results. Based on the agreement between the measurement results and the calculation results, the deterioration state parameters that are hypothetically set are approximated toward the true value. Since the deterioration state parameters represent the degree of deterioration of elements other than the positive electrode, negative electrode, and electrodes, by finding a solution for the deterioration state parameters, the deterioration state of the secondary battery and the deterioration state of each electrode of the secondary battery can be evaluated.

従来、診断対象である二次電池の情報を間欠的な充放電で収集する方法が知られている。しかし、間欠的に充放電を行う方法では、所定の充電状態における電圧等を、二次電池の充電状態を変更しながら繰り返し測定する必要がある。従来の方法では、離散的な多数の充電状態毎の情報を収集するにあたり、微小な電流による充放電と、電気化学的な緩和のための休止とを、測定点毎に繰り返さなければならない。 Conventionally, there is a known method for collecting information on a secondary battery to be diagnosed by intermittently charging and discharging. However, in a method of intermittently charging and discharging, it is necessary to repeatedly measure the voltage at a given state of charge while changing the state of charge of the secondary battery. With the conventional method, in order to collect information for each of a large number of discrete states of charge, it is necessary to repeat charging and discharging with a small current and pausing for electrochemical relaxation at each measurement point.

このような従来の方法では、所定の条件で充放電を行うための充放電装置や充放電作業が必要になる。また、二次電池が使用されている既存の回路を使用できないことが多いため、二次電池を使用時の回路から取り外す作業が必要になる。また、間欠的に充放電を行う方法では、電池情報の収集に時間がかかる。診断対象である二次電池の情報を間欠的な充放電で収集する方法では、特殊な装置や作業が必要になり、手間や技能、測定時間を要するという課題がある。 Conventional methods like these require charging and discharging equipment and procedures to charge and discharge under specified conditions. Also, because existing circuits in which secondary batteries are used often cannot be used, the secondary battery must be removed from the circuit when in use. Also, methods that charge and discharge intermittently take time to collect battery information. Methods that collect information on the secondary battery to be diagnosed by intermittent charging and discharging require special equipment and procedures, and have the problem of requiring effort, skill, and measurement time.

これに対し、本実施形態に係る二次電池の状態診断方法では、診断対象である二次電池の閉回路電圧を、充電過程または放電過程において連続的に測定して診断に用いる。そのため、診断に必要な二次電池の情報を簡単な作業で収集できる。例えば、二次電池の充電状態毎の閉回路電圧の測定を、電圧計や電流計を備えた既存の回路上で行うことも可能である。特殊な装置や作業が不要であり、手間や技能を必要としないため、診断対象である二次電池の劣化状態を、簡便な操作で取得できる情報に基づいて、非破壊で高精度に診断することができる。 In contrast, in the secondary battery state diagnosis method according to the present embodiment, the closed circuit voltage of the secondary battery to be diagnosed is continuously measured during the charging or discharging process and used for diagnosis. Therefore, the information on the secondary battery required for diagnosis can be collected with a simple operation. For example, it is possible to measure the closed circuit voltage for each charging state of the secondary battery on an existing circuit equipped with a voltmeter and ammeter. Since no special equipment or operation is required, and no effort or skill is required, the deterioration state of the secondary battery to be diagnosed can be diagnosed non-destructively and with high accuracy based on information that can be obtained with a simple operation.

本明細書において、充電状態とは、満充電状態から放電可能な電気量に対する放電可能な電気量の割合によって定まる電気化学的な状態を意味する。充電状態は、満充電状態を100%、全放電状態を0%とする充電状態SOC(State of Charge)[%]や、満充電状態を0%、全放電状態を100%とする充電深度DOD(Depth of Discharge)や、満充電状態からの放電量[Ah]や、全放電状態からの充電量[Ah]や、活物質に含まれる電荷キャリア元素の組成比等、相互に換算可能な適宜の状態量で表すことができる。 In this specification, the state of charge refers to an electrochemical state determined by the ratio of the amount of electricity that can be discharged to the amount of electricity that can be discharged from a fully charged state. The state of charge can be expressed as an appropriate state quantity that can be converted between the two, such as the state of charge (SOC) [%], where the fully charged state is 100% and the fully discharged state is 0%, the depth of charge (DOD) where the fully charged state is 0% and the fully discharged state is 100%, the amount of discharge from a fully charged state [Ah], the amount of charge from a fully discharged state [Ah], or the composition ratio of the charge carrier elements contained in the active material.

図1は、本実施形態に係る二次電池の状態診断装置の構成を示す図である。
図1に示すように、本実施形態に係る二次電池の状態診断装置100は、演算部10と、記憶部20と、入力部30と、出力部40と、通信部50と、を備えている。状態診断装置100の演算部10、記憶部20、入力部30、出力部40および通信部50は、バスに接続されている。
FIG. 1 is a diagram showing the configuration of a secondary battery state diagnosis device according to this embodiment.
1, the secondary battery state diagnosis device 100 according to this embodiment includes a calculation unit 10, a storage unit 20, an input unit 30, an output unit 40, and a communication unit 50. The calculation unit 10, the storage unit 20, the input unit 30, the output unit 40, and the communication unit 50 of the state diagnosis device 100 are connected to a bus.

状態診断装置100は、二次電池の劣化状態を診断する装置であり、コンピュータ等のハードウェアによって構成することができる。状態診断装置100は、二次電池の劣化状態を診断する処理を所定のプログラムにしたがって実行する。 The condition diagnosis device 100 is a device that diagnoses the deterioration state of a secondary battery, and can be configured with hardware such as a computer. The condition diagnosis device 100 executes a process for diagnosing the deterioration state of a secondary battery according to a specified program.

状態診断装置100は、実測によって得られた測定結果を示す測定データを入力として、所定のプログラムを実行し、二次電池の劣化状態の診断結果を示す診断データを出力する。二次電池の劣化状態を診断する処理では、予め用意された電極特性を示す参照データを参照して、測定データと比較するための計算データを生成する。 The condition diagnosis device 100 executes a predetermined program using measurement data indicating the measurement results obtained by actual measurement as input, and outputs diagnostic data indicating the diagnosis results of the deterioration state of the secondary battery. In the process of diagnosing the deterioration state of the secondary battery, calculation data for comparison with the measurement data is generated by referring to reference data indicating the electrode characteristics prepared in advance.

演算部10は、各種のデータやプログラムの読み取り、プログラムの実行、二次電池の状態の計算等を行う。演算部10は、例えば、CPU(Central Processing Unit)等の演算装置によって構成される。 The calculation unit 10 reads various data and programs, executes programs, calculates the state of the secondary battery, etc. The calculation unit 10 is configured by a calculation device such as a CPU (Central Processing Unit), for example.

記憶部20は、各種のデータやプログラムを記憶する。記憶部20は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等の記憶装置によって構成される。各種のデータやプログラムは、書き込み可能且つ読み取り可能なハードディスク、フラッシュメモリ、磁気ディスク、光学ディスク等に記憶されてもよい。 The storage unit 20 stores various data and programs. The storage unit 20 is configured, for example, with storage devices such as RAM (Random Access Memory) and ROM (Read Only Memory). The various data and programs may be stored in a writable and readable hard disk, flash memory, magnetic disk, optical disk, etc.

入力部30は、操作者による入力を受け付ける装置である。入力部30は、例えば、キーボード、マウス、タッチパネル等によって構成される。入力部30は、不図示の入力インターフェイスを介して接続することができる。 The input unit 30 is a device that accepts input from an operator. The input unit 30 is composed of, for example, a keyboard, a mouse, a touch panel, etc. The input unit 30 can be connected via an input interface (not shown).

出力部40は、状態診断装置100の操作情報、各種のデータの内容、診断状況、診断結果等を出力する装置である。出力部40は、例えば、液晶ディスプレイ、有機ELディスプレイ、ブラウン管等によって構成される。出力部40は、不図示の出力インターフェイスを介して接続することができる。 The output unit 40 is a device that outputs operation information of the condition diagnosis device 100, the contents of various data, the diagnosis status, the diagnosis results, etc. The output unit 40 is composed of, for example, a liquid crystal display, an organic EL display, a cathode ray tube, etc. The output unit 40 can be connected via an output interface (not shown).

通信部50は、外部の測定機器や、電気通信回線等との間で、各種のデータや制御信号の送信および受信を行う。通信部50は、不図示の通信インターフェイス、入出力インターフェイス等を介して接続することができる。 The communication unit 50 transmits and receives various data and control signals between external measuring devices, electric communication lines, etc. The communication unit 50 can be connected via a communication interface, an input/output interface, etc. (not shown).

通信部50には、診断対象である二次電池の測定データを、電圧計や電流計等の外部の測定機器から取得してもよいし、二次電池の使用元の端末、二次電池の保守を行うサービスセンタの端末等から電気通信回線を通じて取得してもよい。二次電池の使用元やサービスセンタでは、診断対象である二次電池から測定データを収集して端末等に入力し、二次電池の劣化状態の診断要求に応じて状態診断装置100に送信できる。 The communication unit 50 may acquire measurement data of the secondary battery to be diagnosed from an external measuring device such as a voltmeter or ammeter, or may acquire the data via an electric communication line from a terminal at the source of use of the secondary battery or a terminal at a service center that maintains the secondary battery. At the source of use of the secondary battery or at the service center, measurement data can be collected from the secondary battery to be diagnosed and input to a terminal, etc., and transmitted to the condition diagnosis device 100 in response to a request to diagnose the deterioration state of the secondary battery.

図2は、二次電池の劣化状態の診断の処理を示すフローチャートである。
図2に示すように、二次電池の劣化状態の診断の処理では、電極毎の充電状態と開回路電圧との関係を示す参照データや、電極毎の充電状態と内部抵抗との関係を示す参照データを読み込み、劣化状態パラメータを設定して、劣化状態が仮定された二次電池の充電状態と閉回路電圧との関係を示す計算データを生成する。そして、実測に基づく測定データと、再現に基づく計算データとを比較して、データ同士の一致性を判定する。
FIG. 2 is a flowchart showing the process of diagnosing the deterioration state of the secondary battery.
2, in the process of diagnosing the deterioration state of a secondary battery, reference data showing the relationship between the state of charge and the open circuit voltage for each electrode and reference data showing the relationship between the state of charge and the internal resistance for each electrode are read, deterioration state parameters are set, and calculation data showing the relationship between the state of charge and the closed circuit voltage of a secondary battery assumed to be in a deteriorated state is generated. Then, the measurement data based on actual measurement and the calculation data based on reproduction are compared to determine whether the data match each other.

測定データは、二次電池の充電状態と閉回路電圧との関係を示す測定結果のデータである。測定データは、診断対象である二次電池の充電状態毎の閉回路電圧を、二次電池の充電過程または放電過程において連続的に測定することによって収集される。測定データは、実測によって収集された後、状態診断装置100の測定データを取得する取得部に入力されて、記憶部120に記憶される。取得部は、測定データを、通信部50を介して取得してもよいし、入力部30や記憶媒体を介して取得してもよい。測定データは、関係式で表されてもよいし、データテーブルで表されてもよい。 The measurement data is data of the measurement results that indicates the relationship between the charge state of the secondary battery and the closed circuit voltage. The measurement data is collected by continuously measuring the closed circuit voltage for each charge state of the secondary battery to be diagnosed during the charging or discharging process of the secondary battery. After being collected by actual measurement, the measurement data is input to an acquisition unit that acquires the measurement data of the condition diagnosis device 100 and stored in the memory unit 120. The acquisition unit may acquire the measurement data via the communication unit 50, or via the input unit 30 or a storage medium. The measurement data may be expressed as a relational equation or a data table.

測定データは、診断対象である二次電池の満充電状態に向けた充電過程、または、完全放電状態に向けた放電過程において、二次電池の充電状態毎の閉回路電圧を、途中に充放電の切り替えを挟むことなく連続的に測定することによって求められる。閉回路電圧の測定は、測定点同士の間に充放電の切り替えを伴わない限り、時間間隔を空けながら行ってもよい。 The measurement data is obtained by continuously measuring the closed circuit voltage for each charge state of the secondary battery being diagnosed during the charging process toward a fully charged state or the discharging process toward a fully discharged state, without switching between charging and discharging in between. The measurement of the closed circuit voltage may be performed with a time interval between measurement points, as long as there is no switching between charging and discharging between the measurement points.

閉回路電圧の測定は、低レートの充電電流で充電する充電過程、または、低レートの放電電流で放電する放電過程において行われることが好ましい。測定時の充放電電流は、0.3C以下が好ましく、0.2C以下がより好ましく、0.1C以下が更に好ましい。また、測定時の充放電電流は、0.01C以上が好ましい。測定時の充放電電流は、一定電流であってもよいし、可変電流であってもよい。 The closed circuit voltage is preferably measured during a charging process in which charging is performed with a low rate charging current, or during a discharging process in which discharging is performed with a low rate discharging current. The charge/discharge current during measurement is preferably 0.3 C or less, more preferably 0.2 C or less, and even more preferably 0.1 C or less. Furthermore, the charge/discharge current during measurement is preferably 0.01 C or more. The charge/discharge current during measurement may be a constant current or a variable current.

測定時の充放電電流が低レートであると、大電流による抵抗成分の影響や、大電流による劣化の影響が小さくなるため、二次電池の充電状態と閉回路電圧との関係を正確に求めることができる。また、測定時の充放電電流が0.01C以上であると、電池情報の収集の所要時間が短縮される。 When the charge/discharge current during measurement is at a low rate, the effects of resistance components due to large currents and the effects of degradation due to large currents are reduced, making it possible to accurately determine the relationship between the secondary battery's state of charge and closed circuit voltage. In addition, when the charge/discharge current during measurement is 0.01 C or higher, the time required to collect battery information is reduced.

閉回路電圧の測定は、診断に十分な測定データが得られる限り、任意の充電状態の範囲を対象として行うことができる。満充電状態であるSOC100%から、完全放電状態であるSOC0%までの全範囲の測定データを得ることが最も望ましいが、SOC80~20%、SOC100~50%、SOC50~0%等の一部の範囲を対象として行うこともできる。 The closed circuit voltage can be measured for any range of charge states, as long as sufficient measurement data for diagnosis can be obtained. It is most desirable to obtain measurement data for the entire range from SOC 100% (fully charged state) to SOC 0% (fully discharged state), but it can also be measured for certain ranges, such as SOC 80-20%, SOC 100-50%, or SOC 50-0%.

閉回路電圧の測定は、例えば、使用中の二次電池の現在の充電状態から満充電状態に向けた充電過程や、現在の充電状態から完全放電状態に向けた放電過程において行ってもよい。また、使用中の二次電池の次の充放電サイクルにおける充電過程や、次の充放電サイクルにおける放電過程で行ってもよい。但し、測定データは、正確な診断を行う観点から、連続的な一回の充電過程、または、連続的な一回の放電過程において収集されることが好ましい。 The closed circuit voltage may be measured, for example, during a charging process of a secondary battery in use from its current charged state to a fully charged state, or during a discharging process of a secondary battery in use from its current charged state to a fully discharged state. It may also be measured during a charging process in the next charge/discharge cycle of a secondary battery in use, or during a discharging process in the next charge/discharge cycle. However, from the viewpoint of performing an accurate diagnosis, it is preferable that the measurement data be collected during a single continuous charging process or a single continuous discharging process.

閉回路電圧の測定は、互いに充電状態が異なる複数の充電状態について行うことが好ましい。閉回路電圧を測定する測定点は、2点以上が好ましく、5点以上がより好ましく、10点以上が更に好ましい。測定点が多いと、測定データと計算データとの精密な比較を行えるため、劣化状態の診断の精度を向上させることができる。 It is preferable to measure the closed circuit voltage for multiple charging states that are different from each other. The number of measurement points at which the closed circuit voltage is measured is preferably two or more, more preferably five or more, and even more preferably ten or more. With more measurement points, a more precise comparison can be made between the measured data and the calculated data, improving the accuracy of diagnosis of the deterioration state.

参照データは、劣化状態が仮定された計算データを生成するための基礎データとして用いられる。参照データは、ハーフセル等を用いて電極の充電状態毎の開回路電位や内部抵抗を測定することによって収集される。参照データは、状態診断装置100の記憶部20に記憶される。参照データは、関係式で表されてもよいし、データテーブルで表されてもよい。 The reference data is used as basic data for generating calculation data assuming a deterioration state. The reference data is collected by measuring the open circuit potential and internal resistance for each charging state of the electrode using a half cell or the like. The reference data is stored in the memory unit 20 of the condition diagnosis device 100. The reference data may be expressed as a relational equation or a data table.

参照データとしては、正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データ、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データ、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データ、および、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データが、状態診断装置100に予め用意される。 The following reference data are prepared in advance in the condition diagnosis device 100: reference data showing the relationship between the positive electrode charge state and the open circuit potential, which is specific to the positive electrode material; reference data showing the relationship between the positive electrode charge state and the internal resistance, which is specific to the positive electrode material; reference data showing the relationship between the negative electrode charge state and the open circuit potential, which is specific to the negative electrode material; and reference data showing the relationship between the negative electrode charge state and the internal resistance, which is specific to the negative electrode material.

図3は、電極の充電状態と開回路電位との関係の一例を示す図である。
図3は、正極の参照データに対応している。横軸は、電極の充電状態の一例として、正極活物質の単位質量当たりの満充電状態からの放電量qp[Ah/g]を示す。縦軸は、基準電極に対する正極の開回路電位Vp[V]を示す。
FIG. 3 is a diagram showing an example of the relationship between the charged state of an electrode and the open circuit potential.
3 corresponds to the reference data for the positive electrode. The horizontal axis indicates the discharge amount qp [Ah/g] from a fully charged state per unit mass of the positive electrode active material as an example of the charged state of the electrode. The vertical axis indicates the open circuit potential Vp [V] of the positive electrode relative to the reference electrode.

図4は、電極の充電状態と開回路電位との関係の一例を示す図である。
図4は、負極の参照データに対応している。横軸は、電極の充電状態の一例として、負極活物質の単位質量当たりの満充電状態からの放電量qn[Ah/g]を示す。縦軸は、基準電極に対する負極の開回路電位Vn[V]を示す。
FIG. 4 is a diagram showing an example of the relationship between the charged state of an electrode and the open circuit potential.
4 corresponds to the reference data for the negative electrode. The horizontal axis indicates the discharge amount qn [Ah/g] from a fully charged state per unit mass of the negative electrode active material as an example of the charged state of the electrode. The vertical axis indicates the open circuit potential Vn [V] of the negative electrode relative to the reference electrode.

図3および図4に示すように、電極の充電状態と開回路電位との関係は、電極の材料として用いる活物質に固有の関係となる。このような充電状態と開回路電位との関係を示す参照データを、正極および負極の電極毎、且つ、電極に用いられる活物質毎に、関係式またはデータテーブルとして用意することが好ましい。複数種の活物質の参照データを用意すると、診断対象の二次電池に用いられている活物質の種類が不明であっても、参照データを入れ替えながら計算を収束させることによって、二次電池の劣化状態を適正に診断できる。 As shown in Figures 3 and 4, the relationship between the state of charge of an electrode and the open circuit potential is a relationship specific to the active material used as the material of the electrode. It is preferable to prepare reference data showing such a relationship between the state of charge and the open circuit potential as a relational equation or a data table for each positive and negative electrode and for each active material used in the electrode. By preparing reference data for multiple types of active materials, even if the type of active material used in the secondary battery to be diagnosed is unknown, the deterioration state of the secondary battery can be properly diagnosed by converging the calculations while replacing the reference data.

図3に示すように、電極の充電状態-開回路電位の曲線は、電極の充電状態の変化に対して開回路電位が実質的に変動しないプラトーな領域を持っている場合がある。図3に示す曲線は、例えば、LiFePOを用いた場合等に得られる。一方、図4に示すように、電極の充電状態-開回路電位の曲線は、電極の充電状態の変化に対して開回路電位が変動する場合がある。 As shown in Fig. 3, the curve of the charge state of the electrode vs. the open circuit potential may have a plateau region in which the open circuit potential does not substantially change with the change in the charge state of the electrode. The curve shown in Fig. 3 is obtained, for example, when LiFePO4 is used. On the other hand, as shown in Fig. 4, the curve of the charge state of the electrode vs. the open circuit potential may have a change in the open circuit potential with the change in the charge state of the electrode.

図3および図4に示すように、電極の充電状態の変化に対して開回路電位が実質的に変動しない活物質を用いた場合、電極の劣化状態が電極電位に反映され難い。電極の劣化によって曲線が上下等にシフトするが、シフト量は充電状態の変化に対して微小となる。そのため、電極の充電状態と開回路電位との関係のみに基づいては、高精度な診断が困難である。 As shown in Figures 3 and 4, when an active material is used whose open circuit potential does not substantially change with changes in the state of charge of the electrode, the deterioration state of the electrode is unlikely to be reflected in the electrode potential. Although the curve shifts up or down due to electrode deterioration, the amount of shift is small relative to the change in the state of charge. Therefore, it is difficult to perform a highly accurate diagnosis based only on the relationship between the state of charge of the electrode and the open circuit potential.

図5は、電極の充電状態と内部抵抗との関係の一例を示す図である。
図5は、正極の参照データに対応している。横軸は、電極の充電状態の一例として、正極活物質の単位質量当たりの満充電状態からの放電量qp[Ah/g]を示す。縦軸は、正極活物質の内部抵抗rp[mΩ・g]を示す。図5は、図3と同種の活物質を用いた正極のデータである。
FIG. 5 is a diagram showing an example of the relationship between the charged state and the internal resistance of an electrode.
5 corresponds to the reference data of the positive electrode. The horizontal axis shows the discharge amount qp [Ah/g] from a fully charged state per unit mass of the positive electrode active material as an example of the charged state of the electrode. The vertical axis shows the internal resistance rp [mΩ·g] of the positive electrode active material. FIG. 5 shows the data of a positive electrode using the same type of active material as FIG. 3.

図6は、電極の充電状態と内部抵抗との関係の一例を示す図である。
図6は、負極の参照データに対応している。横軸は、電極の充電状態の一例として、負極活物質の単位質量当たりの満充電状態からの放電量qn[Ah/g]を示す。縦軸は、負極活物質の内部抵抗rn[mΩ・g]を示す。図6は、図4と同種の活物質を用いた負極のデータである。
FIG. 6 is a diagram showing an example of the relationship between the charged state and the internal resistance of an electrode.
6 corresponds to the reference data of the negative electrode. The horizontal axis shows the discharge amount qn [Ah/g] from a fully charged state per unit mass of the negative electrode active material as an example of the charged state of the electrode. The vertical axis shows the internal resistance rn [mΩ·g] of the negative electrode active material. FIG. 6 shows data of a negative electrode using the same type of active material as FIG. 4.

図5および図6に示すように、電極の充電状態と内部抵抗との関係は、電極の材料として用いる活物質に固有の関係となる。このような充電状態と内部抵抗との関係を示す参照データを、正極および負極の電極毎、且つ、電極に用いられる活物質毎に、関係式またはデータテーブルとして用意することが好ましい。複数種の活物質の参照データを用意すると、診断対象の二次電池に用いられている活物質の種類が不明であっても、参照データを入れ替えながら計算を収束させることによって、二次電池の劣化状態を適正に診断できる。 As shown in Figures 5 and 6, the relationship between the state of charge of an electrode and its internal resistance is specific to the active material used as the material of the electrode. It is preferable to prepare reference data showing such a relationship between the state of charge and the internal resistance as a relational equation or a data table for each positive and negative electrode and for each active material used in the electrode. By preparing reference data for multiple types of active materials, even if the type of active material used in the secondary battery to be diagnosed is unknown, the deterioration state of the secondary battery can be properly diagnosed by converging the calculations while replacing the reference data.

図5に示すように、電極の充電状態-内部抵抗の曲線は、電極の充電状態の変化に対して開回路電位が実質的に変動しないプラトーな領域を持っている活物質を用いた場合であっても、電極の充電状態の変化に対して変動を生じることが多い。一方、図6に示すように、電極の充電状態-内部抵抗の曲線は、0.18Ah/g付近に特徴点を持っている。0.18Ah/g付近の特徴点は、図4に示す充電状態-開回路電位の曲線にも現れている。 As shown in Figure 5, the curve of the electrode's state of charge vs. internal resistance often fluctuates in response to changes in the state of charge of the electrode, even when an active material is used that has a plateau region in which the open circuit potential does not substantially change in response to changes in the state of charge of the electrode. On the other hand, as shown in Figure 6, the curve of the electrode's state of charge vs. internal resistance has a characteristic point near 0.18 Ah/g. The characteristic point near 0.18 Ah/g also appears in the curve of the state of charge vs. open circuit potential shown in Figure 4.

図5および図6に示すように、電極の充電状態の変化に対して内部抵抗の変動を生じることが多い。電極の充電状態と開回路電位との関係に加え、電極の充電状態と内部抵抗との関係を参照すると、充電状態と開回路電位との関係のみに基づく場合は異なり、電極材料に固有の抵抗上昇挙動を考慮して、二次電池の充電状態と閉回路電圧との関係を計算上で精密に再現できる。そのため、二次電池の劣化状態を簡便な操作で取得できる閉回路電圧の情報に基づいて高精度に診断できる。 As shown in Figures 5 and 6, the internal resistance often fluctuates with changes in the state of charge of the electrode. By looking at the relationship between the state of charge of the electrode and the internal resistance in addition to the relationship between the state of charge of the electrode and the open circuit potential, the relationship between the state of charge of the secondary battery and the closed circuit voltage can be precisely reproduced by calculation, taking into account the resistance increase behavior specific to the electrode material, unlike when it is based only on the relationship between the state of charge and the open circuit potential. Therefore, the deterioration state of the secondary battery can be diagnosed with high accuracy based on information on the closed circuit voltage, which can be obtained by simple operations.

参照データとしては、例えば、劣化が実質的に進行していない初期状態の電極のデータを用いることができる。例えば、作製した電極を用いてハーフセルを作製した後、1~5回目程度の充電過程や放電過程において、初期状態の電極のデータを収集することができる。1回目の充電過程や放電過程においては、電極上で不可逆的な反応を生じる場合があるため、2~5回目程度の充放電過程で収集することが好ましい。 As the reference data, for example, data on an electrode in an initial state where degradation has not progressed substantially can be used. For example, after a half cell is produced using the produced electrode, data on the electrode in the initial state can be collected during the first to fifth charge and discharge processes. Since irreversible reactions may occur on the electrode during the first charge and discharge process, it is preferable to collect data during the second to fifth charge and discharge processes.

測定データおよび参照データは、充電過程において取得されてもよいし、放電過程において取得されてもよい。但し、一般には、充電過程における挙動と、放電過程における挙動とに、ヒステリシスがある。そのため、測定データや参照データとしては、互いに共通の充放電過程で取得されたデータを、同一の診断に用いることが好ましい。 The measurement data and reference data may be obtained during the charging process or during the discharging process. However, there is generally hysteresis between the behavior during the charging process and the behavior during the discharging process. Therefore, it is preferable to use measurement data and reference data obtained during a common charging and discharging process for the same diagnosis.

測定データおよび参照データは、充電状態と電圧値との関係を示すデータや、充電状態と内部抵抗値との関係を示すデータであってもよいし、充電状態と電圧の微分値との関係を示すデータや、充電状態と内部抵抗の微分値との関係を示すデータであってもよい。電圧の微分値を用いると、活物質利用量に反比例する関係が得られるため、活物質利用量の正しさを確保できる。 The measurement data and reference data may be data showing the relationship between the state of charge and a voltage value, data showing the relationship between the state of charge and an internal resistance value, data showing the relationship between the state of charge and a differential value of the voltage, or data showing the relationship between the state of charge and a differential value of the internal resistance. When the differential value of the voltage is used, a relationship that is inversely proportional to the amount of active material used can be obtained, thereby ensuring the accuracy of the amount of active material used.

図2に示すように、はじめに、演算部10は、診断対象である二次電池の充電状態と閉回路電圧との関係を示す測定データを、記憶部20から読み込む(ステップS1)。測定データとしては、二次電池の劣化状態の診断要求に応じて、所定の診断対象のデータを選択することができる。 As shown in FIG. 2, first, the calculation unit 10 reads from the memory unit 20 measurement data indicating the relationship between the state of charge and the closed circuit voltage of the secondary battery to be diagnosed (step S1). As the measurement data, data of a specified diagnosis target can be selected in response to a request to diagnose the deterioration state of the secondary battery.

続いて、演算部10は、正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データ、および、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データを、記憶部20から読み込む(ステップS2)。 Next, the calculation unit 10 reads from the memory unit 20 reference data indicating the relationship between the positive electrode charge state and the open circuit potential, which is specific to the positive electrode material, and reference data indicating the relationship between the negative electrode charge state and the open circuit potential, which is specific to the negative electrode material (step S2).

例えば、演算部10は、正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データとして、満充電状態からの正極の単位質量当たりの放電量qpのデータと、放電量qpに対応した正極の開回路電位OCVpのデータ、または、完全放電状態からの正極の単位質量当たりの充電量qpのデータと、充電量qpに対応した正極の開回路電位OCVpのデータを、記憶部20から読み込むことができる。 For example, the calculation unit 10 can read from the memory unit 20 data on the discharge amount qp per unit mass of the positive electrode from a fully charged state and data on the open circuit potential OCVp of the positive electrode corresponding to the discharge amount qp, or data on the charge amount qp per unit mass of the positive electrode from a fully discharged state and data on the open circuit potential OCVp of the positive electrode corresponding to the charge amount qp, as reference data showing the relationship between the charge state of the positive electrode specific to the positive electrode material and the open circuit potential.

また、演算部10は、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データとして、満充電状態からの負極の単位質量当たりの放電量qnのデータと、放電量qnに対応した負極の開回路電位OCVnのデータ、または、完全放電状態からの負極の単位質量当たりの充電量qnのデータと、充電量qnに対応した負極の開回路電位OCVnのデータを、記憶部20から読み込むことができる。 The calculation unit 10 can also read from the memory unit 20 data on the discharge amount qn per unit mass of the negative electrode from a fully charged state and data on the open circuit potential OCVn of the negative electrode corresponding to the discharge amount qn, or data on the charge amount qn per unit mass of the negative electrode from a fully discharged state and data on the open circuit potential OCVn of the negative electrode corresponding to the charge amount qn, as reference data showing the relationship between the charge state of the negative electrode specific to the negative electrode material and the open circuit potential.

続いて、演算部10は、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データ、および、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データを、記憶部20から読み込む(ステップS3)。 Next, the calculation unit 10 reads from the memory unit 20 reference data indicating the relationship between the positive electrode charge state and the internal resistance, which is specific to the positive electrode material, and reference data indicating the relationship between the negative electrode charge state and the internal resistance, which is specific to the negative electrode material (step S3).

例えば、演算部10は、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データとして、満充電状態からの正極の単位質量当たりの放電量qpのデータと、放電量qpに対応した正極の内部抵抗Rpのデータ、または、完全放電状態からの正極の単位質量当たりの充電量qpのデータと、充電量qpに対応した正極の内部抵抗Rpのデータを、記憶部20から読み込むことができる。 For example, the calculation unit 10 can read from the memory unit 20 data on the discharge amount qp per unit mass of the positive electrode from a fully charged state and data on the internal resistance Rp of the positive electrode corresponding to the discharge amount qp, or data on the charge amount qp per unit mass of the positive electrode from a fully discharged state and data on the internal resistance Rp of the positive electrode corresponding to the charge amount qp, as reference data showing the relationship between the charge state and internal resistance of the positive electrode specific to the positive electrode material.

また、演算部10は、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データとして、満充電状態からの負極の単位質量当たりの放電量qnのデータと、放電量qnに対応した負極の内部抵抗Rnのデータ、または、完全放電状態からの負極の単位質量当たりの充電量qnのデータと、充電量qnに対応した負極の内部抵抗Rnのデータを、記憶部20から読み込むことができる。 The calculation unit 10 can also read from the memory unit 20 data on the discharge amount qn per unit mass of the negative electrode from a fully charged state and data on the internal resistance Rn of the negative electrode corresponding to the discharge amount qn, or data on the charge amount qn per unit mass of the negative electrode from a fully discharged state and data on the internal resistance Rn of the negative electrode corresponding to the charge amount qn, as reference data showing the relationship between the charge state and internal resistance of the negative electrode specific to the negative electrode material.

なお、ステップS1、ステップS2およびステップS3とは、実行の順序が、特に限定されるものではない。ステップS2およびステップS3において、参照データは、ステップS1で読み込まれた測定データに応じて、参照データベース中から選定されてもよい。或いは、読み込まれた参照データに応じて、診断要求毎の測定データが、測定データベース中から選定されてもよい。 The order of execution of steps S1, S2, and S3 is not particularly limited. In steps S2 and S3, reference data may be selected from the reference database according to the measurement data loaded in step S1. Alternatively, measurement data for each diagnosis request may be selected from the measurement database according to the loaded reference data.

参照データは、測定データと関連付けられた情報、例えば、診断対象である二次電池に用いられている活物質の種類の情報、診断対象である二次電池の上限電圧や下限電圧の情報等に基づいて、参照データベース中から選定することもできる。測定データは、種々の診断対象である二次電池から収集して、測定データベースを形成することもできる。 The reference data can also be selected from a reference database based on information associated with the measurement data, such as information on the type of active material used in the secondary battery to be diagnosed, or information on the upper and lower voltage limits of the secondary battery to be diagnosed. Measurement data can also be collected from various secondary batteries to be diagnosed to form a measurement database.

ステップS2やステップS3において、参照データとしては、診断対象である二次電池と同じ種類の活物質を用いた電極のデータを読み込むことが好ましい。但し、診断対象である二次電池に用いられている活物質の種類が不明である場合は、任意の電極のデータを読み込むことができる。活物質の種類が不明であっても、参照データを入れ替えながら以降の計算を収束させることによって、二次電池の劣化状態を適正に診断できる。 In steps S2 and S3, it is preferable to read data on an electrode that uses the same type of active material as the secondary battery to be diagnosed as the reference data. However, if the type of active material used in the secondary battery to be diagnosed is unknown, data on any electrode can be read. Even if the type of active material is unknown, the deterioration state of the secondary battery can be properly diagnosed by converging the subsequent calculations while replacing the reference data.

続いて、演算部10は、参照データによって示される関係に対して、電極や電極以外の要素の劣化状態を表す劣化状態パラメータを設定する(ステップS4)。 Next, the calculation unit 10 sets deterioration state parameters representing the deterioration state of the electrodes and elements other than the electrodes with respect to the relationship indicated by the reference data (step S4).

具体的には、演算部10は、参照データによって示される関係、すなわち、正極材料に固有の正極の充電状態と開回路電位との関係、正極材料に固有の正極の充電状態と内部抵抗との関係、負極材料に固有の負極の充電状態と開回路電位との関係、および、負極材料に固有の負極の充電状態と内部抵抗との関係を、任意値に設定した劣化状態パラメータで補正する処理を行う。 Specifically, the calculation unit 10 performs a process of correcting the relationships indicated by the reference data, i.e., the relationship between the positive electrode charge state and the open circuit potential specific to the positive electrode material, the relationship between the positive electrode charge state and the internal resistance specific to the positive electrode material, the relationship between the negative electrode charge state and the open circuit potential specific to the negative electrode material, and the relationship between the negative electrode charge state and the internal resistance specific to the negative electrode material, with deterioration state parameters set to arbitrary values.

劣化状態パラメータは、正極の劣化状態や、負極の劣化状態や、電極以外の要素の劣化状態を定量的に表すパラメータである。劣化状態パラメータとしては、正極や、負極や、電極以外の要素毎に、個別のパラメータが設定される。劣化状態パラメータは、無劣化や完全劣化に対応する所定の上限値と下限値との間で定義される。 The deterioration state parameters are parameters that quantitatively represent the deterioration state of the positive electrode, the deterioration state of the negative electrode, and the deterioration state of elements other than the electrodes. Individual parameters are set as deterioration state parameters for each of the positive electrode, the negative electrode, and elements other than the electrodes. The deterioration state parameters are defined between a predetermined upper limit value and a predetermined lower limit value that correspond to no deterioration or complete deterioration.

参照データによって示される関係を劣化状態パラメータで補正すると、所定の劣化状態が仮定された二次電池の充電状態と開回路電圧との関係を示す計算データや、所定の劣化状態が仮定された二次電池の充電状態と内部抵抗との関係を示す計算データを生成できる。これらの計算データから、二次電池の充電状態と閉回路電圧との関係を示す計算データを生成し、測定データに対してフィッティングさせると、真値に向けて近似された劣化状態パラメータの解が得られる。 By correcting the relationship shown by the reference data with the degradation state parameters, it is possible to generate calculation data showing the relationship between the state of charge and the open circuit voltage of a secondary battery assumed to be in a specified degradation state, and calculation data showing the relationship between the state of charge and the internal resistance of a secondary battery assumed to be in a specified degradation state. From these calculation data, calculation data showing the relationship between the state of charge and the closed circuit voltage of the secondary battery is generated, and fitting to the measured data provides a solution for the degradation state parameters that are approximated to the true value.

劣化状態パラメータとしては、劣化の要因となる電極や電極以外の要素に対応するように、複数のパラメータを設定することが好ましい。劣化状態パラメータとしては、容量に関する劣化状態パラメータや、抵抗に関する劣化状態パラメータを設定できる。 As the deterioration state parameters, it is preferable to set multiple parameters corresponding to the electrodes and elements other than the electrodes that cause deterioration. As the deterioration state parameters, a deterioration state parameter related to the capacity and a deterioration state parameter related to the resistance can be set.

容量に関する劣化状態パラメータとしては、充電状態と開回路電位との関係を示す関数や、充電状態と内部抵抗との関係を示す関数において、充電状態を表す状態量の係数や定数を設定することができる。例えば、正極については、正極活物質利用量mp、正極側位置ずれδp等を設定できる。負極については、負極活物質利用量mn、負極側位置ずれδn等を設定できる。 As deterioration state parameters related to capacity, coefficients and constants of state quantities representing the state of charge can be set in a function showing the relationship between the state of charge and the open circuit potential, or in a function showing the relationship between the state of charge and the internal resistance. For example, for the positive electrode, the amount of positive electrode active material used mp, the positive electrode side position shift δp, etc. can be set. For the negative electrode, the amount of negative electrode active material used mn, the negative electrode side position shift δn, etc. can be set.

正極活物質利用量mpは、正極に含まれる正極活物質のうち、充放電反応に利用される正極活物質の量を表す。正極活物質利用量mp[g]は、正極に含まれる正極活物質量をmp0[g]、充放電反応に利用される正極活物質の割合をmprとしたとき、mp=mp0×mprを満たす。 The amount of positive electrode active material used, mp, represents the amount of positive electrode active material used in the charge/discharge reaction among the positive electrode active material contained in the positive electrode. The amount of positive electrode active material used, mp [g], satisfies mp = mp0 x mpr, where mp0 [g] is the amount of positive electrode active material contained in the positive electrode, and mpr is the proportion of positive electrode active material used in the charge/discharge reaction.

正極側位置ずれδpは、正極の電圧-容量曲線上において、正極の劣化による容量軸に沿った曲線の位置ずれを意味する。正極側位置ずれδpは、正極の劣化による正極の容量の減少分に相当する。正極側位置ずれδpは、正極の容量のうち、二次電池の使用電圧範囲の上限よりも高電位側でしか得られない容量に対応している。 The positive electrode side position shift δp means the shift in the curve along the capacity axis due to deterioration of the positive electrode on the voltage-capacity curve of the positive electrode. The positive electrode side position shift δp corresponds to the decrease in the capacity of the positive electrode due to deterioration of the positive electrode. The positive electrode side position shift δp corresponds to the capacity of the positive electrode that can only be obtained on the higher potential side than the upper limit of the operating voltage range of the secondary battery.

正極の容量Qp[Ah]は、充放電反応に利用される正極活物質利用量をmp[g]、正極の単位質量当たりの容量をqp[Ah/g]としたとき、Qp=qp×mpで表される。正極の容量Qp[Ah]は、正極側位置ずれδpを生じる劣化を仮定した場合、次の式(1)で表すことができる。
Qp=qp×mp-δp・・・(1)
The capacity Qp [Ah] of the positive electrode is expressed as Qp = qp × mp, where mp [g] is the amount of the positive electrode active material used in the charge/discharge reaction, and qp [Ah/g] is the capacity per unit mass of the positive electrode. If deterioration that causes a positive electrode position shift δp is assumed, the capacity Qp [Ah] of the positive electrode can be expressed by the following formula (1).
Qp=qp×mp−δp...(1)

負極活物質利用量mnは、負極に含まれる負極活物質のうち、充放電反応に利用される負極活物質の量を表す。負極活物質利用量mn[g]は、負極に含まれる負極活物質量をmn0[g]、充放電反応に利用される負極活物質の割合をmnrとしたとき、mn=mn0×mnrを満たす。 The amount of negative electrode active material used mn represents the amount of the negative electrode active material contained in the negative electrode that is used in the charge/discharge reaction. The amount of negative electrode active material used mn [g] satisfies mn = mn0 x mnr, where mn0 [g] is the amount of negative electrode active material contained in the negative electrode, and mnr is the proportion of the negative electrode active material used in the charge/discharge reaction.

負極側位置ずれδnは、負極の電圧-容量曲線上において、負極の劣化による容量軸に沿った曲線の位置ずれを意味する。負極側位置ずれδnは、負極の劣化による負極の容量の減少分に相当する。負極側位置ずれδnは、負極の容量のうち、二次電池の使用電圧範囲の下限よりも低電位側でしか得られない容量に対応している。 The negative electrode side position shift δn means the shift in the curve along the capacity axis due to deterioration of the negative electrode on the voltage-capacity curve of the negative electrode. The negative electrode side position shift δn corresponds to the decrease in the capacity of the negative electrode due to deterioration of the negative electrode. The negative electrode side position shift δn corresponds to the capacity of the negative electrode that can only be obtained at a lower potential side than the lower limit of the operating voltage range of the secondary battery.

負極の容量Qn[Ah]は、充放電反応に利用される負極活物質利用量をmn[g]、負極の単位質量当たりの容量をqn[Ah/g]としたとき、Qn=qn×mnで表される。負極の容量Qn[Ah]は、負極側位置ずれδnを生じる劣化を仮定した場合、次の式(2)で表すことができる。
Qn=qn×mn-δn・・・(2)
The capacity of the negative electrode Qn [Ah] is expressed by Qn = qn x mn, where mn [g] is the amount of the negative electrode active material used in the charge/discharge reaction, and qn [Ah/g] is the capacity per unit mass of the negative electrode. The capacity of the negative electrode Qn [Ah] can be expressed by the following formula (2), assuming deterioration that causes a negative electrode side position shift δn.
Qn=qn×mn-δn...(2)

抵抗に関する劣化状態パラメータとしては、充電状態と内部抵抗との関係を示す関数において、充電状態に依存する電極毎の内部抵抗に対応する抵抗項の係数や、充電状態に依存しない電極以外の要素の抵抗に対応する定数を設定することができる。例えば、正極の内部抵抗に関しては、正極抵抗係数ap、負極の内部抵抗に関しては、負極抵抗係数anを設定できる。電極以外の要素の抵抗に関しては、抵抗定数Roを設定できる。 As deterioration state parameters related to resistance, in a function showing the relationship between the state of charge and internal resistance, it is possible to set a coefficient of the resistance term corresponding to the internal resistance of each electrode that depends on the state of charge, and a constant corresponding to the resistance of elements other than the electrodes that does not depend on the state of charge. For example, for the internal resistance of the positive electrode, a positive electrode resistance coefficient ap can be set, and for the internal resistance of the negative electrode, a negative electrode resistance coefficient an can be set. For the resistance of elements other than the electrodes, a resistance constant Ro can be set.

充電状態xにおける正極の内部抵抗Rp[Ω]は、正極抵抗係数apの劣化を仮定すると、充放電反応に利用される正極活物質利用量をmp[g]、充電状態xにおける正極活物質内部抵抗をrp(x)[Ω・g]としたとき、次の式(3)で表すことができる。
Rp(Qp)=ap/mp×rp(qp)・・・(3)
Assuming that the positive electrode resistance coefficient ap deteriorates, the internal resistance Rp [Ω] of the positive electrode in the state of charge x can be expressed by the following formula (3), where the amount of positive electrode active material used in the charge/discharge reaction is mp [g] and the internal resistance of the positive electrode active material in the state of charge x is rp(x) [Ω g].
Rp(Qp)=ap/mp×rp(qp)...(3)

充電状態xにおける負極の内部抵抗Rp[Ω]は、負極抵抗係数anの劣化を仮定すると、充放電反応に利用される負極活物質利用量をmn[g]、充電状態xにおける負極活物質内部抵抗をrn(x)[Ω・g]としたとき、次の式(4)で表すことができる。
Rn(Qn)=an/mn×rn(qn)・・・(4)
Assuming deterioration of the negative electrode resistance coefficient an, the internal resistance Rp [Ω] of the negative electrode in the state of charge x can be expressed by the following formula (4), where the amount of the negative electrode active material used in the charge/discharge reaction is mn [g] and the internal resistance of the negative electrode active material in the state of charge x is rn(x) [Ω g].
Rn(Qn)=an/mn×rn(qn)...(4)

劣化状態パラメータとしては、無劣化や完全劣化に対応する所定の上限値と下限値との間で、任意の数値間隔で、任意の数値を定義することができる。劣化状態パラメータは、補正する関係式に応じて規格化されることが好ましい。劣化状態パラメータは、劣化状態(SOH)[%]を示すデータ等と関連付けて、パラメータテーブルとして用意しておくこともできる。このようなテーブルを用いると、同じ劣化状態(SOH)[%]に対応する劣化状態パラメータ同士の設定が可能になる。 As the deterioration state parameter, any numerical value can be defined in any numerical interval between a predetermined upper limit value and a predetermined lower limit value corresponding to no deterioration or complete deterioration. It is preferable that the deterioration state parameter is normalized according to the relational expression to be corrected. The deterioration state parameter can also be prepared as a parameter table in association with data indicating the deterioration state (SOH) [%]. Using such a table makes it possible to set deterioration state parameters corresponding to the same deterioration state (SOH) [%].

ステップS4において、劣化状態パラメータとしては、正極の劣化状態や、負極の劣化状態や、電極以外の要素の劣化状態を仮定して、所定の上限値と下限値との間で、任意の数値を設定することができる。任意の数値を設定して以降の計算を収束させると、真値に近似された劣化状態パラメータの解が得られる。以降の計算が収束しない場合は、劣化状態パラメータを未設定の数値に更新して再計算を行う。 In step S4, the deterioration state parameter can be set to any value between a predetermined upper limit and lower limit, assuming the deterioration state of the positive electrode, the deterioration state of the negative electrode, or the deterioration state of elements other than the electrodes. If any value is set and the subsequent calculations are allowed to converge, a solution for the deterioration state parameter that is close to the true value is obtained. If the subsequent calculations do not converge, the deterioration state parameter is updated to an unset value and recalculated.

具体的には、演算部10は、正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データに基づいて、充電状態毎の正極の開回路電位OCVp(Qp)のデータから、劣化状態パラメータで補正したOCV(qp×mp-δp)を計算する処理を行う。同様に、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データに基づいて、充電状態毎の負極の開回路電位OCVn(Qn)のデータから、劣化状態パラメータで補正したOCV(qn×mn-δn)を計算する処理を行う。 Specifically, the calculation unit 10 performs a process of calculating an OCV (qp x mp - δp) corrected with the deterioration state parameters from data on the open circuit potential OCVp (Qp) of the positive electrode for each charging state based on reference data showing the relationship between the charging state of the positive electrode and the open circuit potential specific to the positive electrode material. Similarly, the calculation unit 10 performs a process of calculating an OCV (qn x mn - δn) corrected with the deterioration state parameters from data on the open circuit potential OCVn (Qn) of the negative electrode for each charging state based on reference data showing the relationship between the charging state of the negative electrode and the open circuit potential specific to the negative electrode material.

また、演算部10は、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データに基づいて、充電状態毎の正極の内部抵抗Rp(Qp)のデータから、劣化状態パラメータで補正したap/mp×rp(qp)を計算する処理を行う。同様に、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データに基づいて、充電状態毎の負極の内部抵抗Rn(Qn)のデータから、劣化状態パラメータで補正したan/mn×rn(qn)を計算する処理を行う。 The calculation unit 10 also performs a process of calculating ap/mp×rp(qp) corrected with the degradation state parameters from the data on the internal resistance Rp(Qp) of the positive electrode for each charging state based on reference data showing the relationship between the charging state and internal resistance of the positive electrode specific to the positive electrode material. Similarly, the calculation unit 10 performs a process of calculating an/mn×rn(qn) corrected with the degradation state parameters from the data on the internal resistance Rn(Qn) of the negative electrode for each charging state based on reference data showing the relationship between the charging state and internal resistance of the negative electrode specific to the negative electrode material.

続いて、演算部10は、劣化状態パラメータで補正された正極の充電状態と開回路電位との関係と、劣化状態パラメータで補正された負極の充電状態と開回路電位との関係とに基づいて、二次電池の充電状態と開回路電圧との関係を示す計算データ(第1計算データ)を生成する(ステップS5)。 Next, the calculation unit 10 generates calculation data (first calculation data) indicating the relationship between the charge state of the secondary battery and the open circuit voltage based on the relationship between the charge state of the positive electrode corrected by the degradation state parameters and the open circuit potential, and the relationship between the charge state of the negative electrode corrected by the degradation state parameters and the open circuit potential (step S5).

二次電池の充電状態と開回路電圧との関係を示す計算データは、二次電池の充電状態と閉回路電圧との関係を示す計算データの生成に用いられる。二次電池の充電状態と開回路電圧との関係を示す計算データは、計算によって生成された後、記憶部120に記憶することができる。二次電池の充電状態と開回路電圧との関係を示す計算データは、関係式で表されてもよいし、データテーブルで表されてもよい。 The calculated data showing the relationship between the charge state of the secondary battery and the open circuit voltage is used to generate calculated data showing the relationship between the charge state of the secondary battery and the closed circuit voltage. The calculated data showing the relationship between the charge state of the secondary battery and the open circuit voltage can be generated by calculation and then stored in the memory unit 120. The calculated data showing the relationship between the charge state of the secondary battery and the open circuit voltage may be expressed by a relational equation or a data table.

充電状態xにおける二次電池の開回路電位OCVc(x)[V]は、充電状態xにおける正極の開回路電位をOCVp(x)[V]、充電状態xにおける負極の開回路電位をOCVn(x)[V]、二次電池の満充電状態からの放電容量をQc[Ah]、正極の満充電状態からの放電容量をQp[Ah]、負極の満充電状態からの放電容量をQn[Ah]としたとき、Qc=Qp+δp=Qn+δnの下で、次の式(5)によって計算することができる。
OCVc(Qc)=OCVp(Qp)-OCVn(Qn)・・・(5)
The open circuit potential OCVc(x) [V] of the secondary battery in the state of charge x is the open circuit potential of the positive electrode in the state of charge x, OCVp(x) [V] is the open circuit potential of the negative electrode in the state of charge x, OCVn(x) [V] is the open circuit potential of the negative electrode in the state of charge x, the discharge capacity of the secondary battery from the fully charged state is Qc [Ah], the discharge capacity of the positive electrode from the fully charged state is Qp [Ah], and the discharge capacity of the negative electrode from the fully charged state is Qn [Ah]. Under this, Qc = Qp + δp = Qn + δn, and the discharge capacity can be calculated by the following formula (5).
OCVc (Qc) = OCVp (Qp) - OCVn (Qn) (5)

図7は、二次電池の充電状態と開回路電位との関係の一例を示す図である。
図7において、横軸は、二次電池の充電状態の一例として、活物質の単位質量当たりの満充電状態からの放電量[Ah/g]を示す。縦軸は、電位[V]を示す。一点鎖線は、正極の開回路電位OCVp、実線は、二次電池の開回路電位OCVc、破線は、負極の開回路電位OCVnを示す。
FIG. 7 is a diagram showing an example of the relationship between the state of charge and the open circuit potential of a secondary battery.
7, the horizontal axis indicates the discharge amount [Ah/g] from a fully charged state per unit mass of active material as an example of the charged state of the secondary battery. The vertical axis indicates potential [V]. The dashed line indicates the open circuit potential OCVp of the positive electrode, the solid line indicates the open circuit potential OCVc of the secondary battery, and the dashed line indicates the open circuit potential OCVn of the negative electrode.

図7に示すように、二次電池の充電状態と開回路電位との関係は、正極の充電状態と開回路電位との関係と、負極の充電状態と開回路電位との関係との合成によって求められる。このような充電状態と開回路電位との関係を示す計算データを、劣化状態パラメータで補正された参照データから生成し、関係式またはデータテーブルとして記憶する。 As shown in FIG. 7, the relationship between the state of charge and the open circuit potential of a secondary battery is obtained by combining the relationship between the state of charge and the open circuit potential of the positive electrode and the relationship between the state of charge and the open circuit potential of the negative electrode. Calculation data showing such a relationship between the state of charge and the open circuit potential is generated from reference data corrected with the deterioration state parameters, and is stored as a relational equation or a data table.

続いて、演算部10は、補正パラメータで補正された正極の充電状態と内部抵抗との関係と、補正パラメータで補正された負極の充電状態と内部抵抗との関係とに基づいて、二次電池の充電状態と内部抵抗との関係を示す計算データ(第2計算データ)を生成する(ステップS6)。 Next, the calculation unit 10 generates calculation data (second calculation data) indicating the relationship between the charge state and the internal resistance of the secondary battery based on the relationship between the charge state and the internal resistance of the positive electrode corrected by the correction parameter and the relationship between the charge state and the internal resistance of the negative electrode corrected by the correction parameter (step S6).

二次電池の充電状態と内部抵抗との関係を示す計算データは、二次電池の充電状態と閉回路電圧との関係を示す計算データの生成に用いられる。二次電池の充電状態と内部抵抗との関係を示す計算データは、計算によって生成された後、記憶部120に記憶することができる。二次電池の充電状態と内部抵抗との関係を示す計算データは、関係式で表されてもよいし、データテーブルで表されてもよい。 Calculation data showing the relationship between the charge state and the internal resistance of the secondary battery is used to generate calculation data showing the relationship between the charge state and the closed circuit voltage of the secondary battery. After being generated by calculation, the calculation data showing the relationship between the charge state and the internal resistance of the secondary battery can be stored in the memory unit 120. The calculation data showing the relationship between the charge state and the internal resistance of the secondary battery may be expressed by a relational equation or a data table.

充電状態xにおける二次電池の内部抵抗Rc(x)[Ω]は、充電状態xにおける正極の内部抵抗をRp(x)[Ω]、充電状態xにおける負極の内部抵抗をRn(x)[Ω]、電極以外の要素の抵抗をRo[Ω]、二次電池の満充電状態からの放電容量をQc[Ah]、正極の満充電状態からの放電容量をQp[Ah]、負極の満充電状態からの放電容量をQn[Ah]としたとき、Qc=Qp+δp=Qn+δnの下で、次の式(6)によって計算することができる。
Rc(Qc)=Ro+Rp(Qp)+Rn(Qn)・・・(6)
The internal resistance Rc(x) [Ω] of the secondary battery in the state of charge x is expressed as follows: Rp(x) [Ω] is the internal resistance of the positive electrode in the state of charge x, Rn(x) [Ω] is the internal resistance of the negative electrode in the state of charge x, Ro [Ω] is the resistance of elements other than the electrodes, Qc [Ah] is the discharge capacity of the secondary battery from the fully charged state, Qp [Ah] is the discharge capacity of the positive electrode from the fully charged state, and Qn [Ah] is the discharge capacity of the negative electrode from the fully charged state. Under this condition, Qc = Qp + δp = Qn + δn, the internal resistance Rc(x) [Ω] of the secondary battery in the state of charge x is expressed as follows:
Rc(Qc)=Ro+Rp(Qp)+Rn(Qn)...(6)

図8は、二次電池の充電状態と内部抵抗との関係の一例を示す図である。
図8において、横軸は、二次電池の充電状態の一例として、活物質の単位質量当たりの満充電状態からの放電量[Ah/g]を示す。縦軸は、直流内部抵抗[mΩ]を示す。実線は、二次電池の内部抵抗Rc、一点鎖線は、正極の内部抵抗Rp、破線は、負極の内部抵抗Rnを示す。
FIG. 8 is a diagram showing an example of the relationship between the state of charge and the internal resistance of a secondary battery.
8, the horizontal axis indicates the discharge amount [Ah/g] from a fully charged state per unit mass of active material as an example of the charged state of the secondary battery. The vertical axis indicates the DC internal resistance [mΩ]. The solid line indicates the internal resistance Rc of the secondary battery, the dashed line indicates the internal resistance Rp of the positive electrode, and the dashed line indicates the internal resistance Rn of the negative electrode.

図8に示すように、二次電池の充電状態と内部抵抗との関係は、充電状態に依存する正極の充電状態と内部抵抗との関係と、充電状態に依存する負極の充電状態と内部抵抗との関係と、充電状態に依存しない電極以外の要素の抵抗との合成によって求められるが、電極や電極以外の要素の個別の劣化状態に強く依存するため、参照データの適切な選定が必要である。このような充電状態と内部抵抗との関係を示す計算データを、劣化状態パラメータで補正された参照データから生成し、関係式またはデータテーブルとして記憶する。 As shown in Figure 8, the relationship between the state of charge and internal resistance of a secondary battery is determined by combining the relationship between the state of charge and internal resistance of the positive electrode, which depends on the state of charge, the relationship between the state of charge and internal resistance of the negative electrode, which depends on the state of charge, and the resistance of elements other than the electrodes, which does not depend on the state of charge. However, since it strongly depends on the individual deterioration states of the electrodes and elements other than the electrodes, appropriate selection of reference data is required. Calculation data showing such a relationship between the state of charge and internal resistance is generated from reference data corrected with deterioration state parameters, and stored as a relational equation or a data table.

基礎データとして用いられる参照データの二次電池の内部抵抗が、充電状態に依存する正極の内部抵抗と、充電状態に依存する負極の内部抵抗と、充電状態に依存しない電極以外の要素の抵抗との合成であると、劣化の進行度合が異なる電極毎の劣化状態を、計算上で精密に再現することができる。そのため、二次電池の電極毎の劣化状態を高精度に評価することが可能になる。 If the internal resistance of the secondary battery in the reference data used as basic data is a combination of the internal resistance of the positive electrode, which depends on the state of charge, the internal resistance of the negative electrode, which depends on the state of charge, and the resistance of elements other than the electrodes, which does not depend on the state of charge, the deterioration state of each electrode, which has a different degree of deterioration, can be precisely reproduced by calculation. Therefore, it becomes possible to evaluate the deterioration state of each electrode of the secondary battery with high accuracy.

続いて、演算部10は、二次電池の充電状態と開回路電圧との関係を示す計算データと、二次電池の充電状態と内部抵抗との関係を示す計算データとに基づいて、二次電池の充電状態と閉回路電圧との関係を示す計算データ(第3計算データ)を生成する(ステップS7)。 Next, the calculation unit 10 generates calculation data (third calculation data) indicating the relationship between the charge state of the secondary battery and the closed circuit voltage based on the calculation data indicating the relationship between the charge state of the secondary battery and the open circuit voltage and the calculation data indicating the relationship between the charge state of the secondary battery and the internal resistance (step S7).

二次電池の充電状態と閉回路電圧との関係を示す計算データは、二次電池の充電状態と閉回路電圧との関係を示す測定データとの比較に用いられる。二次電池の充電状態と閉回路電圧との関係を示す計算データは、計算によって生成された後、記憶部120に記憶することができる。二次電池の充電状態と閉回路電圧との関係を示す計算データは、関係式で表されてもよいし、データテーブルで表されてもよい。 The calculated data showing the relationship between the charge state of the secondary battery and the closed circuit voltage is used for comparison with the measured data showing the relationship between the charge state of the secondary battery and the closed circuit voltage. The calculated data showing the relationship between the charge state of the secondary battery and the closed circuit voltage can be generated by calculation and then stored in the memory unit 120. The calculated data showing the relationship between the charge state of the secondary battery and the closed circuit voltage may be expressed by a relational equation or a data table.

充電状態xにおける二次電池の閉回路電位CCVc(x)[V]は、充電状態xにおける正極の閉回路電位をCCVp(x)[V]、充電状態xにおける負極の閉回路電位をCCVn(x)[V]、二次電池の満充電状態からの放電量をI[A]としたとき、次の式(7)~(9)によって計算することができる。
CCVc(Qc)=CCVp(Qp)-CCVn(Qn)-I×Rc
・・・(7)
CCVp(Qp)=OCVp(Qp)-I×Rp(Qp)・・・(8)
CCVn(Qn)=OCVn(Qn)-I×Rn(Qn)・・・(9)
The closed circuit potential CCVc(x) [V] of a secondary battery in a state of charge x can be calculated by the following formulas (7) to (9), where the closed circuit potential of the positive electrode in the state of charge x is CCVp(x) [V], the closed circuit potential of the negative electrode in the state of charge x is CCVn(x) [V], and the discharge amount of the secondary battery from the fully charged state is I [A].
CCVc (Qc) = CCVp (Qp) - CCVn (Qn) - I x Rc
...(7)
CCVp (Qp) = OCVp (Qp) - I × Rp (Qp) (8)
CCVn(Qn)=OCVn(Qn)-I×Rn(Qn)...(9)

図9は、二次電池の充電状態と閉回路電位との関係の一例を示す図である。
図9において、横軸は、二次電池の充電状態の一例として、活物質の単位質量当たりの満充電状態からの放電量[Ah/g]を示す。縦軸は、電位[V]を示す。太実線は、正極の開回路電位OCVp、中実線は、二次電池の開回路電圧OCVc、太破線は、正極の閉回路電位CCVp、中実線は、二次電池の閉回路電圧CCVc、細実線は、負極の開回路電位OCVn、細破線は、負極の閉回路電位CCVnを示す。●プロットは、実測に基づく測定データを示す。
FIG. 9 is a diagram showing an example of the relationship between the state of charge of a secondary battery and the closed circuit potential.
In Fig. 9, the horizontal axis indicates the discharge amount [Ah/g] from a fully charged state per unit mass of active material as an example of the state of charge of a secondary battery. The vertical axis indicates potential [V]. The thick solid line indicates the open circuit potential OCVp of the positive electrode, the solid line indicates the open circuit voltage OCVc of the secondary battery, the thick dashed line indicates the closed circuit potential CCVp of the positive electrode, the solid line indicates the closed circuit voltage CCVc of the secondary battery, the thin solid line indicates the open circuit potential OCVn of the negative electrode, and the thin dashed line indicates the closed circuit potential CCVn of the negative electrode. The plots show measurement data based on actual measurements.

図9に示すように、二次電池の充電状態と閉回路電圧との関係は、二次電池の充電状態と開回路電圧との関係と、二次電池の充電状態と内部抵抗との関係との合成によって求められる。式(5)~(9)の連立式によって、中破線で示すように、劣化状態を仮定した二次電池の充電状態毎の閉回路電圧の計算データを求めることができる。このような充電状態と閉回路電圧との関係を示す計算データを、劣化状態パラメータで補正された計算データから生成し、関係式またはデータテーブルとして記憶する。そして、中破線で示す計算データと、●プロットで示す実測に基づく測定データとが一致するように、劣化状態パラメータを設定してフィッティングを行う。 As shown in Figure 9, the relationship between the state of charge of the secondary battery and the closed circuit voltage is obtained by combining the relationship between the state of charge of the secondary battery and the open circuit voltage, and the relationship between the state of charge of the secondary battery and the internal resistance. Using the simultaneous equations of equations (5) to (9), it is possible to obtain calculated data for the closed circuit voltage for each state of charge of the secondary battery assuming a degraded state, as shown by the dashed line. Such calculated data showing the relationship between the state of charge and the closed circuit voltage is generated from calculated data corrected with the degraded state parameters, and stored as a relational equation or a data table. Then, fitting is performed by setting the degraded state parameters so that the calculated data shown by the dashed line matches the measured data based on actual measurements shown by the ● plot.

続いて、演算部10は、実測に基づく二次電池の充電状態と閉回路電圧との関係を示す測定データと、再現に基づく劣化状態が仮定された二次電池の充電状態と閉回路電圧との関係を示す計算データとを比較する(ステップS8)。比較の処理では、実測に基づく測定データと、劣化状態が仮定された計算データとが、互いに一致しているか否かを判定する(ステップS9)。 Then, the calculation unit 10 compares the measurement data showing the relationship between the charge state and the closed circuit voltage of the secondary battery based on the actual measurement with the calculation data showing the relationship between the charge state and the closed circuit voltage of the secondary battery, which is assumed to be in a deteriorated state based on the reproduction (step S8). In the comparison process, it is determined whether the measurement data based on the actual measurement and the calculation data assuming a deteriorated state match each other (step S9).

測定データと計算データとの比較は、データ間の類似度を判定する任意の方法で行うことができる。例えば、線形回帰または非線形回帰の下で残差平方和、相関係数等を求める回帰分析や、充電状態等に応じて重みを付けた重み付き回帰分析や、クラスタリングされたデータベースと比較してデータを帰属させるクラスタ分析等によって行うことができる。測定データや計算データは、温度等の追加的な変数のデータが関連付けられてクラスタリングされてもよい。 The measured data and the calculated data can be compared by any method that determines the similarity between the data. For example, the measured data can be compared by regression analysis that determines the sum of squares of residuals or correlation coefficients under linear or nonlinear regression, weighted regression analysis that assigns weights according to the state of charge, or cluster analysis that assigns data by comparing with a clustered database. The measured data and calculated data may be clustered by associating them with data on additional variables such as temperature.

測定データと計算データとの比較は、充電状態の一部の区間に対応するデータについて行ってもよいし、充電状態の全部の区間に対応するデータについて行ってもよい。全部の区間でフィッティングを行うと、劣化状態の診断の精度を向上させることができる。一方、充電状態の一部の区間に特徴点がある場合等には、特徴点を含む一部の区間のみでフィッティングを行うことができる。 The comparison between the measured data and the calculated data may be performed for data corresponding to a portion of the charging state, or for data corresponding to the entire charging state. Performing fitting for the entire range can improve the accuracy of diagnosis of the deterioration state. On the other hand, if there is a feature point in some of the charging state ranges, fitting can be performed only for the portion of the range that includes the feature point.

例えば、測定データと計算データとの比較は、データ間の残差平方和に基づいて行うことができる。測定データと計算データとの差分の平方和を計算し、差分の平方和と任意に設定した閾値とを比較する。差分の平方和と閾値との大小関係によって、測定データと計算データとの一致性を判定することができる。 For example, the comparison between measured data and calculated data can be made based on the residual sum of squares between the data. The sum of squares of the differences between the measured data and calculated data is calculated, and the sum of squares of the differences is compared with an arbitrarily set threshold value. The consistency between the measured data and calculated data can be determined based on the relationship between the sum of squares of the differences and the threshold value.

診断対象である二次電池の充電状態と閉回路電圧との関係を示す測定データは、充電状態として、二次電池の満充電状態からの放電容量Qcを用いる場合、二次電池の満充電状態からの放電容量の測定値Qceと、二次電池の閉回路電圧の測定値CCVceとの組み合わせによる離散的なデータの集合となる。測定データの集合は、データテーブルとして記憶部20に格納しておくことができる。測定データのデータテーブルは、(Qce_1,CCVce_1)、(Qce_2,CCVce_2)、・・・、(Qce_N,CCVce_N)等のデータを含む。 When the discharge capacity Qc from the fully charged state of the secondary battery is used as the charge state, the measurement data indicating the relationship between the charge state of the secondary battery to be diagnosed and the closed circuit voltage is a set of discrete data that combines the measured value Qce of the discharge capacity from the fully charged state of the secondary battery and the measured value CCVce of the closed circuit voltage of the secondary battery. The set of measurement data can be stored in the memory unit 20 as a data table. The data table of measurement data includes data such as (Qce_1, CCVce_1), (Qce_2, CCVce_2), ..., (Qce_N, CCVce_N).

データ同士が互いに一致しているか否かの判定では、計算データのデータテーブルから、測定データの充電状態に対応する計算データを抽出する。測定データ(Qce_1,CCVce_1)、(Qce_2,CCVce_2)、・・・、(Qce_N,CCVce_N)に対して、同一または近似した放電容量Qcの計算データ(Qcc_1,CCVcc_1)、(Qcc_2,CCVcc_2)、・・・、(Qcc_N,CCVcc_N)等を抽出することができる。 To determine whether the data match each other, calculation data corresponding to the charge state of the measurement data is extracted from the data table of calculation data. For measurement data (Qce_1, CCVce_1), (Qce_2, CCVce_2), ..., (Qce_N, CCVce_N), calculation data (Qcc_1, CCVcc_1), (Qcc_2, CCVcc_2), ..., (Qcc_N, CCVcc_N) of the same or similar discharge capacity Qc can be extracted.

そして、互いに対応する充電状態のデータ間で、測定データ中の測定値と計算データ中の計算値との差分の二乗を計算し、差分の二乗を所定の範囲のデータ間で合計する。測定データ中の測定値CCVce_1~CCVce_Nと、計算データ中の計算値CCVcc_1~CCVcc_Nとの差分の二乗和として、Σ(CCVce_i-CCVcc_i)を、i=1~Nに対して計算することができる。 Then, for each corresponding piece of state-of-charge data, the square of the difference between the measured value in the measurement data and the calculated value in the calculation data is calculated, and the square of the difference is summed up for a predetermined range of data. Σ(CCVce_i-CCVcc_i) 2 can be calculated for i=1 to N as the sum of the squares of the differences between the measured values CCVce_1 to CCVce_N in the measurement data and the calculated values CCVcc_1 to CCVcc_N in the calculation data.

計算された差分の二乗和は、予め設定された一致性に関する閾値と比較する。閉回路電位についての一致性に関する閾値としては、診断に要求される精度や、劣化状態パラメータを変更した計算の繰り返し数等に応じて、データ同士の類似度が高くなるような任意値を設定できる。測定データに対応する放電状態の計算データがない場合は、内挿によって計算データを補間してもよい。 The calculated sum of squares of the differences is compared with a preset threshold value for consistency. The threshold value for consistency for the closed circuit potential can be set to any value that increases the similarity between the data, depending on the accuracy required for diagnosis, the number of iterations of calculations with changed deterioration state parameters, etc. If there is no calculated data for the discharge state that corresponds to the measured data, the calculated data may be interpolated.

比較の結果、測定データと計算データとの差分の二乗和が、予め設定された閾値を超えているとき、診断対象である二次電池の充電状態と閉回路電圧との関係を示す測定データと、劣化状態を仮定して計算した二次電池の充電状態と閉回路電圧との関係を示す計算データとが、互いに一致していないと判定できる。この場合(ステップS9;NO)、劣化状態パラメータを再設定して、計算データの再生成および再比較を行う。 When the comparison result shows that the sum of squares of the differences between the measured data and the calculated data exceeds a preset threshold, it can be determined that the measured data indicating the relationship between the state of charge and the closed circuit voltage of the secondary battery to be diagnosed and the calculated data indicating the relationship between the state of charge and the closed circuit voltage of the secondary battery calculated assuming a degraded state do not match each other. In this case (step S9; NO), the degraded state parameters are reset, and the calculated data is regenerated and recompared.

計算データの再生成および再比較において、劣化状態パラメータとしては、未設定の数値を設定することができる。劣化状態パラメータは、例えば、劣化状態パラメータが表す劣化状態に関して昇順または降順に選定して設定することができる。容量に関する劣化状態パラメータと、抵抗に関する劣化状態パラメータとは、推定される劣化状態にかかわらず、互いに独立に選定されてもよい。 When regenerating and recomparing the calculation data, unset values can be set as the deterioration state parameters. The deterioration state parameters can be selected and set, for example, in ascending or descending order with respect to the deterioration state represented by the deterioration state parameters. The deterioration state parameters related to the capacity and the deterioration state parameters related to the resistance may be selected independently of each other, regardless of the estimated deterioration state.

一方、比較の結果、測定データと計算データとの差分の二乗和が、予め設定された閾値以下であるとき、診断対象である二次電池の充電状態と閉回路電圧との関係を示す測定データと、劣化状態を仮定して計算した二次電池の充電状態と閉回路電圧との関係を示す計算データとが、互いに一致していると判定できる。この場合(ステップS9;YES)、設定した劣化状態パラメータを採用して記憶部20に登録し、診断の処理を終了する。 On the other hand, if the comparison result indicates that the sum of squares of the differences between the measured data and the calculated data is equal to or less than a preset threshold, it can be determined that the measured data indicating the relationship between the state of charge and the closed circuit voltage of the secondary battery to be diagnosed and the calculated data indicating the relationship between the state of charge and the closed circuit voltage of the secondary battery calculated assuming a degraded state match each other. In this case (step S9; YES), the set degraded state parameters are adopted and registered in the memory unit 20, and the diagnosis process is terminated.

劣化状態パラメータの再設定や、再設定した劣化状態パラメータに基づく計算データの再生成および再比較は、測定データと計算データとが互いに一致していると判定されるまで、任意の回数を繰り返すことができる。二次電池の劣化状態の診断の処理は、測定データと計算データとの一致性の判定の結果や、所定の停止条件に応じて、終了することができる。 The resetting of the degradation state parameters and the regeneration and recomparison of the calculation data based on the reset degradation state parameters can be repeated any number of times until it is determined that the measured data and the calculated data match each other. The process of diagnosing the degradation state of the secondary battery can be terminated depending on the result of the determination of the match between the measured data and the calculated data or on a specified stop condition.

例えば、計算の繰り返し数が所定数に達した場合や、計算によって収束された劣化状態パラメータで補正された計算データと測定データとの類似度が所定の類似度に達しなかった場合や、予め用意された全ての劣化状態パラメータの設定が完了した場合等に、診断の処理を終了することができる。 For example, the diagnosis process can be terminated when the number of calculation iterations reaches a predetermined number, when the similarity between the calculation data corrected with the deterioration state parameters converged by the calculation and the measurement data does not reach a predetermined similarity, or when the setting of all the deterioration state parameters prepared in advance is completed.

計算データの再生成および再比較において、測定データと計算データが、所定の計算回数や、所定の計算時間において、互いに一致しない場合には、別の活物質を用いた電極の参照データと入れ替えて、劣化状態パラメータの再設定や、再設定した劣化状態パラメータに基づく計算データの再生成および再比較を、やり直してもよい。 When the calculation data is regenerated and recompared, if the measurement data and the calculation data do not match after a specified number of calculations or a specified calculation time, the deterioration state parameters may be replaced with reference data for an electrode using a different active material, and the calculation data may be regenerated and recompared again based on the re-set deterioration state parameters.

二次電池の劣化状態の診断の処理が終了すると、出力部40は、二次電池の劣化状態の診断結果や、電極毎の劣化状態の診断結果を表示する。出力部40には、診断要求に対する診断結果を示すデータを、充電状態-電圧の曲線、充電状態-内部抵抗の曲線等のグラフや、テーブル等として表示することができる。 When the process of diagnosing the deterioration state of the secondary battery is completed, the output unit 40 displays the diagnosis results of the deterioration state of the secondary battery and the diagnosis results of the deterioration state of each electrode. The output unit 40 can display data showing the diagnosis results in response to the diagnosis request as graphs such as a curve of charge state vs. voltage or a curve of charge state vs. internal resistance, or as a table, etc.

二次電池の劣化状態の診断結果を示すデータとしては、採用された劣化状態パラメータや、電極毎の計算データによって生成された二次電池の充電状態と開回路電圧との関係を示す計算データや、電極毎の計算データによって生成された二次電池の充電状態と内部抵抗との関係を示す計算データや、これらの計算データによって生成された二次電池の充電状態と閉回路電圧との関係を示す計算データが挙げられる。 Data showing the diagnosis results of the deterioration state of the secondary battery include the deterioration state parameters used, calculation data showing the relationship between the charge state and the open circuit voltage of the secondary battery generated from calculation data for each electrode, calculation data showing the relationship between the charge state and the internal resistance of the secondary battery generated from calculation data for each electrode, and calculation data showing the relationship between the charge state and the closed circuit voltage of the secondary battery generated from these calculation data.

電極毎の劣化状態の診断結果を示すデータとしては、採用された補正パラメータで補正された電極の充電状態と開回路電位との関係を示す計算データや、採用された補正パラメータで補正された電極の充電状態と内部抵抗との関係を示す計算データが挙げられる。これらのデータは、正極および負極の電極毎に表示することができる。 Data showing the diagnosis results of the deterioration state of each electrode include calculated data showing the relationship between the state of charge of the electrode corrected with the adopted correction parameters and the open circuit potential, and calculated data showing the relationship between the state of charge of the electrode corrected with the adopted correction parameters and the internal resistance. These data can be displayed for each positive and negative electrode.

出力部40は、診断結果を示すデータと共に、電極に用いられている活物質の種類や、測定データと計算データとの一致性を示す類似度等の情報を表示してもよい。また、劣化状態パラメータの値に対応した劣化状態(SOH)を表示してもよい。また、採用された劣化状態パラメータに基づく最終結果のみを表示してもよいし、計算の繰り返し毎の中間結果を最終結果と共に表示してもよい。 The output unit 40 may display information such as the type of active material used in the electrodes and the similarity indicating the agreement between the measured data and the calculated data together with the data indicating the diagnosis result. It may also display the state of health (SOH) corresponding to the value of the deterioration state parameter. It may also display only the final result based on the deterioration state parameter adopted, or may display intermediate results for each iteration of the calculation together with the final result.

二次電池の劣化状態の診断の処理において、測定データと計算データとの一致性に基づいて真値に近似された劣化状態パラメータが特定された後、特定された劣化状態パラメータで補正された計算データから二次電池の劣化状態(SOH)を推定することができる。劣化状態(SOH)は、二次電池の初期状態に対する容量維持率SOHQや、二次電池や電極の初期状態に対する抵抗上昇率SOHRとして表すことができる。 In the process of diagnosing the deteriorated state of a secondary battery, after a deteriorated state parameter that is approximated to a true value is identified based on the consistency between the measured data and the calculated data, the deteriorated state (SOH) of the secondary battery can be estimated from the calculated data corrected with the identified deteriorated state parameter. The deteriorated state (SOH) can be expressed as the capacity maintenance rate SOHQ relative to the initial state of the secondary battery, or the resistance rise rate SOHR relative to the initial state of the secondary battery or electrodes.

容量維持率SOHQ[%]は、初期状態の二次電池の満充電状態における容量をQmax0[Ah]、劣化状態の二次電池の満充電状態における容量をQmax1[Ah]、劣化状態の二次電池の積分区間の上下限の充電状態をSOC1[%],SOC2[%]としたとき、次の式(10)~(11)によって計算することができる。
SOHQ=Qmax1/Qmax0×100[%]・・・(10)
Qmax1=∫Idt/((SOC1-SOC2)/100)・・・(11)
The capacity maintenance rate SOHQ [%] can be calculated by the following formulas (10) to (11) when the capacity of the fully charged state of the initial secondary battery is Qmax0 [Ah], the capacity of the fully charged state of the degraded secondary battery is Qmax1 [Ah], and the charge states of the upper and lower limits of the integration interval of the degraded secondary battery are SOC1 [%] and SOC2 [%].
SOHQ=Qmax1/Qmax0×100[%]...(10)
Qmax1=∫Idt/((SOC1-SOC2)/100)...(11)

二次電池の抵抗上昇率SOHRc[%]、正極の抵抗上昇率SOHRp[%]、および、負極の抵抗上昇率SOHRn[%]は、初期状態の二次電池の内部抵抗をRc0[Ω]、劣化状態の二次電池の内部抵抗をRc1[Ω]、初期状態の正極の内部抵抗をRp0[Ω]、劣化状態の二次電池の内部抵抗をRp1[Ω]、初期状態の負極の内部抵抗をRn0[Ω]、劣化状態の負極の内部抵抗をRn1[Ω]としたとき、次の式(12)~(14)によって計算することができる。
SOHRc=Rc1/Rc0×100[%]・・・(12)
SOHRp=Rp1/Rp0×100[%]・・・(13)
SOHRn=Rn1/Rn0×100[%]・・・(14)
The resistance rise rate SOHRc [%] of the secondary battery, the resistance rise rate SOHRp [%] of the positive electrode, and the resistance rise rate SOHRn [%] of the negative electrode can be calculated by the following formulas (12) to (14) when the internal resistance of the secondary battery in the initial state is Rc0 [Ω], the internal resistance of the secondary battery in a degraded state is Rc1 [Ω], the internal resistance of the positive electrode in the initial state is Rp0 [Ω], the internal resistance of the secondary battery in a degraded state is Rp1 [Ω], the internal resistance of the negative electrode in the initial state is Rn0 [Ω], and the internal resistance of the negative electrode in a degraded state is Rn1 [Ω].
SOHRc=Rc1/Rc0×100[%]...(12)
SOHRp=Rp1/Rp0×100[%]...(13)
SOHRn=Rn1/Rn0×100[%]...(14)

以上の二次電池の状態診断方法および二次電池の状態診断装置によると、二次電池の劣化状態を診断するための情報として、二次電池の充電状態と閉回路電圧との関係を用いるため、二次電池を所定の充電状態に調整して開回路電圧等を測定する必要がない。診断に用いる情報を収集するにあたり、所定の条件で充放電を行うための充放電装置や充放電作業が不要であり、手間や技能を必要としない。よって、診断対象である二次電池の劣化状態を、簡便な操作で取得できる情報に基づいて、非破壊で高精度に診断することができる。 According to the above-mentioned secondary battery state diagnosis method and secondary battery state diagnosis device, the relationship between the charge state of the secondary battery and the closed circuit voltage is used as information for diagnosing the deterioration state of the secondary battery, so there is no need to adjust the secondary battery to a specified charge state and measure the open circuit voltage, etc. When collecting information used for diagnosis, no charge/discharge device or charge/discharge operation is required to charge/discharge under specified conditions, and no effort or skill is required. Therefore, the deterioration state of the secondary battery to be diagnosed can be diagnosed non-destructively and with high accuracy based on information that can be obtained with simple operations.

二次電池の劣化状態の診断結果は、二次電池の作動条件範囲の変更に用いることができる。二次電池の劣化状態の診断結果に応じて、二次電池の充電状態の上限および下限、二次電池への充電電流の上限および下限、二次電池からの放電電流の上限および下限等を変更することができる。 The diagnosis results of the deterioration state of the secondary battery can be used to change the operating condition range of the secondary battery. Depending on the diagnosis results of the deterioration state of the secondary battery, the upper and lower limits of the charge state of the secondary battery, the upper and lower limits of the charging current to the secondary battery, the upper and lower limits of the discharge current from the secondary battery, etc. can be changed.

例えば、正極材料を適正に使用できる電位範囲や、負極材料を適正に使用できる電位範囲を予め定めておく。そして、正極および負極のいずれか一方の劣化による開回路電位の変動が起こった場合に、適正に使用できる電位範囲で、容量が確保されるように、上限電圧値や下限電圧値を変更することができる。 For example, the potential range in which the positive electrode material can be used properly and the potential range in which the negative electrode material can be used properly are determined in advance. Then, if the open circuit potential fluctuates due to deterioration of either the positive or negative electrode, the upper and lower voltage limits can be changed so that capacity is ensured within the potential range in which they can be used properly.

また、二次電池の劣化状態の診断結果は、診断要求毎に、データベースとして保存することができる。診断結果データは、互いに異なる二次電池毎に収集してもよいし、同一の二次電池について、異なる時期に診断を実施して収集してもよい。これらの診断結果は、診断要求毎、且つ、時系列の診断結果データとして、記憶装置に保存できる。 The diagnosis results of the deterioration state of the secondary battery can be stored as a database for each diagnosis request. The diagnosis result data may be collected for different secondary batteries, or may be collected by performing diagnosis on the same secondary battery at different times. These diagnosis results can be stored in a storage device for each diagnosis request as chronological diagnosis result data.

診断要求は、二次電池の使用元の端末、サービスセンタの端末等から電気通信回線を通じて受け付けられる。二次電池の劣化状態の診断結果を示す診断結果データは、診断要求を識別する識別子や、二次電池の使用時間、二次電池への累積通電量等、使用元から送られた追加情報を示すデータや、診断の日時を示すデータと関連付けて、記憶装置に保存できる。 The diagnosis request is received via a telecommunications line from the terminal where the secondary battery is used, a terminal at a service center, etc. The diagnosis result data indicating the diagnosis result of the secondary battery's deterioration state can be stored in a storage device in association with an identifier that identifies the diagnosis request, data indicating additional information sent from the user, such as the usage time of the secondary battery and the cumulative amount of power flowing through the secondary battery, and data indicating the date and time of the diagnosis.

二次電池の使用時間としては、診断対象である二次電池の初回充放電時から現在までの時間、充放電サイクル数等を登録・保存することができる。二次電池への累積通電量としては、二次電池の使用時間と、定格電流に基づいて計算される二次電池の初回受放電時から現在までを合計した通電量等を登録・保存することができる。 As the usage time of the secondary battery, the time from the first charge/discharge of the secondary battery to be diagnosed to the present, the number of charge/discharge cycles, etc. can be registered and stored. As the cumulative current flowing to the secondary battery, the usage time of the secondary battery and the total current flowing from the first charge/discharge of the secondary battery to the present, calculated based on the rated current, etc. can be registered and stored.

データベースとして蓄積された二次電池の劣化状態の診断結果は、二次電池の作動条件を変更する処理に用いることができる。二次電池の作動条件としては、二次電池の充電状態の上限および下限、二次電池への充電電流の上限および下限、二次電池からの放電電流の上限および下限が挙げられる。これらの作動条件のうちの一以上を、蓄積された診断結果データに基づいて変更できる。 The diagnosis results of the deterioration state of the secondary battery stored as a database can be used in a process to change the operating conditions of the secondary battery. The operating conditions of the secondary battery include the upper and lower limits of the charge state of the secondary battery, the upper and lower limits of the charging current to the secondary battery, and the upper and lower limits of the discharging current from the secondary battery. One or more of these operating conditions can be changed based on the accumulated diagnosis result data.

二次電池の作動条件は、(1)電極毎の劣化状態、(2)電極毎の劣化状態の変化速度、または、(3)二次電池の残寿命を指標として変更することができる。これらの指標を所定の閾値と比較し、電極毎の劣化や二次電池の劣化が進行する可能性が高いと判定されたとき、二次電池の作動条件範囲を安全性が確保される条件に変更するために、二次電池のコントローラの制御条件を提示する。 The operating conditions of the secondary battery can be changed using as indicators (1) the deterioration state of each electrode, (2) the rate of change in the deterioration state of each electrode, or (3) the remaining life of the secondary battery. When these indicators are compared with predetermined thresholds and it is determined that there is a high possibility that deterioration of each electrode or deterioration of the secondary battery will progress, the control conditions of the secondary battery controller are presented in order to change the operating condition range of the secondary battery to conditions that ensure safety.

(1)電極毎の劣化状態としては、前記の処理において登録される最新の劣化状態パラメータを指標として用いることができる。劣化状態パラメータによって表される正極の劣化度、または、劣化状態パラメータによって表される負極の劣化度、または、劣化状態パラメータによって表される抵抗上昇度が、予め設定された閾値以上であるとき、二次電池の作動条件範囲を安全性が確保される条件に変更することができる。 (1) The latest degradation state parameters registered in the above process can be used as an index for the degradation state of each electrode. When the degree of degradation of the positive electrode represented by the degradation state parameters, or the degree of degradation of the negative electrode represented by the degradation state parameters, or the degree of resistance increase represented by the degradation state parameters, is equal to or greater than a preset threshold, the operating condition range of the secondary battery can be changed to conditions that ensure safety.

(2)電極毎の劣化状態の変化速度としては、正極の劣化状態の累積負荷量に対する変化速度(変化率)、または、負極の劣化状態の累積負荷量に対する変化速度(変化率)を指標として用いることができる。劣化状態パラメータによって表される正極の劣化度、または、劣化状態パラメータによって表される負極の劣化度、または、劣化状態パラメータによって表される抵抗上昇度が、所定の累積負荷量の印加に対して、予め設定された閾値以上であるとき、二次電池の作動条件範囲を安全性が確保される条件に変更することができる。 (2) The rate of change of the deterioration state of each electrode can be the rate of change (rate of change) of the deterioration state of the positive electrode with respect to the cumulative load amount, or the rate of change (rate of change) of the deterioration state of the negative electrode with respect to the cumulative load amount. When the degree of deterioration of the positive electrode represented by the deterioration state parameter, or the degree of deterioration of the negative electrode represented by the deterioration state parameter, or the degree of resistance increase represented by the deterioration state parameter, is equal to or greater than a preset threshold value for the application of a predetermined cumulative load amount, the operating condition range of the secondary battery can be changed to a condition that ensures safety.

累積負荷量は、二次電池の使用時間、二次電池における通電量、または、使用時間、通電量、温度および電流のうちの複数種の組み合わせから計算することができる。これらのうちの複数種を変数として、累積負荷量と電極の劣化状態との関係を示すモデル関数を立式する。そして、種々の累積負荷量に対する電極の劣化状態を実測し、実測結果を用いたフィッティングによってモデル関数の係数や定数を求めることができる。 The cumulative load can be calculated from the usage time of the secondary battery, the amount of current flowing through the secondary battery, or a combination of multiple types of parameters including usage time, amount of current flowing through the secondary battery, temperature, and current. Using multiple types of parameters, a model function is formulated that shows the relationship between the cumulative load and the deterioration state of the electrodes. The deterioration state of the electrodes for various cumulative loads is then measured, and the coefficients and constants of the model function can be found by fitting using the actual measurement results.

(3)二次電池の残寿命としては、二次電池の放電容量が劣化の進行によって所定の放電容量に低下するまでの二次電池の使用時間を指標として用いることができる。二次電池の残寿命が、想定される所定の使用時間に対して、予め設定された閾値以下であるとき、二次電池の作動条件範囲を安全性が確保される条件に変更することができる。 (3) The remaining life of the secondary battery can be determined by the usage time of the secondary battery until the discharge capacity of the secondary battery drops to a predetermined discharge capacity due to the progression of deterioration. When the remaining life of the secondary battery is equal to or less than a preset threshold value for the expected predetermined usage time, the operating condition range of the secondary battery can be changed to a condition that ensures safety.

所定の放電容量に低下するまでの二次電池の使用時間は、正極の劣化状態の累積負荷量に対する変化速度(変化率)と、負極の劣化状態の累積負荷量に対する変化速度(変化率)とに基づいて、二次電池の劣化状態の累積負荷量に対する変化速度(変化率)を計算し、二次電池の劣化状態の累積負荷量に対する変化速度(変化率)と、現在の二次電池の放電容量と、二次電池の寿命終了時の放電容量と、に基づいて推定することができる。 The usage time of the secondary battery until the discharge capacity drops to a predetermined value can be estimated by calculating the rate of change (rate of change) of the accumulated load of the deterioration state of the secondary battery based on the rate of change (rate of change) of the accumulated load of the deterioration state of the positive electrode and the rate of change (rate of change) of the accumulated load of the deterioration state of the negative electrode, and based on the rate of change (rate of change) of the accumulated load of the deterioration state of the secondary battery, the current discharge capacity of the secondary battery, and the discharge capacity at the end of the life of the secondary battery.

二次電池の作動条件を安全性が確保される条件を変更する操作としては、例えば、二次電池の充電状態の上限を下げる変更、二次電池の充電状態の下限を上げる変更、二次電池への充電電流の上限または下限を下げる変更、二次電池からの放電電流の上限または下限を下げる変更が挙げられる。これらのうちの1種以上を制御するための二次電池のコントローラの制御条件を提示することができる。 Examples of operations that change the operating conditions of the secondary battery to ensure safety include lowering the upper limit of the secondary battery's state of charge, raising the lower limit of the secondary battery's state of charge, lowering the upper or lower limit of the charging current to the secondary battery, and lowering the upper or lower limit of the discharging current from the secondary battery. It is possible to present control conditions for the secondary battery controller to control one or more of these.

このような診断後の二次電池の作動条件範囲の変更を行うと、二次電池の劣化の進行を抑制することができるため、二次電池を長寿命化することができる。二次電池の作動条件範囲の変更に用いる診断結果の履歴は、以上の二次電池の状態診断方法や二次電池の状態診断装置によって、電極毎の劣化状態を示すデータとして得られるため、正極および負極のいずれかの劣化を早期に検知して、二次電池の安全性を確保することができる。 By changing the operating condition range of the secondary battery after such a diagnosis, the progression of deterioration of the secondary battery can be suppressed, thereby extending the life of the secondary battery. The history of diagnosis results used to change the operating condition range of the secondary battery is obtained as data indicating the deterioration state of each electrode by the above-mentioned secondary battery condition diagnosis method and secondary battery condition diagnosis device, so that deterioration of either the positive or negative electrode can be detected early to ensure the safety of the secondary battery.

以上、本発明の実施形態について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を他の形態に追加したり、或る実施形態の構成の一部を省略したりすることができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the present invention. For example, the present invention is not necessarily limited to having all of the configurations of the above-described embodiments. It is possible to replace part of the configuration of an embodiment with another configuration, add part of the configuration of an embodiment to another form, or omit part of the configuration of an embodiment.

100 状態診断装置(二次電池の状態診断装置)
10 演算部
20 記憶部
30 入力部
40 出力部
50 通信部(取得部)
100 Status diagnostic device (secondary battery status diagnostic device)
10 Calculation unit 20 Storage unit 30 Input unit 40 Output unit 50 Communication unit (acquisition unit)

Claims (7)

二次電池の劣化状態を診断する状態診断方法であって、
劣化状態を表すパラメータで補正された二次電池の充電状態と開回路電圧との関係と、劣化状態を表すパラメータで補正された二次電池の充電状態と内部抵抗との関係とを求める工程と、
補正された前記二次電池の充電状態と開回路電圧との関係と、補正された前記二次電池の充電状態と内部抵抗との関係とに基づいて、二次電池の充電状態と閉回路電圧との関係を示す計算結果を求める工程と、
二次電池の充電状態と閉回路電圧との関係を示す測定結果と、前記二次電池の充電状態と閉回路電圧との関係を示す計算結果とを比較する工程と、
前記比較結果に基づいて前記二次電池の劣化状態の診断結果を示す前記パラメータを特定する工程と、を含み、
前記二次電池の充電状態と閉回路電圧との関係を示す測定結果は、二次電池の充電過程または放電過程において、前記二次電池の充電状態毎の測定を連続的に行って取得される二次電池の状態診断方法。
A state diagnosis method for diagnosing a deterioration state of a secondary battery, comprising:
determining a relationship between the state of charge of the secondary battery corrected by the parameter representing the deterioration state and the open circuit voltage, and a relationship between the state of charge of the secondary battery corrected by the parameter representing the deterioration state and the internal resistance;
determining a calculation result indicating a relationship between the state of charge of the secondary battery and the closed circuit voltage based on the corrected relationship between the state of charge of the secondary battery and the open circuit voltage and the corrected relationship between the state of charge of the secondary battery and the internal resistance;
A step of comparing a measurement result indicating a relationship between a charge state of a secondary battery and a closed circuit voltage with a calculation result indicating a relationship between a charge state of the secondary battery and a closed circuit voltage;
and identifying the parameter indicating a diagnosis result of the deterioration state of the secondary battery based on a result of the comparison .
A secondary battery status diagnosis method in which measurement results indicating the relationship between the charging state of the secondary battery and the closed circuit voltage are obtained by continuously measuring each charging state of the secondary battery during the charging or discharging process of the secondary battery.
請求項1に記載の二次電池の状態診断方法であって、
正極材料に固有の正極の充電状態と開回路電位との関係、正極材料に固有の正極の充電状態と内部抵抗との関係、負極材料に固有の負極の充電状態と開回路電位との関係、および、負極材料に固有の負極の充電状態と内部抵抗との関係を、劣化状態を表すパラメータで補正する工程と、
補正された前記正極の充電状態と開回路電位との関係と、補正された前記負極の充電状態と開回路電位との関係とに基づいて、二次電池の充電状態と開回路電圧との関係を示す計算結果を求める工程と、
補正された前記正極の充電状態と内部抵抗との関係と、補正された前記負極の充電状態と内部抵抗との関係とに基づいて、二次電池の充電状態と内部抵抗との関係を示す計算結果を求める工程と、を含む二次電池の状態診断方法。
A method for diagnosing a state of a secondary battery according to claim 1, comprising:
a step of correcting a relationship between the charge state of the positive electrode and the open circuit potential, which is specific to the positive electrode material, a relationship between the charge state of the positive electrode and the internal resistance, which is specific to the positive electrode material, a relationship between the charge state of the negative electrode and the open circuit potential, which is specific to the negative electrode material, and a relationship between the charge state of the negative electrode and the internal resistance, which is specific to the negative electrode material, with a parameter representing a deterioration state;
determining a calculation result showing a relationship between the state of charge and the open circuit voltage of a secondary battery based on the corrected relationship between the state of charge and the open circuit potential of the positive electrode and the corrected relationship between the state of charge and the open circuit potential of the negative electrode;
and determining a calculation result indicating the relationship between the state of charge and the internal resistance of the secondary battery based on the corrected relationship between the state of charge and the internal resistance of the positive electrode and the corrected relationship between the state of charge and the internal resistance of the negative electrode.
請求項1または請求項2に記載の二次電池の状態診断方法であって、
前記パラメータを特定する工程において、前記測定結果と前記計算結果との一致性に基づいて前記パラメータを特定し、特定された前記パラメータで補正された前記計算結果から前記二次電池の劣化状態を推定する二次電池の状態診断方法。
A method for diagnosing a state of a secondary battery according to claim 1 or 2, comprising:
A secondary battery status diagnosis method, in which, in the process of identifying the parameter , the parameter is identified based on the consistency between the measurement result and the calculation result, and the deterioration state of the secondary battery is estimated from the calculation result corrected by the identified parameter.
請求項1から請求項3のいずれか一項に記載の二次電池の状態診断方法であって、
前記二次電池の充電状態毎の測定は、0.3C以下の低レートの前記充電過程または前記放電過程において行われる二次電池の状態診断方法。
A method for diagnosing a state of a secondary battery according to any one of claims 1 to 3, comprising:
The method for diagnosing a state of a secondary battery, wherein the measurement for each state of charge of the secondary battery is performed during the charging process or the discharging process at a low rate of 0.3 C or less.
請求項1から請求項4のいずれか一項に記載の二次電池の状態診断方法であって、
前記二次電池の内部抵抗は、充電状態に依存する正極の内部抵抗と、充電状態に依存する負極の内部抵抗と、充電状態に依存しない電極以外の要素の抵抗との合成である二次電池の状態診断方法。
A method for diagnosing a state of a secondary battery according to any one of claims 1 to 4, comprising:
A method for diagnosing the state of a secondary battery, wherein the internal resistance of the secondary battery is a combination of the internal resistance of a positive electrode which depends on the state of charge, the internal resistance of a negative electrode which depends on the state of charge, and the resistance of elements other than the electrodes which does not depend on the state of charge.
二次電池の劣化状態を診断する状態診断装置であって、
前記二次電池の充電状態と閉回路電圧との関係を示す測定データを取得する取得部と、
正極材料に固有の正極の充電状態と開回路電位との関係を示す参照データ、正極材料に固有の正極の充電状態と内部抵抗との関係を示す参照データ、負極材料に固有の負極の充電状態と開回路電位との関係を示す参照データ、および、負極材料に固有の負極の充電状態と内部抵抗との関係を示す参照データを記憶した記憶部と、
劣化状態を表すパラメータで補正された前記参照データに基づいて、二次電池の充電状態と開回路電圧との関係を示す第1計算データ、および、二次電池の充電状態と内部抵抗との関係を示す第2計算データを生成し、前記第1計算データおよび前記第2計算データに基づいて、二次電池の充電状態と閉回路電圧との関係を示す第3計算データを生成し、前記測定データと前記第3計算データとを比較する演算部と、を備え、
前記測定データは、二次電池の充電過程または放電過程において、前記二次電池の充電状態毎の測定を連続的に行って取得された後に、前記取得部に入力される二次電池の状態診断装置。
A state diagnosis device for diagnosing a deterioration state of a secondary battery, comprising:
an acquisition unit that acquires measurement data indicating a relationship between a state of charge of the secondary battery and a closed circuit voltage;
a memory unit that stores reference data indicating a relationship between a state of charge of a positive electrode and an open circuit potential that is specific to a positive electrode material, reference data indicating a relationship between a state of charge of a positive electrode and an internal resistance that is specific to a positive electrode material, reference data indicating a relationship between a state of charge of a negative electrode and an open circuit potential that is specific to a negative electrode material, and reference data indicating a relationship between a state of charge of a negative electrode and an internal resistance that is specific to a negative electrode material;
a calculation unit that generates first calculated data indicating a relationship between a state of charge and an open circuit voltage of the secondary battery and second calculated data indicating a relationship between the state of charge and an internal resistance of the secondary battery based on the reference data corrected by a parameter indicating a degradation state, generates third calculated data indicating a relationship between the state of charge and a closed circuit voltage of the secondary battery based on the first calculated data and the second calculated data, and compares the measurement data with the third calculated data,
A secondary battery status diagnosis device in which the measurement data is acquired by continuously measuring each charging state of the secondary battery during a charging or discharging process of the secondary battery, and then input to the acquisition unit.
請求項6に記載の二次電池の状態診断装置であって、
前記二次電池の劣化状態の診断結果を表示する表示部を備え、
前記演算部は、前記測定データと前記第3計算データとの一致性に基づいて前記パラメータを特定し、特定された前記パラメータで補正された前記第3計算データから前記二次電池の劣化状態を推定し、
前記表示部は、推定された前記二次電池の劣化状態の診断結果を表示する二次電池の状態診断装置。
The secondary battery state diagnosis device according to claim 6,
a display unit that displays a diagnosis result of the deterioration state of the secondary battery,
the calculation unit identifies the parameter based on a match between the measurement data and the third calculation data, and estimates a degradation state of the secondary battery from the third calculation data corrected by the identified parameter;
The display unit is a secondary battery condition diagnosis device that displays a diagnosis result of the estimated deterioration state of the secondary battery.
JP2022051770A 2022-03-28 2022-03-28 Secondary battery state diagnostic method and state diagnostic device Active JP7660540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022051770A JP7660540B2 (en) 2022-03-28 2022-03-28 Secondary battery state diagnostic method and state diagnostic device
PCT/JP2023/001776 WO2023188723A1 (en) 2022-03-28 2023-01-20 Secondary cell state diagnosis method, and state diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022051770A JP7660540B2 (en) 2022-03-28 2022-03-28 Secondary battery state diagnostic method and state diagnostic device

Publications (2)

Publication Number Publication Date
JP2023144673A JP2023144673A (en) 2023-10-11
JP7660540B2 true JP7660540B2 (en) 2025-04-11

Family

ID=88200740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022051770A Active JP7660540B2 (en) 2022-03-28 2022-03-28 Secondary battery state diagnostic method and state diagnostic device

Country Status (2)

Country Link
JP (1) JP7660540B2 (en)
WO (1) WO2023188723A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064392A1 (en) 2008-12-05 2010-06-10 パナソニック株式会社 Battery pack
JP2014514704A (en) 2011-03-29 2014-06-19 エナボールト コーポレーション Monitoring of electrolyte concentration in redox flow battery system
WO2017199629A1 (en) 2016-05-18 2017-11-23 日立オートモティブシステムズ株式会社 Battery control device
JP2020046317A (en) 2018-09-19 2020-03-26 株式会社豊田自動織機 Voltage estimating device and voltage estimation method
JP2021163675A (en) 2020-04-01 2021-10-11 株式会社東芝 Battery deterioration evaluation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064392A1 (en) 2008-12-05 2010-06-10 パナソニック株式会社 Battery pack
JP2014514704A (en) 2011-03-29 2014-06-19 エナボールト コーポレーション Monitoring of electrolyte concentration in redox flow battery system
WO2017199629A1 (en) 2016-05-18 2017-11-23 日立オートモティブシステムズ株式会社 Battery control device
JP2020046317A (en) 2018-09-19 2020-03-26 株式会社豊田自動織機 Voltage estimating device and voltage estimation method
JP2021163675A (en) 2020-04-01 2021-10-11 株式会社東芝 Battery deterioration evaluation device

Also Published As

Publication number Publication date
JP2023144673A (en) 2023-10-11
WO2023188723A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP7289063B2 (en) Secondary battery residual performance evaluation method, secondary battery residual performance evaluation program, arithmetic device, and residual performance evaluation system
CN110386029B (en) Method for correcting SOC of lithium battery according to dynamic voltage
CN111448468B (en) Method, apparatus and system for detecting battery pack consistency
CN107102263B (en) Method, device and battery management system for detecting battery health state
JP5442583B2 (en) State detection device for power supply and power supply device
TWI286218B (en) Method for determining state-of-health of batteries
EP4439102A1 (en) Secondary cell state diagnosis method, and state diagnosis device
US20160195589A1 (en) Degradation diagnosis system and degradation diagnosis method for secondary battery
CN110988690A (en) Battery state of health correction method, device, management system and storage medium
EP2980595A1 (en) Battery life estimation method and battery life estimation device
CN107942261B (en) Method and system for estimating state of charge of battery
WO2014128902A1 (en) Deterioration diagnosing method for secondary battery and device using same
JP2013519893A (en) In-situ battery diagnostic method by electrochemical impedance spectroscopy
CN108120932B (en) Method and device for estimating state of health of rechargeable battery
CN116930779B (en) Battery capacity determination method and device, storage medium, and battery
CN114487887A (en) Battery health measurement method, device, equipment and storage medium
WO2022049804A1 (en) Determination device relating to plurality of batteries, electricity storage system, determination method and determination program
JP3239547U (en) Lithium-ion battery soundness and remaining useful life measurement system
JP7547654B2 (en) BATTERY DIAGNOSIS METHOD, BATTERY DIAGNOSIS DEVICE, BATTERY MANAGEMENT SYSTEM, AND BATTERY DIAGNOSIS PROGRAM
CN112394290A (en) Method and device for estimating SOH of battery pack, computer equipment and storage medium
JP7660540B2 (en) Secondary battery state diagnostic method and state diagnostic device
CN110988701A (en) Battery available energy determination method, device, management system and storage medium
JP7672282B2 (en) Battery management system, battery management method, and battery management program
WO2022180732A1 (en) Storage battery diagnosing system
JP7611543B2 (en) Battery storage system, deterioration determination device, and deterioration determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250401

R150 Certificate of patent or registration of utility model

Ref document number: 7660540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150