[go: up one dir, main page]

JP7653735B2 - Respiratory air purification equipment - Google Patents

Respiratory air purification equipment Download PDF

Info

Publication number
JP7653735B2
JP7653735B2 JP2024065047A JP2024065047A JP7653735B2 JP 7653735 B2 JP7653735 B2 JP 7653735B2 JP 2024065047 A JP2024065047 A JP 2024065047A JP 2024065047 A JP2024065047 A JP 2024065047A JP 7653735 B2 JP7653735 B2 JP 7653735B2
Authority
JP
Japan
Prior art keywords
air purifying
respiratory air
purifying device
mask
wearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024065047A
Other languages
Japanese (ja)
Other versions
JP2024095808A (en
Inventor
雄作 藤井
誠司 橋本
啓洋 田北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuteihieirikatsudouhoujin e jikeinettowa-kukenkyuukai
Original Assignee
Tokuteihieirikatsudouhoujin e jikeinettowa-kukenkyuukai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuteihieirikatsudouhoujin e jikeinettowa-kukenkyuukai filed Critical Tokuteihieirikatsudouhoujin e jikeinettowa-kukenkyuukai
Priority to JP2024065047A priority Critical patent/JP7653735B2/en
Publication of JP2024095808A publication Critical patent/JP2024095808A/en
Application granted granted Critical
Publication of JP7653735B2 publication Critical patent/JP7653735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Respiratory Apparatuses And Protective Means (AREA)
  • Ventilation (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Description

本発明は,マスク装着状況や他者との接触状況の管理方法,および,管理システムに関するものである.より具体的には,「呼吸空気浄化器具」の機種,微粒子や飛沫やウイルス等の遮蔽率,装着の有無などの装着状態を,時刻や位置情報などと共に,記録装置に記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムに関するものである.ここで,「呼吸空気浄化器具」とは,マスクなど,呼吸する空気の浄化を行う器具である.詳しく説明すると,吸気(体内に吸い込まれる空気)をフィルタ,ウイルス死滅装置等を通して浄化したのちに器具の中に導入する機能,および/または,呼気(体内から吐き出される空気)をフィルタ,ウイルス死滅装置等を通して浄化したのちに,器具の外に排出する機能,を有する器具である.「呼吸空気浄化器具」としては,「不織布フィルタを用いる一般のマスク」,「医療用マスク」,「ポンプ給気機能付きマスク」,「自由外出マスク(Distancing-Free Mask)」,「フェイスシールド」,「感染防護服」などが挙げられる.「ポンプ給気機能付きマスク」が挙げられる.「ポンプ給気機能付きマスク」の一形態であり,圧力と流量を制御することを特徴とする「自由外出マスク(Distancing-Free Mask)」についての詳しい説明は,後述している.「給気」と「排気」をまとめて表す用語として,「給排気」を使う.また,後述の説明では, 「自由外出マスク」を含む「呼吸空気浄化器具」を,簡略化のために,単に「マスク」と称することがある. The present invention relates to a method and a management system for managing the wearing status of a mask and the contact status with others. More specifically, the present invention relates to a recording and management system for the wearing status of a respiratory air purifying device, characterized by recording the model of the "respiratory air purifying device", the shielding rate of fine particles, droplets, viruses, etc., and the wearing status such as whether or not the device is worn, together with time and location information, etc., in a recording device. Here, a "respiratory air purifying device" is a device that purifies the air to be breathed, such as a mask. In more detail, it is a device that has the function of purifying the inhaled air (air taken into the body) through a filter, a virus killing device, etc. and then introducing it into the device, and/or the function of purifying the exhaled air (air exhaled from the body) through a filter, a virus killing device, etc. and then discharging it outside the device. Examples of "respiratory air purifying devices" include "general masks using nonwoven fabric filters", "medical masks", "masks with pump air supply function", "distancing-free masks", "face shields", and "protective clothing". Examples include "masks with pump air supply function". A detailed explanation of the "Distancing-Free Mask," which is a type of "mask with pump air supply function" and has the feature of controlling pressure and flow rate, is given below. The term "supply and exhaust" is used to collectively express "air supply" and "exhaust." In addition, in the explanation below, "respiratory air purifying devices," which include "distant-free masks," may be referred to simply as "masks" for simplicity.

発明者らは,ウイルスの侵入,漏洩をほぼ完全に遮蔽でき,既存の技術で製作可能なマスク「自由外出マスク(Distancing-Free Mask)」を提案している.(特許文献1,参考文献1)これが開発され,全国民に配布されれば,ロックダウンは不要となる.「自由外出マスク装着者」は,抗体保有者と同様に,マスク装着者がウイルスに感染することもなければ,他者にウイルスを感染させることもない.当初の予測が外れ,感染拡大の歯止めが利かなくなった場合でも,「自由外出マスク」を全国民一斉装着すれば,速やかに,簡単・確実に感染収束となる.すなわち,「自由外出マスクを市民一人一人に持たせること」は,ロックダウン無しで,「感染拡大・収束を迅速・確実に制御する手段」を持つことを意味する. The inventors have proposed a "Distancing-Free Mask," a mask that can almost completely block the entry and leakage of the virus and can be manufactured using existing technology (Patent Document 1, Reference 1). If this mask is developed and distributed to the entire population, lockdowns will become unnecessary. "Distancing-Free Mask Wearers," like antibody carriers, will not become infected with the virus and will not transmit the virus to others. Even if initial predictions prove incorrect and the spread of infection becomes uncontrollable, the infection can be contained quickly, easily, and reliably by having all citizens wear "Distancing-Free Masks" at once. In other words, "having every citizen carry a Distancing-Free Mask" means having "a means to quickly and reliably control the spread and containment of infection" without a lockdown.

特願2020-113097[参考文献] 藤井雄作,田北啓洋,橋本誠司,“ウイルスをほぼ完全に遮蔽できるマスクの開発,および,ロックダウンを不要化する社会基盤の提案”, 社会安全とプライバシー, Vol.4, No.1, pp.6-10, 2020.Patent Application 2020-113097 [References] Yusaku Fujii, Hirohiro Takita, Seiji Hashimoto, “Development of a mask that can almost completely block viruses and a proposal for a social infrastructure that makes lockdowns unnecessary”, Social Safety and Privacy, Vol.4, No.1, pp.6-10, 2020.

現在,コロナ感染症(COVID-19)により,世界全体が,「新しい生活様式」と「ロックダウン(=外出自粛,営業自粛を含む,行動規制,経済規制)」を併用した対策を取っているが,突然変異を繰り返すコロナウイルス(SARS-CoV2)に対するワクチン,治療法の迅速な開発・普及の目途が立たない中,ロックダウン断続状態から脱却する目途は,立っていない. Currently, due to the coronavirus disease (COVID-19), the entire world is taking measures that combine "new lifestyles" and "lockdowns (= behavioral and economic restrictions, including refraining from going out and refraining from business)." However, with no prospect of rapid development and widespread use of a vaccine or treatment for the coronavirus (SARS-CoV2), which continues to mutate, there is no sign of an end to the intermittent lockdown state.

「自由外出マスク」を各国民に一人一台ずつ配布することは,いつでも,簡単・確実に感染を収束させる「決め手」を持つことを意味する.また,最悪な感染拡大状況下でも,「自由外出マスク」を着用さえすれば,外出は自由にできるので,あらゆる業種において,各事業者は,「状況により,自由外出マスク着用義務付けが有り得る」を想定し,対策を用意しておけば,事業の停止をする必要は無くなる. Distributing one "free-going mask" to each citizen means having a "decisive factor" to easily and surely bring the infection under control at any time. Furthermore, even in the worst case scenario of infection spread, people will be able to go out freely as long as they wear a "free-going mask." Therefore, if businesses in all industries assume that "depending on the situation, wearing masks when going out freely may be mandatory" and prepare countermeasures, there will be no need to suspend operations.

ウイルスの侵入,漏洩をほぼ完全に遮蔽するマスクとして,「自由外出マスク」を提案する.「自由外出マスク」は,様々な形態が考えられるが,最も,簡単に実現できる形態として,気密ヘルメット部と,清浄化された空気の給気,排気を行う機械部が納められたウエストパック部からなる形態を提案する.「自由外出マスク」の基本的な仕様は,以下の3点である. We propose the "Free Going Out Mask" as a mask that almost completely blocks the intrusion and leakage of viruses. The "Free Going Out Mask" can take various forms, but we propose the easiest form to realize is one that consists of an airtight helmet section and a waist pack section that houses the mechanical section that supplies and exhausts purified air. The "Free Going Out Mask" has the following three basic specifications.

[1] 気密ヘルメット内を,僅かな陽圧に制御することにより,首のシール部からの外気侵入を完全遮断でき,ウイルスの侵入は完全遮蔽できる.ウイルスの外部漏洩は,首シール部の気密程度に依存するが,高いレベルで抑止できる. [1] By maintaining a slight positive pressure inside the airtight helmet, it is possible to completely block outside air from entering through the neck seal, and completely block the entry of viruses. The leakage of viruses to the outside depends on the level of airtightness of the neck seal, but can be prevented to a high degree.

[2] 一定流量に制御された吸気により,ヘルメット内に,常に新鮮な空気の流れを作る.これにより,肺へ余分な負荷を加えることなく,新鮮な空気を呼吸することができる. [2] A constant flow of air is regulated to create a constant flow of fresh air inside the helmet. This allows you to breathe fresh air without putting extra strain on your lungs.

[3] ウエストパック部に納めたポンプによる強制給気,強制排気により,流れ抵抗が非常に大きな高性能フィルタを挿入することができる.これにより,通常の不織布マスク着用時のような息苦しさが無い状態を作ることができる.さらに,ウイルス侵入・漏洩の遮蔽をより高いレベルで100%に近づけたい場合は,ウイルス死滅装置(紫外線照射器,プラズマクラスター発生器など)を挿入することが好適である.また,快適性の向上のため,温湿度調整装置,空気組成調整器(酸素濃縮器,二酸化炭素吸着器,など)を挿入することもできる. [3] A high-performance filter with extremely high flow resistance can be inserted by forcing air in and out using a pump installed in the waist pack. This makes it possible to create an environment where the breathlessness that occurs when wearing a normal nonwoven mask is not felt. Furthermore, if a higher level of blocking of virus intrusion and leakage is desired, approaching 100%, it is preferable to insert a virus killing device (ultraviolet irradiator, plasma cluster generator, etc.). It is also possible to insert a temperature and humidity adjustment device and an air composition adjustment device (oxygen concentrator, carbon dioxide adsorption device, etc.) to improve comfort.

機械部の小型軽量化により,ウエストパック部は,ヘルメット部と一体化することもできる.ヘルメット部は,柔らかいフィルム素材で作ることが好適である.現在の科学技術をもってすれば,上記のような機能を有する「自由外出マスク」の開発・大量生産は容易であろう. By making the mechanical part smaller and lighter, the waist pack part can be integrated with the helmet part. The helmet part is preferably made from a soft film material. With current scientific technology, it would be easy to develop and mass-produce a "freedom of movement mask" with the above functions.

上記のように,かなり凶悪なウイルスの場合でも,遮蔽率100%の「呼吸空気浄化器具」を常時(100%)装着しなくてはならない状況は,ほとんど有り得ない.多くの場合,社会全体として感染を収束させる上では,市民一人一人が,ある一定の装着率で「呼吸空気浄化器具」を装着すれば,それ以外の場面では,「呼吸空気浄化器具」をする必要性は無い.市民一人一人が,感染を収束させるために義務付けられる「呼吸空気浄化器具」の装着率の達成を知るためには,装着率の計測・記録が必要となる.同様に,市民一人一人が,感染を収束させるために義務付けられる「呼吸空気浄化器具」の装着率の達成した上で,装着せずに行動する自由を得るためには,装着率の計測・記録が必要となる.このように,社会全体として感染を収束させつつ,同時に,市民一人一人に最大限の自由を保障するためには,各人の装着率の計測・記録が必要となる.本発明は,自身,および/または,自身の周りの他者について,「呼吸空気浄化器具」の装着状態を記録する装置を提供することを課題とする. As mentioned above, even in the case of a fairly virulent virus, it is almost impossible to have a situation in which a "respiratory air purifying device" with a 100% shielding rate must be worn at all times (100%). In many cases, in order to contain the infection as a whole society, if each citizen wears the "respiratory air purifying device" at a certain wearing rate, there is no need to wear the "respiratory air purifying device" in other situations. In order to know whether each citizen has achieved the required wearing rate of the "respiratory air purifying device" to contain the infection, it is necessary to measure and record the wearing rate. Similarly, in order for each citizen to achieve the required wearing rate of the "respiratory air purifying device" to contain the infection and then gain the freedom to act without wearing it, it is necessary to measure and record the wearing rate. In this way, in order to contain the infection as a whole society while at the same time guaranteeing maximum freedom to each citizen, it is necessary to measure and record the wearing rate of each person. The objective of the present invention is to provide a device that records the wearing status of the "respiratory air purifying device" for oneself and/or others around oneself.

上記目的を達成するために,「呼吸空気浄化器具」の微粒子・飛沫・ウイルス等の遮蔽率,装着の有無などの装着状態を,時刻と共に,記録装置に記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい.
「呼吸空気浄化器具」が「ポンプ給気機能付きマスク」であることを特徴とする,請求項1に記載の呼吸空気浄化器具装着状況の記録・管理システムとしてもよい.
In order to achieve the above-mentioned objective, a recording and management system for the wearing status of a respiratory air purifying device may be provided, which is characterized by recording the wearing status, such as the blocking rate of the "respiratory air purifying device" against fine particles, droplets, viruses, etc., and whether or not it is being worn, together with the time, in a recording device.
The system for recording and managing the wearing status of a respiratory air purifying device as described in claim 1 may be characterized in that the "respiratory air purifying device" is a "mask with a pump air supply function."

「呼吸空気浄化器具」が「スマートフォン」と通信を行い,「スマートフォン」のソフトウェアにより「呼吸空気浄化器具」の装着状態を,時刻と共に記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a recording and management system for the wearing status of a breathing air purifying device, characterized in that the "breathing air purifying device" communicates with a "smartphone" and the "smartphone" software records the wearing status of the "breathing air purifying device" together with the time.

「呼吸空気浄化器具」の漏れ率などの装着状態を,ヘルメット内の内圧,および/または,ポンプ出力から推定することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a system for recording and managing the wearing status of a breathing air purifying device, characterized by estimating the wearing status, such as the leakage rate of the "breathing air purifying device," from the internal pressure in the helmet and/or the pump output.

近隣の他者の存在,および/または,近隣の他者との距離,および/または,近隣の他者の「呼吸空気浄化器具」の装着状態を,ブルートゥースなどの無線通信手段で検知し,記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい.ブルートゥースは登録商標であるが,広く利活用されており,本発明の説明においても,好適な通信手段の一つとして挙げる必要がある. The system may also be a record-keeping and management system for the wearing status of respiratory air purifying devices, characterized by detecting and recording the presence of nearby people and/or the distance between nearby people and/or the wearing status of "respiratory air purifying devices" worn by nearby people using wireless communication means such as Bluetooth. Although Bluetooth is a registered trademark, it is widely used and should be mentioned as one of the preferred communication means in the explanation of this invention.

近隣の他者の存在,および/または,近隣の他者との距離,および/または,近隣の他者の「呼吸空気浄化器具」の装着状態を,通常のカメラや赤外線カメラなどで撮影されたカメラ画像を画像解析することで検知し,記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a recording and management system for the wearing status of respiratory air purifying devices, characterized by detecting and recording the presence of nearby others and/or the distance between nearby others and/or the wearing status of "respiratory air purifying devices" by nearby others through image analysis of camera images taken with a normal camera or an infrared camera.

ウイルスの遮蔽率を,「呼吸空気浄化器具」の外部から内部への侵入に対する遮蔽率と,「呼吸空気浄化器具」の内部から外部への漏洩に対する遮蔽率とに分離して取り扱うことを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a system for recording and managing the wearing status of a respiratory air purifying device, characterized by handling the virus blocking rate separately as the blocking rate against intrusion from the outside to the inside of the "respiratory air purifying device" and the blocking rate against leakage from the inside to the outside of the "respiratory air purifying device."

請求項1に関わる発明は,ポンプ給気機能付きマスクにおいて,装着の呼吸に合わせて,呼気時には流入量目標値を小さく,および/または,内圧目標値を小さくし,吸気時には流入量目標値を大きく,および/または,内圧目標値を大きくすることを特徴とする,呼吸空気浄化器具である. The invention related to claim 1 is a respiratory air purifying device that is characterized by a mask with a pump air supply function that reduces the target inflow volume and/or the target internal pressure during exhalation, and increases the target inflow volume and/or the target internal pressure during inhalation, in accordance with the breathing pattern when the mask is worn.

請求項2に関わる発明は,給気ポンプ一つとヘルメット装着の流量センサ,圧力センサ,CO2センサを用いた制御により,流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付き呼吸空気浄化器具である. The invention related to claim 2 is a respiratory air purifying device with a pump air supply function, characterized by satisfying set conditions for flow rate, pressure, and CO2 concentration through control using one air supply pump and a helmet-mounted flow sensor, pressure sensor, and CO2 sensor.

請求項3に関わる発明は,ポンプの流量Qが印加電圧Vと外部と内部の差圧Pの関数Q(V,P)となることを利用し,流量センサを用いずにその推定値により流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,請求項2に記載のポンプ給気機能付き呼吸空気浄化器具である. The invention related to claim 3 is a respiratory air purifying device with pump air supply function as described in claim 2, characterized in that it utilizes the fact that the pump flow rate Q is a function Q(V, P) of the applied voltage V and the external/internal pressure difference P, and satisfies the setting conditions for flow rate, pressure, and CO2 concentration using estimated values without using a flow sensor.

請求項4に関わる発明は,CO2濃度が設定値を超えた場合,流量の設定値を上げ,かつ警報(音,光など)を出すことを特徴とする,呼吸空気浄化器具である. The invention related to claim 4 is a respiratory air purifying device that increases the flow rate setting and issues an alarm (sound, light, etc.) when the CO2 concentration exceeds a set value.

請求項5に関わる発明は,非常時に装置表面のつまみを引くことにより呼吸のための開口を開くことを特徴とする,請求項1から請求項4のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 5 is a respiratory air purifying device described in any one of claims 1 to 4, characterized in that in an emergency, the opening for breathing is opened by pulling the knob on the surface of the device.

請求項6に関わる発明は,非常時に口付近の排気フィルタのつまみを引くことにより呼吸のための開口を開くことを特徴とする,請求項1から請求項5のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 6 is a respiratory air purifying device described in any one of claims 1 to 5, characterized in that in an emergency, the opening for breathing is opened by pulling the knob of the exhaust filter near the mouth.

請求項7に関わる発明は,非常時に自動的に呼吸のための開口を開くことを特徴とする,請求項1から請求項6のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 7 is a breathing air purifying device according to any one of claims 1 to 6, characterized in that it automatically opens an opening for breathing in the event of an emergency.

周囲の他者の装着している感染防護器具装着状況の記録・管理システムと通信し,周囲の人のマスク着用状況と感染予防指数を表示することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a recording and management system for the wearing status of respiratory air purification equipment, characterized by communicating with a recording and management system for the wearing status of infection protection equipment worn by other people in the vicinity, and displaying the mask wearing status and infection prevention index of people in the vicinity.

感染者の移動経路をサーバに問合せ,表示装置内の地図や装着者の視野に感染の危険度を色分けして表示することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It can also be used as a record and management system for the wearing status of respiratory air purification devices, characterized by querying a server about the movement routes of infected people and displaying the risk of infection in a color-coded manner on a map in the display device or in the wearer's field of vision.

感染防護器具のカメラを利用して,周囲の映像と音声を記録し,後に再生する機能と,再生権は装着者本人のみが所有し,警察等の捜査依頼に関して一時的に再生権を委譲できることを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It can also be used as a recording and management system for the wearing status of respiratory air purification equipment, featuring the function of using the camera of the infection protection equipment to record video and audio of the surroundings and later play them back, with the right to playback being held solely by the wearer, and the ability to temporarily transfer the right to playback in response to a request for investigation by the police, etc.

スマートフォンのアプリを用いて感染防護器具を装着した写真を撮影することにより,画像解析にて装着されている感染防護器具の種類を判定する機能を有し,さらに複数の角度から撮影された写真から装着方法の正誤を判定し,正しい装着方法を教示する機能を有する事を特徴とする,呼吸空気浄化器具装着状況の記録・管理システムとしてもよい. It may also be a recording and management system for the wearing of respiratory air purifying equipment, characterized by having a function to determine the type of infection protection equipment being worn through image analysis by taking a photograph of the equipment being worn using a smartphone app, and a function to determine whether the equipment is being worn correctly based on photographs taken from multiple angles and provide instructions on the correct way to wear it.

請求項8に関わる発明は,内部にマイク及び/またはスピーカと,外部にマイク及び/またはスピーカを持ち,呼吸空気浄化器具外部の音を装着者に聞こえやすくし,及び/または,装着者の音声を外部に拡声して伝える事を特徴とする,請求項1から請求項7のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 8 is a breathing air purifying device according to any one of claims 1 to 7, characterized in that it has a microphone and/or speaker inside and a microphone and/or speaker outside, making it easier for the wearer to hear sounds outside the breathing air purifying device and/or amplifying and transmitting the wearer's voice to the outside.

請求項9に関わる発明は,マイクおよびスピーカを持ち,他の感染防護器具と無線通信により音声データを送受信して会話する機能を持ち,通話対象及び範囲を設定可能で,通話状況を視覚的に表示する機能を持つ事を特徴とする,請求項1から請求項8のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 9 is a respiratory air purifying device as described in any one of claims 1 to 8, characterized in that it has a microphone and speaker, has the function of communicating with other infection protection devices by sending and receiving voice data via wireless communication, can set the call recipient and range, and has the function of visually displaying the call status.

請求項10に関わる発明は,GPSにより位置を,磁気センサにより方位を測定し,位置,発信者の向き,声の大きさに応じて音声の伝達範囲を自動的に設定する事を特徴とする,請求項9に記載の呼吸空気浄化器具である. The invention related to claim 10 is a respiratory air purifying device as described in claim 9, characterized in that it measures the position using GPS and the direction using a magnetic sensor, and automatically sets the range of voice transmission according to the position, the caller's direction, and the volume of the voice.

請求項11に関わる発明は,センサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて,装着者の健康状態をモニタする事を特徴とする,請求項1から請求項10のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 11 is a respiratory air purifying device according to any one of claims 1 to 10, characterized in that it uses sensors (a microphone, a pressure sensor, a flow sensor, a carbon dioxide sensor, and an electroencephalogram sensor) to monitor the health condition of the wearer.

請求項12に関わる発明は,感染防護器具内部にあるセンサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて装着者の健康状態をモニタし,アロマディフューザとスピーカを用いて状況に合わせた香りと環境音を発生させる事を特徴とする,請求項1から請求項11のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 12 is a respiratory air purifying device according to any one of claims 1 to 11, characterized in that it uses sensors (microphone, pressure sensor, flow sensor, carbon dioxide sensor, and brainwave sensor) inside the infection protection device to monitor the wearer's health condition, and uses an aroma diffuser and speaker to generate scents and environmental sounds appropriate to the situation.

請求項13に関わる発明は,オゾン発生装置を有し,器具内部の殺菌消臭を行うことを特徴とする,請求項1から請求項12のいずれか1項に記載の呼吸空気浄化器具である. The invention related to claim 13 is a respiratory air purifying device described in any one of claims 1 to 12, characterized in that it has an ozone generator and sterilizes and deodorizes the inside of the device.

以下に,「自由外出マスク」などの「呼吸空気浄化器具」による“疑似”集団免疫の獲得について,説明する. Below, we explain how to achieve "pseudo" herd immunity through "respiratory air purifying devices" such as "free-going masks."

基本再生産数R0は,感染症に感染した1人の感染者が,誰も免疫を持たない集団(社会)に加わったとき,感染期間中に直接感染させる平均人数として定義される.定義から,“周りに感染者が殆どいない状態”においては,当該集団(社会)についてR0=1なら定常状態,R0<1なら収束,R0>1なら拡大,ということになる.R0は,ウイルスの性質だけでなく,当該集団の性質(人種的体質,状態,公衆衛生の状態,各人の健康状態,など)にも依存する.公衆衛生を向上させることにより,あらゆるウイルスに対してR0を低減できる. The basic reproduction number R0 is defined as the average number of people that an infected person directly infects during the infectious period when they join a group (society) where no one is immune. By definition, in a state where there are "almost no infected people around," if R0=1 for that group (society) it is in a steady state, if R0<1 it is converging, and if R0>1 it is spreading. R0 depends not only on the nature of the virus, but also on the nature of the group (racial makeup, state, state of public health, health state of each individual, etc.). By improving public health, R0 can be reduced for any virus.

基本再生産数R0は,模式的に次式で表せる.
R0 = β× k × D
β:一回の接触当たりの感染確率
k:単位時間あたりに一人の人間が集団内で他者(=未感染者)と接触する平均回数
D:平均感染期間
The basic reproduction number R0 can be expressed diagrammatically as follows:
R0 = β × k × D
β: Probability of infection per contact
k: The average number of times a person comes into contact with other people (= uninfected people) in a group per unit time
D: Mean infection period

すなわち,基本再生産数R0を低減する上では,以下が有効.
βの低減: 個人免疫力の向上,マスク着用,手洗い励行,社会的距離の確保.
kの低減: 在宅勤務・在宅学習の導入,営業規制,外出規制.
「新しい生活様式」は,β,kを低減させた状態,「ロックダウン」はkを極端に低減させた状態,と言える.
In other words, the following are effective in reducing the basic reproduction number R0:
Reducing β: Improving personal immunity, wearing masks, washing hands frequently, and maintaining social distance.
Reduction of k: Introduction of working and learning from home, business restrictions, and restrictions on going out.
The "new lifestyle" can be said to be a state in which β and k are reduced, while "lockdown" is a state in which k is reduced to an extreme degree.

「呼吸空気浄化器具」着用者の割合Wrにより,基本再生産数R0は修正され,修正基本再生産数R0mとなる. The basic reproduction number R0 is modified by the proportion Wr of people wearing "respiratory air purifying devices," resulting in the modified basic reproduction number R0m.

未感染者がWrの割合で「呼吸空気浄化器具」を装着すると,感染し難くなる未感染者の割合がWrとなり,感染し易いままの未感染者の割合は(1-Wr)となる.「呼吸空気浄化器具」のウイルス遮蔽率をSrとしたとき,マスク装着者の感染確率は,マスク非着用者のそれの(1-Sr)倍になると考えられる.以上より,近似的に以下の関係式が導かれる.
R0m = [(1-Wr)+Wr(1-Sr)]R0
=(1-WrSr)R0
Wr = [1-R0m/R0] /Sr
例: R0=5のときに, R0m=1 とするのに必要な「呼吸空気浄化器具(Sr=1)」着用者の割合は,Wr =1-1/5=0.8 (80%)となる.これにより,感染拡大は止まり,定常状態に落ち着くことになる.なお,上記の計算式では,マスク装着者の割合,感染拡大の状況が変化しても,個々人の移動や接触の様態は変化しないことを仮定している点で,少し無理があるので,参考程度として考えるべきである.
When uninfected people wear "respiratory air purifying devices" at a rate of Wr, the rate of uninfected people who become less susceptible to infection is Wr, and the rate of uninfected people who remain susceptible to infection is (1-Wr). If the virus blocking rate of the "respiratory air purifying device" is Sr, the probability of infection for a mask wearer is thought to be (1-Sr) times that of a non-mask wearer. From the above, the following approximate relationship can be derived.
R0m = [(1-Wr)+Wr(1-Sr)]R0
=(1-WrSr)R0
Wr = [1-R0m/R0] /Sr
Example: When R0=5, the proportion of people wearing "air purifying respiratory devices (Sr=1)" required to make R0m=1 is Wr =1-1/5=0.8 (80%). This will stop the spread of infection and settle into a steady state. Note that the above formula is somewhat unreasonable in that it assumes that the movement and contact patterns of individuals will not change even if the proportion of people wearing masks and the situation of the spread of infection change, so it should be considered as only a reference.

さらに上記に加えて,感染者もWrの割合で「呼吸空気浄化器具」を装着すると,感染させ難くなる感染者の割合がWrとなり,感染させ易いままの感染者の割合は(1-Wr)となる.「呼吸空気浄化器具」のウイルス遮蔽率をSrとしたとき,マスク装着感染者の感染能力は,マスク非着用感染者のそれの(1-Sr)倍になると考えられる.以上より,近似的に以下の関係式が導かれる.
R0m = (1- WrSr)2 R0
Wr = [1 &#8211; (R0m/R0)0.5]/ Sr
In addition to the above, if infected people also wear "respiratory air purifying devices" at a rate of Wr, the rate of infected people who become less likely to spread the infection will be Wr, and the rate of infected people who remain susceptible to spreading the infection will be (1-Wr). If the virus blocking rate of the "respiratory air purifying device" is Sr, the infectiousness of an infected person wearing a mask is thought to be (1-Sr) times that of an infected person not wearing a mask. From the above, the following approximate relationship can be derived.
R0m = (1- WrSr) 2 R0
Wr = [1 &#8211; (R0m/R0) 0.5 ]/ Sr

図1に,基本再生産数R0を修正基本再生産数R0m=0.5,または,1.0に修正するために必要な「呼吸空気浄化器具(Sr=1)」の着用必要割合Wr_targetを示す.未感染者のみが着用するとした場合,及び,未感染者と感染者の両方が着用するとした場合,それぞれについて示す.図1に示す例は,全ての国民,または,当該集団の全ての構成員が,同一の遮蔽率(Sr=1)の呼吸空気浄化器具を使用する場合である. Figure 1 shows the required proportion of people wearing "respiratory air purifying devices (Sr=1)" Wr_target in order to revise the basic reproduction number R0 to the modified basic reproduction number R0m = 0.5 or 1.0. This is shown for both the case where only uninfected people wear them, and the case where both uninfected and infected people wear them. The example shown in Figure 1 is when all citizens, or all members of the group in question, use respiratory air purifying devices with the same shielding rate (Sr=1).

例えば,当該ウイルスの社会に対する基本再生産数R0=5の時は,修正再生産数を1として感染定常化を図るために必要な「呼吸空気浄化器具(Sr=1)」着用者の割合Wrは,未感染者のみが着用することを考慮するとWr_target = 0.8(80%)となり,未感染者に加えて感染者もマスク着用することを考慮するとWr_target = 0.55(55%)となる.すなわち,それぞれの場合において,全国民が,接触人数の80%以上,あるいは,55%以上,に対して「呼吸空気浄化器具(Sr=1)」を着用して接触すれば感染は収束に向かう. なお,これまでに,COVID-19の基本再生産数R0として報告されている数値は,概ね5程度以下であるので,上記の議論は現実的である. For example, when the basic reproduction number R0 for the virus in society is 5, the proportion Wr of people wearing "respiratory air purifying devices (Sr=1)" required to stabilize the infection with a corrected reproduction number of 1 is Wr_target = 0.8 (80%) if only uninfected people wear them, and Wr_target = 0.55 (55%) if infected people as well as uninfected people wear masks. In other words, in each case, if more than 80% or more than 55% of the entire population of people they come into contact with wear "respiratory air purifying devices (Sr=1)," the infection will converge. Note that the values reported so far as the basic reproduction number R0 for COVID-19 are generally below 5, so the above discussion is realistic.

「呼吸空気浄化器具」におけるウイルス遮蔽率Srが1(100%)ではない場合,マスク着用必要割合Wr_targetとしては,「Sr=1とした図1で読み取れるWr_target」をSrで割った値を用いれば良い.なお,前述の自由外出マスクなど,概ねSr≧0.8とSr値が高い「呼吸空気浄化器具」を「呼吸空気浄化器具(高Sr)」と称することとする. When the virus shielding rate Sr of a "respiratory air purifying device" is not 1 (100%), the required mask wearing rate Wr_target can be calculated by dividing "Wr_target, which can be read in Figure 1 with Sr = 1," by Sr. Note that "respiratory air purifying devices" with high Sr values, generally Sr ≧ 0.8, such as the aforementioned masks for going out freely, will be referred to as "respiratory air purifying devices (high Sr)."

低コストで製造し,配布・普及させる上では,最低限の性能を見極めることも重要である.個々の「呼吸空気浄化器具」について,ウイルス遮蔽率Srを推定することにより,様々な種類のマスクについて,上記の議論を適用することが可能となる.なお,市販の不織布マスクは,通常の装着状態では,大部分の空気はフィルタ部(不織布)を透過せずに,回りの隙間を流れていることが示されている.このことは,市販の不織布マスクなど「隙間が出来やすいマスク」については,フィルタ部そのものの遮蔽率ではなく,装着時の隙間の影響を含めた遮蔽率を見積もることが重要となってくることを示唆している. In order to manufacture, distribute, and popularize masks at low cost, it is also important to determine the minimum performance required. By estimating the virus shielding rate Sr for each "respiratory air purifying device," it becomes possible to apply the above discussion to various types of masks. It has been shown that when a commercially available nonwoven mask is worn normally, most of the air does not pass through the filter part (nonwoven fabric) but flows through the gaps around it. This suggests that for "masks that are prone to gaps," such as commercially available nonwoven masks, it will be important to estimate the shielding rate including the effect of gaps when worn, rather than the shielding rate of the filter part itself.

上記の議論において,ウイルス遮蔽率をSrを,ヘルメット外部から内部への侵入に対する遮蔽率をSr_in,ヘルメット内部から外部への漏洩に対する遮蔽率をSr_outと分離して考えると,近似的に以下の関係式が導かれる.
R0m = (1- Wr Sr_in) (1- Wr Sr_out) R0
上記を,R0m,R0,Sr_in,Sr_outを定数, Wrを未知数としたWrの二次方程式として解くことにより,自由外出マスク着用必要割合Wr_targetを求めることができる.0≦Sr_in≦1,0≦Sr_out≦1より,解は,以下となる.
Wr_target = Wr = [[(Sr_in+Sr_out)-[(Sr_in+Sr_out)2-4(Sr_in)(Sr_out)(1-R0m/R0)]0.5] /[2(Sr_in)(Sr_out)]
In the above discussion, if we consider the virus shielding rate as Sr, the shielding rate against intrusion from the outside of the helmet to the inside as Sr_in, and the shielding rate against leakage from the inside of the helmet to the outside as Sr_out, the following approximate relationship can be derived.
R0m = (1- Wr Sr_in) (1- Wr Sr_out) R0
By solving the above as a quadratic equation in Wr with R0m, R0, Sr_in, and Sr_out as constants and Wr as an unknown, we can determine the proportion of people who need to wear a mask when going out freely, Wr_target. Since 0≦Sr_in≦1, 0≦Sr_out≦1, the solution is as follows.
Wr_target = Wr = [[(Sr_in+Sr_out)-[(Sr_in+Sr_out) 2 -4(Sr_in)(Sr_out)(1-R0m/R0)] 0.5 ] /[2(Sr_in)(Sr_out)]

一般に,「呼吸空気浄化器具」は,実際の装着状態において,Sr_inとSr_outが大きく異なることがありえるので,上記のように,Sr_inとSr_outを分けて取り扱うことは,より精密に「呼吸空気浄化器具の着用必要割合Wr_target」を求める上で有効である. In general, when a "respiratory air purifying device" is actually worn, Sr_in and Sr_out can differ significantly, so treating Sr_in and Sr_out separately, as described above, is effective in determining the "required proportion of respiratory air purifying device worn Wr_target" more precisely.

ここでは,遮蔽率Srは,0.1μmの微粒子が濾過された率として定義する.あるいは,呼吸器防護規格(NIOSH)に基づく,「エアロゾル化した塩化ナトリウム」の捕集効率として定義することも考えられる.様々な定義を使うことが考えられる.対象とするウイルスの感染経路,感染様態により,より実態に即した定義を模索し,決定することが好ましい. Here, the shielding efficiency Sr is defined as the rate at which 0.1 μm particles are filtered. Alternatively, it can be defined as the collection efficiency of "aerosolized sodium chloride" based on the respiratory protection standard (NIOSH). Various definitions can be used. It is preferable to explore and determine a definition that is more suited to the actual situation depending on the infection route and mode of the virus in question.

ここで,着目すべき点は,「呼吸空気浄化器具(高Sr)を全国民が保有する」は,「政府がロックダウンすることなく,感染拡大・収束を制御する手段を持つこと」を意味するという点である.現在のように,感染拡大に対して,過剰に怯える必要は無くなるという点である. The important point to note here is that "everyone in the country has respiratory air purifying equipment (high Sr)" means that "the government will have the means to control the spread and containment of infection without having to impose a lockdown." This means that there will no longer be any need to be overly fearful of the spread of infection, as is the case now.

図2に示すように,「現状」は,感染拡大懸念が増大する際には,ロックダウンの強度を上げるという対応をとっている.しかし,「将来」は感染拡大懸念が増大する際には,自由外出マスクなどの呼吸空気浄化器具の装着必要割合を上げてくだけで十分であり,ロックダウンは完全に不要となると予想している. As shown in Figure 2, in the "current situation," when concerns about the spread of infection increase, the response is to increase the intensity of the lockdown. However, in the "future," when concerns about the spread of infection increase, it is expected that it will be sufficient to simply increase the proportion of people required to wear respiratory air purifying devices such as masks when going out freely, and that lockdowns will become completely unnecessary.

コロナ時代の社会様態は,自由外出マスクなどの呼吸空気浄化器具(高Sr)の普及による新しい社会基盤の出現により,以下の3点に指摘するような状況になると予想している. We expect that the state of society in the COVID-19 era will be as described below in three points, due to the emergence of a new social infrastructure resulting from the widespread use of respiratory air purifying devices (high Sr) such as masks for free travel.

[1] 全国民が一人一個の「呼吸空気浄化器具(高Sr)」を保有する. [1] Every citizen will have one "breathing air purifying device (high Sr)."

[2] 感染拡大の恐れが出た場合,政府は非常事態宣言を出し,外出時の「呼吸空気浄化器具(高Sr)」の着用必要割合Wr_target以上での着用を義務付ける. [2] If there is a risk of the infection spreading, the government will declare a state of emergency and make it mandatory to wear "respiratory air purifying devices (high Sr)" at the required ratio Wr_target or higher when going out.

[3] ウイルス感染収束が確認された時点で,政府は非常事態宣言を解除し,外出時の「呼吸空気浄化器具(高Sr)」着用の義務は無くなる. [3] Once it is confirmed that the virus infection has been contained, the government will lift the state of emergency and the obligation to wear "respiratory air purifying devices (high Sr)" when going out will be lifted.

上記[2]において,「呼吸空気浄化器具(高Sr)」着用を義務付ける際の数値目標の設定法について,以下に,いくつかの例を示す.以下の議論においては,特に指定しない限り,呼吸空気浄化器具の遮蔽率Sr= Sr_in=Sr_out=1とし,また,目標設定等については一日当たりを対象として,議論する.また,特に断りがない場合は,Srは,Sr_inとして定義される.マスクへ外部から導入される空気に対しるウイルス遮蔽率Sr_inと,マスクの内部から外部に排出される空気に対するウイルス遮蔽率Sr_outを,両方とも,等しく重視する場合,Srは,Sr_inとSr_outの平均値として定義される場合がある. Below are some examples of how to set numerical targets when making it mandatory to wear "respiratory air purifying devices (high Sr)" as described above in [2]. In the following discussion, unless otherwise specified, the shielding rate of respiratory air purifying devices is assumed to be Sr = Sr_in = Sr_out = 1, and target setting etc. will be discussed on a daily basis. Furthermore, unless otherwise specified, Sr is defined as Sr_in. When equal importance is placed on both the virus shielding rate Sr_in for air introduced into the mask from the outside, and the virus shielding rate Sr_out for air expelled from inside the mask to the outside, Sr may be defined as the average value of Sr_in and Sr_out.

[1] 呼吸空気浄化器具(高Sr)必要割合Wr_targetを,装着時間について数値目標として設定する例.
装着の有無のみを検出し,一日毎に,屋外での呼吸空気浄化器具の着用時間Tout_mask (秒),および,屋外での呼吸空気浄化器具の非着用時間Tout_nomask(秒)を計数して,呼吸空気浄化器具着用割合実績Wr_avd(秒)を次式により計算する.
Wr_avd = (Tout_mask)/(Tout_mask + Tout_nomask)
運用例として,国民一人一人は,自身の呼吸空気浄化器具着用割合実績Wr_avdが,政府が設定する呼吸空気浄化器具着用割合Wr以上になるように努力する義務を負うという仕組みが考えられる.達成割合(Wr_avd - Wr_target)に応じ,達成割合Wr_avd - Wr_target)がプラスの場合は報奨金が与えられ,達成割合Wr_avd - Wr_target)がマイナスの場合はマイナスの大きさに応じて,罰金などが科せられる仕組みも考えられる.
[1] An example of setting the required proportion of respiratory air purifying equipment (high Sr), Wr_target, as a numerical target for the wearing time.
Only the presence or absence of wear is detected, and the time Tout_mask (seconds) that the respiratory air purifying device is worn outdoors and the time Tout_nomask (seconds) that the respiratory air purifying device is not worn outdoors are counted for each day, and the actual proportion of people wearing the respiratory air purifying device Wr_avd (seconds) is calculated using the following formula.
Wr_avd = (Tout_mask)/(Tout_mask + Tout_nomask)
As an example of how this could be implemented, a system could be conceived in which each and every citizen is obligated to make an effort to ensure that their own actual rate of wearing respiratory air purifying devices, Wr_avd, is equal to or exceeds the rate of wearing respiratory air purifying devices set by the government. A system could also be conceived in which, depending on the rate achieved (Wr_avd - Wr_target), a reward would be given if the rate achieved, Wr_avd - Wr_target, is positive, and if the rate achieved, Wr_avd - Wr_target, is negative, a fine or other penalty would be imposed depending on the magnitude of the negative figure.

[2]屋外での呼吸空気浄化器具(高Sr)の非着用時間Tout_nomaskの上限として,数値目標を設定する例.
装着の有無のみを検出し,自宅外での呼吸空気浄化器具の非着用時間Tout_nomaskを計数し,それが,政府が設定する上限値Tout_nomask_targetを超えないように努力する義務を負うという仕組みが考えられる.自宅外での呼吸空気浄化器具の非着用時間上限値Tout_nomask_targetの決定方法としては,市民の平均外出時間の推定値Tout_meanを用いて,次式で計算することが近似的に妥当であると考えられる.
Tout_nomask_target = (1- Wr) Tout_mean
達成割合(Tout_nomask_target - Tout_nomask)に応じ,達成割合(Tout_nomask_target - Tout_nomask)がプラスの場合は報奨金が与えられ,達成割合(Tout_nomask_target - Tout_nomask)がマイナスの場合は罰金などが科せられる仕組みも考えられる.
[2] An example of setting a numerical target for the upper limit of the time Tout_nomask during which a respiratory air purifying device (high Sr) is not worn outdoors.
One possible system would be to detect only whether or not the device is worn, count the time Tout_nomask spent not wearing the device outside the home, and obligate people to make efforts to ensure that this does not exceed the upper limit Tout_nomask_target set by the government.The approximate method for determining the upper limit Tout_nomask_target for the time not wearing the device outside the home is calculated using the following formula, which is thought to be an appropriate value.
Tout_nomask_target = (1- Wr) Tout_mean
It is also possible to have a system where a reward is given if the achievement rate (Tout_nomask_target - Tout_nomask) is positive, and a penalty is imposed if the achievement rate (Tout_nomask_target - Tout_nomask) is negative.

[3] 呼吸空気浄化器具(高Sr)非装着で濃厚接触する人数Ncの上限として,数値目標を設定する例.
呼吸空気浄化器具非装着で濃厚接触する人数Ncを計数し,それが,政府が設定する上限値Nc_targetを超えないように努力する義務を負うという仕組みが考えられる.
濃厚接触数としては,相手も呼吸空気浄化器具非装着の状態で,「1メートル以内で,会話を2-3往復」,または,「1メートル以内で,15分間以上にわたり接触」,または,「それと同様かそれ以上の濃厚な接触と考えられる状況」を以て,「濃厚接触1」とカウントする方法が考えられる.相手が,自由外出マスクなど,遮蔽率の大きなマスクを装着している場合は,濃厚接触としてはカウントしない.
近隣にいる他者の存在とマスク装着状態を確実に検知する必要がある.後述の,カメラ画像の画像処理による検知する方式,他者の持つマスク・スマートファンとの通信により通知してもらう方式などが考えられる.
Nc_targetの設定方法としては,市民が屋外で接触する人数の平均値の推定値Nc_meanを用いて,次式で計算することが近似的に妥当であると考えられる.
Nc_target = (1- Wr) Nc_mean
達成割合(Nc_target - Nc)に応じ,達成割合(Nc_target - Nc)がプラスの場合は報奨金が与えられ,達成割合(Nc_target - Nc)がマイナスの場合は罰金などが科せられる仕組みも考えられる.
[3] An example of setting a numerical target for the upper limit of the number of people Nc who are in close contact with another person without wearing a respiratory air purification device (high Sr).
One possible system would be to count the number of people Nc who come into close contact with others without wearing respiratory air purification equipment, and require people to make efforts to ensure that this number does not exceed the upper limit Nc_target set by the government.
The number of close contacts could be counted as "close contact 1" when the other person is not also wearing a respiratory air purifying device and there is "2-3 conversations within 1 meter," or "contact within 1 meter for 15 minutes or more," or "a situation that is considered to be similar or even closer contact." If the other person is wearing a mask with a high shielding rate, such as a mask for going out freely, it will not be counted as close contact.
It is necessary to reliably detect the presence of others nearby and whether they are wearing a mask. Possible methods include detection using image processing of camera images, as described below, or notification via communication with the masks or smart fans held by others.
As a method for setting Nc_target, it is considered approximately appropriate to use the estimated average number of people that a citizen comes into contact with outdoors, Nc_mean, and calculate it using the following formula.
Nc_target = (1- Wr) Nc_mean
A system could also be considered in which a reward is given if the achievement rate (Nc_target - Nc) is positive, and a penalty is imposed if the achievement rate (Nc_target - Nc) is negative.

[4] 汚染環境との接触の総量Ecの上限値として,数値目標を設定する例.
汚染環境との接触の総量Ecを計数し,それが,政府が設定する上限値Ec_targetを超えないように努力する義務を負うという仕組みが考えられる.
汚染環境との接触の総量Ecは,各場所,各時刻について,次式で算出されるか,あるいは,適当に設定されているものとする.
Ec = ∫E(L, t)dt
ここで,E(L, t)は環境汚染係数を表し,Lは場所を表し,tは時刻を表す.
想定されるウイルスの濃度が高いほど,環境汚染係数E(L, t)は大きな値となる.
環境汚染係数E(L, t)は,人間のその場所での滞在の様態(マスク装着の有り無し,マスクの性能,活動内容,など),その場所の換気や空気清浄化の状態,などの履歴により,計算される.または,環境汚染係数E(L, t)は,適当な仮定に基づき設定された関数として与えられる.
[4] An example of setting a numerical target as an upper limit for the total amount of contact with a contaminated environment, Ec.
One possible system would be to count the total amount of contact with a contaminated environment, Ec, and require people to make efforts to ensure that it does not exceed an upper limit, Ec_target, set by the government.
The total amount of contact with the contaminated environment, Ec, is calculated for each location and time using the following formula or is set appropriately.
Ec = ∫E(L, t)dt
Here, E(L, t) represents the environmental pollution coefficient, L represents the location, and t represents the time.
The higher the expected virus concentration, the larger the environmental pollution coefficient E(L, t) will be.
The environmental pollution coefficient E(L, t) is calculated based on the history of people's presence in a location (whether they wore a mask or not, the performance of the mask, their activities, etc.), the state of ventilation and air purification in that location, etc. Alternatively, the environmental pollution coefficient E(L, t) is given as a function set based on appropriate assumptions.

Ec_targetの設定方法としては,市民が経験する汚染環境との接触の総量の平均値の推定値Ec_meanを用いて,次式で計算することが近似的に妥当であると考えられる.
Ec_target = (1- Wr) Ec_mean
達成割合(Ec_target - Ec)に応じ,達成割合(Ec_target - Ec)がプラスの場合は報奨金が与えられ,達成割合(Ec_target - Ec)がマイナスの場合は罰金などが科せられる仕組みも考えられる.
As a method for setting Ec_target, it is considered approximately appropriate to use the estimated average value Ec_mean of the total amount of contact with contaminated environments experienced by citizens and calculate it using the following formula.
Ec_target = (1- Wr) Ec_mean
It is also possible to consider a system in which a reward is given if the achievement rate (Ec_target - Ec) is positive, and a penalty is imposed if the achievement rate (Ec_target - Ec) is negative.

以上の議論においては,特に指定しない限り,呼吸空気浄化器具の遮蔽率Sr= Sr_in=Sr_out=1とし,また,目標設定等については一日当たりを対象として,議論した. In the above discussion, unless otherwise specified, the shielding rate of the respiratory air purifying device is assumed to be Sr = Sr_in = Sr_out = 1, and target setting etc. is discussed on a daily basis.

原始人と異なり,現代人は,「川や水溜まりの水」でなく「浄化された水」を飲む.一方,「空気」は,ウイルス,PM2.5,花粉,ホコリを始めとする様々な汚染物質を含んでいるが,現代人は,原始人と同様に,周りに存在する「自然の空気」を呼吸している.「自由外出マスク」などの「呼吸空気浄化器具(高Sr)」の登場により,空気も「自然の空気」ではなく,「浄化された空気」を呼吸したいという強力な需要が顕在化してくることが予想される.すなわち,ウイルスの感染拡大の有無に拘わらず,また,政府による着用要請の有無に拘わらずに,多くの国民が外出時に,「呼吸空気浄化器具(高Sr)」を着用するようになることも予想される.そのような社会は,あらゆる感染症に対して,基本再生産数R0がゼロに近くなり,あらゆる感染症に対して極めて強靭な社会となる. Unlike primitive people, modern people drink "purified water" instead of "water from rivers or puddles." On the other hand, "air" contains various pollutants such as viruses, PM2.5, pollen, and dust, but modern people, like primitive people, breathe the "natural air" that is around them. With the advent of "respiratory air purification devices (high Sr)" such as "free going out masks," it is expected that a strong demand will emerge to breathe "purified air" rather than "natural air." In other words, regardless of the spread of the virus and regardless of whether the government requests people to wear them, it is expected that many people will wear "respiratory air purification devices (high Sr)" when going out. Such a society will have a basic reproduction number R0 close to zero for all infectious diseases, and will be extremely resilient against all infectious diseases.

人々は,外出時には,(足が汚れたり,ケガをしたりしないように)「靴」を履く.同じ様に,外出時には,(肺が汚れたり,ウイルス感染したりしないように)「自由外出マスク」を着用するようになることもあり得る.そうなると,多くの国民が,様々な種類の「靴」を所有するように,様々な種類の「呼吸空気浄化器具(高Sr)」を所有することになる.最低限の機能の「呼吸空気浄化器具(高Sr)」は市販価格2,000円程度を実現できると予想している.一方で,様々な機能が付加されたモデルも開発・生産され,市販価格で1万円,10万円,100万円の「呼吸空気浄化器具(高Sr)」も出てくると予想する. When people go out, they wear "shoes" (to protect their feet from getting dirty and from injury). In the same way, it is possible that they will start wearing "free-going masks" when they go out (to protect their lungs from getting dirty and from viral infections). If this happens, just as many people own various types of "shoes," they will own various types of "respiratory air purifying devices (high Sr)." We expect that a "respiratory air purifying device (high Sr)" with the minimum functionality will be available at a retail price of around 2,000 yen. On the other hand, models with various additional functions will also be developed and produced, and we expect that "respiratory air purifying devices (high Sr)" with retail prices of 10,000 yen, 100,000 yen, or 1 million yen will also appear.

「呼吸空気浄化器具(高Sr)」,及び,その周辺システム(乗り物・施設におけるサービス給排気ポートの提供,家庭用消毒エアロックシステム,など)は,コロナ時代における,必要不可欠な社会基盤となると考えている.そして,快適さ,便利さ,機能性,デザインが,世界中の多くの企業による集中的な努力によって、急速かつ大幅に改良・向上されていくと予想している. We believe that "respiratory air purification devices (high Sr)" and their related systems (provision of service intake and exhaust ports in vehicles and facilities, home disinfection airlock systems, etc.) will become essential social infrastructure in the COVID-19 era. We expect that comfort, convenience, functionality, and design will be rapidly and significantly improved and enhanced through the concentrated efforts of many companies around the world.

図3に「呼吸空気浄化器具(高Sr)」の一例としての「自由外出マスク」のデザイン例を示す.図4に試作機の外観写真を示す.図4に示した試作機のサイズは,約38cm(幅)×約26cm(奥行)×約29cm(高さ)であり,バッテリ(約180g)を含む総重量は約664g (約0.7kg)であり,搭載バッテリによる連続駆動時間は約8時間である. 試作機の特長は,以下の3点である. Figure 3 shows a design example of a "Free Going Out Mask" as an example of a "Respiratory Air Purifying Device (High Sr)". Figure 4 shows a photograph of the prototype's exterior. The size of the prototype shown in Figure 4 is approximately 38 cm (width) x 26 cm (depth) x 29 cm (height), the total weight including the battery (approximately 180 g) is approximately 664 g (approximately 0.7 kg), and the continuous operating time with the on-board battery is approximately 8 hours. The prototype has the following three features:

[1] ポンプによる強制給気により,流れ抵抗が非常に大きな高性能フィルタを挿入できる.ウイルス死滅装置(紫外線照射器,プラズマクラスター発生器など),温湿度調整装置を給気側・排気側に挿入することも可能である.
不織布フィルタ(HEPA H13規格,0.3μmまでの粒子を99.97%吸着)を給気側,排気側に使用している.米国労働安全衛生研究所(NIOSH)による微粒子用マスクの規格の最高ランク(N100/R100/P100)である,「0.1~0.3μmの微粒子を99.97%以上除去できる性能」と同等の性能を有している.
[1] Forced air supply using a pump makes it possible to insert high-performance filters with very high flow resistance. It is also possible to insert virus killing devices (ultraviolet irradiators, plasma cluster generators, etc.) and temperature and humidity control devices on the air intake and exhaust sides.
Nonwoven fabric filters (HEPA H13 standard, absorbs 99.97% of particles up to 0.3μm) are used on both the intake and exhaust sides. The mask has the same performance as the highest rank (N100/R100/P100) of the US National Institute for Occupational Safety and Health (NIOSH) standard for particulate masks, which is capable of removing 99.97% or more of particles between 0.1 and 0.3μm.

[2] ヘルメット内を,僅かな陽圧に制御することにより,首のシール部からの外気進入を完全遮断でき,ウイルスの侵入はほぼ完全に遮蔽できる.ウイルスの外部漏洩は,首シール部の気密程度に依存するが,ドライスーツ用の首回り気密シールなど,高性能な首回り気密シールを用いることにより,高いレベルでの気密保持が可能である. [2] By maintaining a slight positive pressure inside the helmet, it is possible to completely block outside air from entering through the neck seal, and almost completely block the entry of viruses. The degree to which viruses leak to the outside depends on the airtightness of the neck seal, but a high level of airtightness can be maintained by using a high-performance airtight neck seal, such as an airtight neck seal for dry suits.

[3] 一定流量に制御された吸気により,フード内に,常に新鮮な空気の流れを作る.これにより,肺へ余分な負荷を加えることなく,新鮮な空気を呼吸できる.「通常形式マスク」着用時のような息苦しさが無い状態となる. [3] A constant flow of air is controlled to create a constant flow of fresh air inside the hood. This allows the wearer to breathe fresh air without putting extra strain on the lungs. There is no shortness of breath, as there is when wearing a "standard mask."

図1は,R0m=0.5,1.0を達成する上で必要となる,呼吸空気浄化器具(Sr=1.0)の着用必要割合Wr(%)と,現時点での基本再生産数R0の関係を示すグラフである.Figure 1 is a graph showing the relationship between the required proportion Wr (%) of people wearing respiratory air purifying devices (Sr = 1.0) to achieve R0m = 0.5 and 1.0, and the current basic reproduction number R0. 図2は,現状におけるロックダウンが選択肢としてあるコロナ対策と,本発明に基づいた社会基盤が構築され,ロックダウンが不要化したコロナ対策を模式的に示した図である.Figure 2 is a schematic diagram showing the current coronavirus countermeasures in which lockdown is an option, and a coronavirus countermeasure in which a social infrastructure based on this invention is built and lockdown becomes unnecessary. 図3は,呼吸空気浄化器具(高Sr,ヘルメット一体型)の実施例の模式図である.Figure 3 is a schematic diagram of an embodiment of a breathing air purifying device (high Sr, integrated into a helmet). 図4は,呼吸空気浄化器具(高Sr,試作機)の外観写真である.Figure 4 is a photograph of the appearance of the respiratory air purifying device (high Sr, prototype). 図5に示す実施例1は,本発明に基づく呼吸空気浄化器具装着状況の記録・管理システムの通常形式マスクをベースとした実施例である.Example 1 shown in FIG. 5 is an example of a recording and management system for the wearing status of a respiratory air purifying device based on the present invention, which is based on a normal type mask. 図6に示す実施例2は,「呼吸空気浄化器具」が「ポンプ給気機能付きマスク」である呼吸空気浄化器具装着状況の記録・管理システムの実施例である.Example 2 shown in FIG. 6 is an example of a system for recording and managing the wearing status of a respiratory air purifying device, in which the "respiratory air purifying device" is a "mask with a pump air supply function." 図7は,実施例2の外観写真である.FIG. 7 is a photograph of the appearance of Example 2.

図8に示す実施例3は,「呼吸空気浄化器具」が「スマートフォン」と通信を行い,「スマートフォン」のソフトウェアにより「呼吸空気浄化器具」の装着状態を,時刻,位置情報などと共に記録することを特徴とする呼吸空気浄化器具装着状況の記録・管理システムの実施例である.Example 3 shown in Figure 8 is an example of a recording and management system for the wearing status of a respiratory air purifying device, characterized in that the "respiratory air purifying device" communicates with a "smartphone" and the "smartphone" software records the wearing status of the "respiratory air purifying device" together with time, location information, etc. 図9は,実施例4におけるQin(ΔP,V)とQout(ΔP)の変化の様子を示した図である.Qinは,駆動電圧V=12,11,10(V)の3水準について示している.9 is a diagram showing the changes in Qin(ΔP, V) and Qout(ΔP) in Example 4. Qin is shown for three levels of drive voltage V=12, 11, and 10 (V). 図10に示す実施例5は,近隣の他者の存在,および/または,距離,および/または,「呼吸空気浄化器具」の装着状態を,ブルートゥースなどの無線通信手段で検知し,記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムの実施例である.Example 5 shown in Figure 10 is an example of an embodiment of a recording and management system for the wearing status of a respiratory air purifying device, which is characterized by detecting and recording the presence and/or distance of other people in the vicinity and/or the wearing status of the "respiratory air purifying device" using wireless communication means such as Bluetooth. 図11に示す実施例6は,近隣の他者の存在,および/または,距離,および/または,「呼吸空気浄化器具」の装着状態を,カメラ画像で検知し,記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムの実施例である.Example 6 shown in Figure 11 is an example of an embodiment of a system for recording and managing the status of wearing a respiratory air purifying device, which is characterized by detecting and recording the presence and/or distance of other people in the vicinity and/or the status of wearing the "respiratory air purifying device" using camera images.

図12は,R0m=0.5,1.0を達成する上で必要となる,呼吸空気浄化器具(Sr,in=1.0,Sr,out=0.9)の着用必要割合Wr(%)と,現時点での基本再生産数R0の関係を示すグラフである.Figure 12 is a graph showing the relationship between the required proportion Wr (%) of people wearing respiratory air purifying devices (Sr,in=1.0, Sr,out=0.9) to achieve R0m=0.5, 1.0 and the current basic reproduction number R0. 図13は,実施例9における基本制御系のブロック図である.FIG. 13 is a block diagram of the basic control system in the ninth embodiment. 図14は,実施例9におけるポンプ制御方法のイメージ図である.FIG. 14 is an image diagram of the pump control method in the ninth embodiment. 図15は,実施例10における使用するポンプ単体での印加電圧に対する圧力-流量の特性を示している.FIG. 15 shows the pressure-flow rate characteristics with respect to the applied voltage for the pump used alone in Example 10. 図16は,実施例10における電圧-傾き特性を示している.FIG. 16 shows the voltage-slope characteristics in the tenth embodiment. 図17は,実施例10における電圧-切片特性を示している.FIG. 17 shows the voltage-intercept characteristic in Example 10. 図18は,実施例10における流量推定値Qを用いたポンプ給気機能付きマスクの制御ブロック図を示している.FIG. 18 shows a control block diagram of a mask with a pump air supply function using the flow rate estimation value Q in the tenth embodiment.

図19は,検出したCO2濃度が設定値を超えた場合,すばやく流量の設定値を増加させる制御法に対する実施例11を示している.FIG. 19 shows an eleventh embodiment of a control method for quickly increasing the flow rate setting when the detected CO2 concentration exceeds the setting value. 図20は,2つのポンプによる流量と圧力の個別の制御系において,検出したCO2濃度が閾値を超えた場合に,上記と同様に,CO2濃度制御器により流量の設定値Q*を増加させるとともに装着者に警報を促す,実施例11の図19とは別の形態を示している.Figure 20 shows a different configuration from Figure 19 of Example 11, in which, in a separate control system for flow rate and pressure using two pumps, if the detected CO2 concentration exceeds a threshold, the CO2 concentration controller increases the flow rate setting value Q* and issues an alarm to the wearer, as described above. 図21は,実施例12におけるゴム栓式緊急換気口付きポンプ給気機能付きマスクの装着時の模式図とゴム栓部分の側面拡大図である.FIG. 21 is a schematic diagram of a mask with pump air supply function and rubber plug type emergency ventilation port in Example 12 when worn and an enlarged side view of the rubber plug part. 図22は,実施例13における緊急時フィルタ取り外し式ポンプ給気機能付きマスクの装着時の模式図とフィルタ部分の側面拡大図である.FIG. 22 is a schematic diagram of the mask with emergency filter removal and pump air supply function in Example 13 when worn and an enlarged side view of the filter portion. 図23は,実施例13における二重フィルタの通常時と解放時の側面図である.FIG. 23 is a side view of the double filter of Example 13 in its normal and released states.

図24は,実施例14における緊急時自動開放機構の通常時と解放時の側面図である.FIG. 24 is a side view of the emergency automatic release mechanism of the fourteenth embodiment in normal and released states. 図25は,実施例19における拡声・補聴機能を有するポンプ給気機能付きマスクの装着時の模式図である.FIG. 25 is a schematic diagram of a mask with pump air supply function having a sound amplification and hearing aid function in Example 19 when worn. 図26は,実施例21における発信者と受信者の位置関係を示した図である.FIG. 26 is a diagram showing the positional relationship between the sender and the receiver in the twenty-first embodiment. 図27は,実施例22における健康モニタ機能を有するポンプ給気機能付きマスクの装着時の模式図である.FIG. 27 is a schematic diagram of a mask with a pump air supply function and a health monitoring function in Example 22 when worn. 図28は,実施例23におけるQOL向上機能を有するポンプ給気機能付きマスクの装着時の模式図である.FIG. 28 is a schematic diagram of a mask with a pump air supply function having a QOL improving function in Example 23 when worn. 図29は,実施例24におけるマスク殺菌消臭機能を有するポンプ給気機能付きマスクの外観図である.FIG. 29 is an external view of a mask with a pump air supply function and a mask sterilization and deodorization function in Example 24.

図5に示す実施例1は,本発明に関連する実施例である.実施例1は,「呼吸空気浄化器具」の微粒子・飛沫・ウイルス等の遮蔽率,装着の有無などの装着状態を,時刻と共に,記録装置に記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.実施例1では,「呼吸空気浄化器具」は,不織布をフィルタとして用いた通常形態のマスクに,記録装置が取り付けられている形態となっている.記録装置は,マイクロプロセッサ,圧力センサ(差圧センサ,測定範囲:±200Pa,測定誤差:1Pa),メモリカードスロット,バッテリなどにより構成され,顎にフィットする湾曲した形状の樹脂製ケースに収められている.マスク生地には記録装置をスナップ式に固定(スナップフィット,snap-fit)するためのプレートが接着されており,記録装置とマスク生地は工具無しで簡単に構造となっている.圧力センサにより,マスクの内側と外側の圧力差を計測する.呼吸に伴う圧力変動に類似の圧力変動を検知している時間帯を,マスク装着時として判断し,GPSセンサからの位置情報とともに,記録する.記録内容は,メモリカードに記録し,メモリカードを抜き出すことで,外部機器に転送することができる. Example 1 shown in Figure 5 is an example related to the present invention. Example 1 is a recording and management system for the wearing status of a respiratory air purifying device, characterized in that the "respiratory air purifying device"'s shielding rate against fine particles, droplets, viruses, etc., and the wearing status such as whether or not the device is worn, together with the time, are recorded in a recording device. In Example 1, the "respiratory air purifying device" is a normal mask that uses nonwoven fabric as a filter, and a recording device is attached to it. The recording device is composed of a microprocessor, a pressure sensor (differential pressure sensor, measurement range: ±200 Pa, measurement error: 1 Pa), a memory card slot, a battery, etc., and is housed in a curved resin case that fits the chin. A plate for snap-fitting the recording device is attached to the mask fabric, and the recording device and mask fabric are simply constructed without tools. The pressure sensor measures the pressure difference between the inside and outside of the mask. The time period when pressure fluctuations similar to those caused by breathing are detected is determined to be when the mask is being worn, and is recorded along with location information from the GPS sensor. The recorded contents are stored on a memory card, and can be transferred to an external device by removing the memory card.

記録装置に,LEDとスピーカを付加して,次のような装着状態の確認・警報機能を与えてもよい.すなわち,圧力変動の振幅が基準よりも小さいときは,マスクと顔表面の隙間が大きいと判断し,LEDを赤色で点滅させるとともに,警報音を発する.圧力変動が基準の範囲内の時は,マスクと顔表面の隙間が十分に小さく,気密が保たれていると判断し,LEDを青色で点灯させる.
記録装置に,Bluetoothなどの通信機能などを付加して,記録内容を,スマートフォンや解析装置に転送できるようにすることは,利便性を高める上で有用である.
An LED and speaker can be added to the recording device to provide the following wearing condition confirmation and warning functions. That is, if the amplitude of the pressure fluctuation is smaller than the standard, it is determined that the gap between the mask and the face surface is large, and the LED will flash red and an alarm will sound. If the pressure fluctuation is within the standard range, it is determined that the gap between the mask and the face surface is sufficiently small and airtightness is maintained, and the LED will light up blue.
Adding communication functions such as Bluetooth to recording devices so that recorded contents can be transferred to smartphones or analysis devices is useful for increasing convenience.

記録装置に,GPSユニットを付加して位置情報を取得し,装着状態,時刻,場所をセットとして記録していくことは,濃厚接触者の特定や感染経路の特定などにおいて,特に,有効である. Adding a GPS unit to the recording device to obtain location information and record the wearing status, time, and location as a set is particularly effective in identifying close contacts and tracing the route of infection.

「呼吸空気浄化器具」の微粒子・飛沫・ウイルス等に対する遮蔽率Srは,機種毎に校正されている.遮蔽率は,適正に装着され,マスクと顔との間の気密が十分に確保され,マスクと顔の間の隙間からの空気の漏れ率が十分に小さい場合と,不適切に装着され漏れ率が大きい場合とでは,大きく異なる.遮蔽率は,装着状態での漏れ率の推定値により補正される. The shielding rate Sr of "respiratory air purifying devices" against fine particles, droplets, viruses, etc. is calibrated for each model. The shielding rate differs significantly between when the mask is worn properly, the airtightness between the mask and the face is adequately ensured, and the rate of air leakage from the gap between the mask and the face is sufficiently small, and when the mask is worn improperly and the leakage rate is large. The shielding rate is corrected using an estimated value for the leakage rate when the mask is worn.

遮蔽率は,粒子の大きさの範囲毎に計測・校正することにより,「呼吸空気浄化器具(高Sr)」着用を義務付ける際の数値目標の設定・運用を,より精密に行うことが可能となる.例えば,以下のような分類が考えられる.
飛沫:粒子直径5μm以上
飛沫核:粒子直径1μm-5μm
微小エアロゾル:粒子直径:0.1μm-1μm
極小エアロゾル:粒子直径:0.01μm-0.1μm
粒子の大きさに応じて,空気中での動きの形態(気流にどの程度,沿って動くか?重力により落下速度,など),移動距離,滞在時間が決まってくるので,粒子の大きさに応じて,遮蔽率を計測することは,よりきめ細かい運用をする上で,有効である.
By measuring and calibrating the shielding factor for each range of particle sizes, it will be possible to set and implement numerical targets more precisely when making it mandatory to wear "respiratory air purifying devices (high Sr)." For example, the following classifications could be considered:
Droplet: Particle diameter 5μm or more Droplet nucleus: Particle diameter 1μm-5μm
Fine aerosol: Particle diameter: 0.1 μm-1 μm
Extremely small aerosol: Particle diameter: 0.01 μm-0.1 μm
The size of the particle determines the manner in which it moves through the air (how far it moves along the air current, how fast it falls due to gravity, etc.), the distance it travels, and the length of time it stays there, so measuring the shielding rate according to the size of the particle is effective for more precise operation.

圧力センサの代わりに皮膚との接触を検知する接触センサを記録装置,あるいは,マスク生地に内蔵させ,装着の有無の判断を,圧力センサの出力ではなく,接触センサの出力に基づいて行うことも考えられる.接触センサとしては,「マスク生地に対して着脱可能な生体電極」も好適である. Instead of a pressure sensor, a contact sensor that detects contact with the skin could be built into the recording device or into the mask fabric, and the determination of whether the mask is being worn or not could be based on the output of the contact sensor rather than the output of the pressure sensor. A "bioelectrode that can be attached and detached from the mask fabric" would also be suitable as a contact sensor.

図6に示す実施例2は,本発明に関連する実施例である.実施例2は,「呼吸空気浄化器具」が「ポンプ給気機能付きマスク」であることを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.図7は,実施例2の外観写真である.コントローラとして,Arduino Unoを使用している. Example 2 shown in Figure 6 is an example related to the present invention. Example 2 is a recording and management system for the wearing status of a respiratory air purifying device, characterized in that the "respiratory air purifying device" is a "mask with a pump air supply function." Figure 7 is a photograph of the appearance of Example 2. Arduino Uno is used as the controller.

「呼吸空気浄化器具」(=本マスク)は,ヘルメット部,バックパック部からなる.図6には,本マスクにおける,清浄化された空気の給気,排気の仕組みが示されている.本マスクの特長は,以下の3点である. The "breathing air purifying device" (this mask) consists of a helmet section and a backpack section. Figure 6 shows how purified air is supplied and exhausted from this mask. This mask has the following three features:

[1] ヘルメット内を,僅かな陽圧に制御することにより,首のシール部からの外気の進入を完全に遮断することができる.また,内圧をある程度高く保つことにより,ヘルメットドーム部を軽量な透明樹脂素材で製作することができる.ウイルスの侵入は100%遮蔽できる.ウイルスの外部への漏洩は,首シール部の気密程度に依存するが,高いレベルで抑止できる. [1] By controlling a slight positive pressure inside the helmet, it is possible to completely block outside air from entering through the neck seal. Furthermore, by keeping the internal pressure relatively high, the helmet dome can be made from a lightweight transparent resin material. This blocks 100% of viruses from entering. Leakage of viruses to the outside depends on the airtightness of the neck seal, but can be prevented to a high degree.

[2] 一定流量に制御された吸排気により,ヘルメット内に,常に新鮮な空気の流れを作る.これにより,肺へ余分な負荷を加えることなく,新鮮な空気を呼吸することができる.

[3] バックパックに納めたポンプ・圧力バッファ・電磁制御弁による強制給気,強制排気により,流れ抵抗が非常に大きな高性能フィルタを挿入することができる.これにより,マスク着用時のような息苦しさが一切無い状態を作ることができる.ウイルス死滅装置(紫外線照射器,プラズマクラスター発生器など)を給気側,排気側に装備することは,感染者が高密度に集められた病院等,ウイルスが空気に浮遊する密度が高い環境等において,ウイルスをより完全に排除する上で有効である.
[2] Constant flow control of the intake and exhaust creates a constant flow of fresh air inside the helmet. This allows you to breathe fresh air without putting extra strain on your lungs.

[3] Forced air supply and exhaust using a pump, pressure buffer, and electromagnetic control valve housed in a backpack allows the insertion of a high-performance filter with extremely high flow resistance. This creates an environment that is completely free of the breathlessness that occurs when wearing a mask. Equipping the air supply and exhaust sides with virus killing devices (ultraviolet irradiators, plasma cluster generators, etc.) is effective in more completely eliminating viruses in environments where the virus is highly concentrated in the air, such as hospitals where infected people are gathered in high density.

実施例2では,温湿度調整装置を給気側に設置している.温度・湿度が調整された清浄な空気が,ヘルメット部に供給される.これにより,高温多湿な夏季,低温低湿な冬季などにおいても,快適な呼吸が実現されている. In Example 2, a temperature and humidity adjustment device is installed on the air supply side. Clean air with adjusted temperature and humidity is supplied to the helmet. This allows for comfortable breathing even in hot and humid summers and cold and low-humid winters.

図6に示した全てのセンサ,ポンプなどの装置はコントローラに接続され,装置全体が設定パラメタで動作するように制御されている.コントローラは,計測・制御の全過程を記録する.コントローラは,一連の計測・制御ループを,10回/sの速さで回し,そこで使用される全てのパラメタを時系列で記録する. All of the sensors, pumps, and other devices shown in Figure 6 are connected to a controller, and the entire device is controlled to operate according to set parameters. The controller records the entire measurement and control process. The controller runs a series of measurement and control loops at a speed of 10 times per second, and records all parameters used in chronological order.

コントローラの動作状態のモニタ,設定値の変更は,無線通信(Bluetooth)により接続されたスマートフォンでも行える. The controller's operating status can also be monitored and settings can be changed using a smartphone connected via wireless communication (Bluetooth).

図8に示す実施例3は,本発明に関連する実施例である.実施例3は,「呼吸空気浄化器具」が「スマートフォン」と無線通信を行い,「スマートフォン」のソフトウェアにより「呼吸空気浄化器具」の装着状態を,時刻と共に記録することを特徴とする呼吸空気浄化器具装着状況の記録・管理システムである.実施例3の「呼吸空気浄化器具」は,ヘルメット部とウエストパック部で構成されている.実施例3の「呼吸空気浄化器具」の特長は,以下の3点である. Example 3 shown in Figure 8 is an example related to the present invention. Example 3 is a recording and management system for the wearing status of a respiratory air purifying device, characterized in that the "respiratory air purifying device" communicates wirelessly with a "smartphone" and the "smartphone" software records the wearing status of the "respiratory air purifying device" together with the time. The "respiratory air purifying device" of Example 3 is composed of a helmet part and a waist pack part. The "respiratory air purifying device" of Example 3 has the following three features.

[1] ヘルメット内を,僅かな陽圧に制御することにより,首のシール部からの外気の進入を完全に遮断することができる.また,内圧をある程度高く保つことにより,ヘルメットドーム部を軽量な透明樹脂素材で製作することができる.ウイルスの侵入は100%遮蔽できる.ウイルスの外部への漏洩は,首シール部の気密程度に依存するが,高いレベルで抑止できる. [1] By controlling a slight positive pressure inside the helmet, it is possible to completely block outside air from entering through the neck seal. Furthermore, by keeping the internal pressure relatively high, the helmet dome can be made from a lightweight transparent resin material. This blocks 100% of viruses from entering. Leakage of viruses to the outside depends on the airtightness of the neck seal, but can be prevented to a high degree.

[2] 一定流量に制御された吸排気により,ヘルメット内に,常に新鮮な空気の流れを作る.これにより,肺へ余分な負荷を加えることなく,新鮮な空気を呼吸することができる.
[3] ウエストパック部に納めたポンプ・圧力バッファ・電磁制御弁による強制給気,強制排気により,流れ抵抗が非常に大きな高性能フィルタを挿入することができる.(マスク着用時のような息苦しさが一切無い状態を作ることができる.)ウイルス死滅装置(紫外線照射器,プラズマクラスター発生器など),温湿度調整装置を給気側,排気側に挿入することも自由にできる.
[2] Constant flow control of the intake and exhaust creates a constant flow of fresh air inside the helmet. This allows you to breathe fresh air without putting extra strain on your lungs.
[3] The forced air supply and exhaust using the pump, pressure buffer, and electromagnetic control valve housed in the waist pack makes it possible to insert high-performance filters with extremely high flow resistance. (This creates an environment that is completely free of the breathlessness that occurs when wearing a mask.) It is also possible to freely insert virus killing devices (ultraviolet irradiators, plasma cluster generators, etc.) and temperature and humidity control devices on the air supply and exhaust sides.

図8に示した全てのセンサ,ポンプなどの装置はコントローラに接続され,装置全体が設定パラメタで動作するように制御されている.コントローラは,計測・制御の全過程のデータを記録し,同時に,無線通信(Bluetooth)により,スマートフォンにも伝送され,スマートファンにも記録される.スマートフォンのアプリケーションにより,記録内容は解析・表示される.また,スマートフォンのアプリケーションから,「呼吸空気浄化器具」の各種設定を調節できる. All of the sensors, pumps, and other devices shown in Figure 8 are connected to a controller, and the entire device is controlled to operate according to set parameters. The controller records data from the entire measurement and control process, which is then transmitted to a smartphone via wireless communication (Bluetooth) and recorded on the smart fan. The recorded data is analyzed and displayed using a smartphone application. In addition, various settings of the "breathing air purifying device" can be adjusted from the smartphone application.

実施例3では,装着の有無のみを検出し,自宅外での呼吸空気浄化器具の非着用時間Tout_nomaskを計数し,それが,政府が設定する上限値Tout_nomask_targetを超えないように努力する義務を負うという仕組みを想定した仕様としている.スマートフォンは自身のGPS位置情報に基づき,現在地を自宅か,自宅外かを判定する.自宅外での呼吸空気浄化器具の非着用時間上限値Tout_nomask_targetの決定方法としては,市民の平均外出時間の推定値Tout_meanを用いて,次式で計算することが近似的に妥当であると考えられる.
Tout_nomask_target = (1- Wr) Tout_mean
達成割合(Tout_nomask_target - Tout_nomask)に応じ,達成割合(Tout_nomask_target - Tout_nomask)がプラスの場合は報奨金が与えられ,達成割合(Tout_nomask_target - Tout_nomask)がマイナスの場合は罰金などが科せられる仕組みも考えられる.
In Example 3, the specifications assume a system in which only the presence or absence of wear is detected, the time Tout_nomask when the respiratory air purifying device is not worn outside the home is counted, and people are obligated to make efforts to ensure that this does not exceed the upper limit Tout_nomask_target set by the government. The smartphone determines whether the current location is at home or outside the home based on its own GPS location information. The method for determining the upper limit Tout_nomask_target for the time when the respiratory air purifying device is not worn outside the home is approximately appropriate to calculate it using the following formula using an estimated value Tout_mean of the average time citizens spend outside the home.
Tout_nomask_target = (1- Wr) Tout_mean
It is also possible to have a system where a reward is given if the achievement rate (Tout_nomask_target - Tout_nomask) is positive, and a penalty is imposed if the achievement rate (Tout_nomask_target - Tout_nomask) is negative.

記録装置は,メモリカード(マイクロSDカードなど),無線通信(Bluetoothなど)などを介して,計測・記録したデータを,スマートフォン以外の外部機器に伝達することもできる. The recording device can also transmit the measured and recorded data to external devices other than smartphones via memory cards (such as microSD cards) or wireless communication (such as Bluetooth).

実施例4は,本発明に関連する実施例である.実施例4においては,「呼吸空気浄化器具」の装着状態を,ヘルメット内の内圧,および,ポンプ出力から推定することを行っている.圧力と流量の制御が適正に行われている状況では,ポンプ出力は呼吸のタイミングに合わせて変動する.この変動から,装着の有無,空気漏れ率を検知・推定する.図3に示したヘルメット型の呼吸空気浄化器具に実装した,漏れ率などの推定方法を,以下に説明する. Example 4 is an example related to the present invention. In Example 4, the wearing state of the "breathing air purifying device" is estimated from the internal pressure in the helmet and the pump output. When pressure and flow rate are properly controlled, the pump output fluctuates in accordance with the timing of breathing. From this fluctuation, the wearing status and air leakage rate are detected and estimated. The method of estimating the leakage rate, etc., implemented in the helmet-type breathing air purifying device shown in Figure 3 is described below.

ポンプ2台分の給気量Qin(L/min)は,ヘルメットの内側と外側の差圧ΔP(Pa),および,ポンプ印加電圧V(V)により,次式により,近似的に校正されている.
Qin(ΔP,V) = (-0.21V+1.15)ΔP+ 46.8V-299.0
The air supply volume Qin (L/min) of the two pumps is approximately calibrated using the differential pressure ΔP (Pa) between the inside and outside of the helmet and the pump applied voltage V (V) using the following equation.
Qin(ΔP,V) = (-0.21V+1.15)ΔP+ 46.8V-299.0

また,自然排気フィルタからの排気Qout(L/min)は,次式で近似的に校正されてる.
Qout(ΔP) = 1.1ΔP
なお,ポンプによる排気とする場合は,吸気Qin(ΔP,V) (L/min)と同様に,排気Qout(ΔP,V)(L/min)のように,ヘルメット内外の圧力差ΔPと,ポンプに印加する電圧の関数で近似的に表すことができる.
In addition, the exhaust Qout (L/min) from the natural exhaust filter is approximately calibrated using the following formula.
Qout(ΔP) = 1.1ΔP
When exhaust is by pump, like intake Qin(ΔP, V) (L/min), exhaust Qout(ΔP, V) (L/min) can be approximately expressed as a function of the pressure difference ΔP between the inside and outside of the helmet and the voltage applied to the pump.

温湿度調整装置や二酸化炭素吸着装置への接続切替がある場合など,ポンプとヘルメットの間の流れ抵抗が変化する場合は,その影響も吸気Qin(ΔP,V) (L/min),吸気Qout(ΔP,V) (L/min)の校正時に考慮する必要がある. If the flow resistance between the pump and the helmet changes, for example when switching between a temperature and humidity control device or a carbon dioxide adsorption device, the effect of this must be taken into account when calibrating intake Qin(ΔP, V) (L/min) and intake Qout(ΔP, V) (L/min).

図9に,Qin(ΔP,V)とQout(ΔP)の変化の様子を示す.吸気ポンプへの印加電圧についてはV=12,11,10(V)の3水準について示した. Figure 9 shows the changes in Qin(ΔP, V) and Qout(ΔP). Three levels of voltage applied to the intake pump are shown: V=12, 11, and 10 (V).

漏れ流量Qleakage(L/min)は,次式で近似的に計算できる.
Qleakage - Qbreeth - Qv = Qin-Qout
= (-0.21V+1.15)ΔP+ 46.8V-299.0 - 1.1ΔP
= (-0.21V+0.05)ΔP+ 46.8V-299.0
ここで, Qbreeth(L/min)は呼吸による流量であり呼気時に正,吸気時に負の値をとり,Qv(L/min)はヘルメット筐体の体積変化率であり収縮時に正,膨張時に負の値をとる.
The leakage flow rate Qleakage (L/min) can be approximately calculated using the following formula:
Qleakage - Qbreeth - Qv = Qin-Qout
= (-0.21V+1.15)ΔP+ 46.8V-299.0 - 1.1ΔP
= (-0.21V+0.05)ΔP+ 46.8V-299.0
Here, Qbreeth (L/min) is the flow rate due to breathing, which is positive during expiration and negative during inspiration, and Qv (L/min) is the rate of volume change of the helmet casing, which is positive during contraction and negative during inflation.

ここで,呼吸による流量Qbreeth(L/min)と,ヘルメット筐体の体積変化率Qv(L/min)は,長い時間で平均をとれば,十分に小さな値になり,無視できると考えられる. Here, the flow rate due to breathing Qbreeth (L/min) and the rate of volume change of the helmet housing Qv (L/min) become sufficiently small values that they can be ignored if averaged over a long period of time.

この実施例では,60秒間の時間平均値としてQ1= Qin-Qout(L/min)を求め,校正式の誤差を考慮して,以下のような判定を行っている.
Q1 < 0.1 Qin : 装着状態(漏れ無)
0.1Qin ≦ Q1 < 0.5Qin : 装着状態(漏れ有)
0.5Qin ≦ Q1 : 非装着状態
In this embodiment, Q1 = Qin - Qout (L/min) is calculated as the time average value for 60 seconds, and the following judgment is made taking into account the error of the calibration formula.
Q1 < 0.1 Qin: Installed (no leakage)
0.1Qin ≦ Q1 < 0.5Qin : Installed condition (with leakage)
0.5Qin ≦ Q1: Not installed

Qin,Qoutの校正を高精度化することにより,より精密な判定が可能となる. By improving the accuracy of the calibration of Qin and Qout, more precise judgments will be possible.

一般に流量計(マスフローメータなど)は,流れ抵抗が大きい場合が多くある.一方,「呼吸空気浄化器具」の内部と外部の圧力差としては, 0.1-0.5kPa程度の比較的小さな設定値が適している.そのため,「流量計」を,「呼吸空気浄化器具」に出入りする空気の流量の測定する際には,流量計による圧力損失,および,それによる,ポンプへの負荷に対して注意が必要となる.ヘルメット内の空気圧力は大気圧と比べてあまり変化しない(大気圧との差は0.1-0.5kPa程度)ので,上記のように,圧力差ΔP,ポンプ印加電圧Vから,Qin,Qoutを高精度に推定する方法が,より効率的であると考えられる. Generally, flow meters (such as mass flow meters) often have a large flow resistance. On the other hand, a relatively small setting of around 0.1-0.5 kPa is appropriate as the pressure difference between the inside and outside of the "breathing air purifying device." For this reason, when using a "flow meter" to measure the flow rate of air entering and leaving the "breathing air purifying device," care must be taken to avoid pressure loss due to the flow meter and the resulting load on the pump. Since the air pressure inside the helmet does not change much compared to atmospheric pressure (the difference with atmospheric pressure is around 0.1-0.5 kPa), it is considered more efficient to use a method of estimating Qin and Qout with high accuracy from the pressure difference ΔP and the voltage applied to the pump V, as described above.

ポンプ制御を,PWM(Pulse Width Modulation)で行う場合,上記の印加電圧Vの代わりに,DUTY(%)を用いることになる.例えば,定格電圧DC12Vのポンプを使う場合,PWM制御のDUTY(%)とほぼ等価になる,直流電圧制御時の印加電圧Vとの関係を調べることで,上記の校正式を,PWM制御においても使うことができる.当然のことながら,PWM制御を行う場合は,Qin(ΔP,Duty),Qin(ΔP,Duty)のように,差圧ΔP(Pa)とDUTY(%)とに基づく校正を行う方が,より正確な校正式となる.すなわち,ポンプを一定電圧のオンオフ比率(PWM Dutyとも称する)を用いる場合は,オンオフ比率から流量Qin(PWM Duty)までのモデルを同定し,校正式を準備しておく.モデルは簡便な一次遅れの伝達関数などでよい. When controlling a pump with PWM (Pulse Width Modulation), DUTY (%) is used instead of the above applied voltage V. For example, when using a pump with a rated voltage of DC 12V, the above calibration formula can be used with PWM control by investigating the relationship with the applied voltage V during DC voltage control, which is roughly equivalent to DUTY (%) for PWM control. Naturally, when using PWM control, a more accurate calibration formula is obtained by performing calibration based on the differential pressure ΔP (Pa) and DUTY (%), such as Qin(ΔP, Duty), Qin(ΔP, Duty). In other words, when using a constant voltage on/off ratio (also called PWM Duty) for the pump, identify a model from the on/off ratio to the flow rate Qin (PWM Duty) and prepare a calibration formula. The model can be a simple first-order lag transfer function.

実施例では,漏れ流量Qleakage(L/min)は,圧力差ΔPに比例すると近似し,以下のように表している. In the embodiment, the leakage flow rate Qleakage (L/min) is approximately proportional to the pressure difference ΔP and is expressed as follows:

Qleakage = aΔP
ここで,aは比例定数である.一方,上述のように,以下が成り立つ.
Qleakage(ΔP,V)- Qbreeth - Qv = Qin -Qout
したがって,
aΔP= [Qin + Qbreeth + Qv] - Qout
両辺を時間積分すると,
∫(aΔP)dt= ∫{[Qin + Qbreeth + Qv] - Qout}dt
十分長い時間で積分すると,
∫Qbreeth + Qv)dt=0
であるので
a∫(ΔP)dt= ∫(Qin &#8211; Qout)dt
したがって,比例定数は,次式で求めることができる.
a = [∫(Qin-Qout)dt]/[∫(ΔP)]
Qleakage = aΔP
Here, a is a proportionality constant. Meanwhile, as mentioned above, the following holds:
Qleakage (ΔP, V) - Qbreeth - Qv = Qin -Qout
therefore,
aΔP= [Qin + Qbreeth + Qv] - Qout
By integrating both sides with respect to time,
∫(aΔP)dt= ∫{[Qin + Qbreeth + Qv] - Qout}dt
If we integrate over a long enough time,
∫Qbreeth + Qv)dt=0
Because
a∫(ΔP)dt= ∫(Qin &#8211; Qout)dt
Therefore, the proportionality constant can be calculated using the following equation.
a = [∫(Qin-Qout)dt]/[∫(ΔP)]

以上より,次の関係式が求まる.
Qleakage- Qbreeth - Qv = Qin -Qout
aΔP - Qbreeth - Qv = Qin - Qout
ここで,ヘルメット内の体積変化率Qv(L/min)を無視できる場合,以下となる.
aΔP - Qbreeth = Qin - Qout
Qbreeth = Qout-Qin + aΔP (L/min)
= Qout(ΔP) - Qin(ΔP,V) + aΔP (L/min)
以上より,呼吸の流量は,ΔPとVの関数Qbreeth(ΔP,V)として,計算することができる.
From the above, the following relational equation can be obtained.
Qleakage- Qbreeth - Qv = Qin -Qout
aΔP - Qbreeth - Qv = Qin - Qout
If the volume change rate Qv (L/min) inside the helmet can be ignored, then
aΔP - Qbreeth = Qin - Qout
Qbreeth = Qout-Qin + aΔP (L/min)
= Qout(ΔP) - Qin(ΔP, V) + aΔP (L/min)
From the above, the respiratory flow rate can be calculated as a function of ΔP and V, Qbreeth(ΔP, V).

このように,装着者の呼吸によるヘルメット内への空気の出入りQbreeth(ΔP,V)(L/min)も,圧力差ΔPとポンプ印加電圧Vの関数として表すことができる. In this way, the amount of air entering and leaving the helmet due to the wearer's breathing, Qbreeth(ΔP, V) (L/min), can also be expressed as a function of the pressure difference ΔP and the pump applied voltage V.

記録装置は,装着の有無,漏れ流量,呼吸による空気の流れQbreeth,などを,毎秒10回程度の割合で計測・計算・記録する. The recording device measures, calculates, and records whether the device is worn, the leakage flow rate, the air flow caused by breathing (Qbreeth), etc. at a rate of about 10 times per second.

無線通信(Bluetooth)により,近隣の「呼吸空気浄化器具」と通信し,自身と自身の周りの他者の「呼吸空気浄化器具」の機種,微粒子・飛沫・ウイルス等の遮蔽率Sr,装着の有無などの装着状態を,時刻,および,位置情報と共に,記録装置に記録する. It communicates with nearby "respiratory air purifying devices" via wireless communication (Bluetooth), and records the model of the "respiratory air purifying device" of the user and those around him/her, the shielding rate Sr for particles, droplets, viruses, etc., and the wearing status, including whether or not the device is being worn, along with the time and location information, in a recording device.

図10に示す実施例5は,本発明に関連する実施例である.実施例5は,近隣の他者の存在,および/または,距離,および/または,「呼吸空気浄化器具」の装着状態を,ブルートゥース,WiFi接続,赤外線通信,超音波通信などの無線通信手段で検知し,記録することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.
スマートフォン内蔵のブルートゥース機能を用いても良いが,「呼吸空気浄化器具」内臓のブルートゥース機能を用いることで,近隣に存在する他の「呼吸空気浄化器具」の距離だけでなく,距離と位置(方角)の両方を検知することが可能となる.
本実施例は,本発明に基づく「呼吸空気浄化器具」が,社会基盤として定着し,緊急事態時には,全ての国民に「呼吸空気浄化器具の装着」がWrで義務図けられる近未来の社会での実施を想定している.
厚生労働省の接触確認アプリ「COCOA」に,追加機能として,近隣の他者の呼吸空気浄化器具の装着状態を通知しあうという機能を加えることも想定している.
Example 5 shown in Figure 10 is an example related to the present invention. Example 5 is a recording and management system for the wearing status of a respiratory air purifying device, characterized in that the presence and/or distance of other people in the vicinity and/or the wearing status of the "respiratory air purifying device" are detected and recorded by wireless communication means such as Bluetooth, WiFi connection, infrared communication, and ultrasonic communication.
Although the Bluetooth function built into a smartphone can be used, by using the Bluetooth function built into the "respiratory air purifying device," it is possible to detect not only the distance to other "respiratory air purifying devices" in the vicinity, but also both the distance and location (direction).
This embodiment assumes implementation in a near-future society in which the "breathing air purifying device" based on the present invention has become established as a social infrastructure, and in the event of an emergency, it will be mandatory for all citizens to "wear the breathing air purifying device."
It is also anticipated that an additional function will be added to the Ministry of Health, Labor and Welfare's contact tracing app "COCOA" that will allow users to notify each other of whether or not others in their vicinity are wearing respiratory air purification devices.

図11に示す実施例6は,本発明に関連する実施例である.実施例6は,近隣の他者の存在,および/または,距離,および/または,「呼吸空気浄化器具」の装着状態を,カメラ画像で検知し,記録することを特徴とする呼吸空気浄化器具装着状況の記録・管理システムである.画像処理により,近隣に存在する人の「呼吸空気浄化器具」の種類,装着の有無を判定し,その結果を記録する.
実施例6では,視野120°の口角レンズを備えたカメラ3台を収めたカメラユニットを,ヘルメット上部に設置し,装着者の全周囲(360°)を常時撮影し,リアルタイムで,画像処理を行っている.コントローラは,ヘルメットに取り付け,一体型の「呼吸空気浄化器具」としている.スマートフォンと接続(ブルートゥース接続など)し,画像処理の一部,または,全部をスマートフォン側に担わせることも考えられる.
ヘルメットの複数個所に可視光LED,もしくはカメラで検出できる波長の赤外線を発行するLEDを設置し,その発光(点灯や点滅パターン)により,ブルートゥース通信の通信相手との対応付けを行うことも有効である.
Example 6 shown in Figure 11 is an example related to the present invention. Example 6 is a recording and management system for the wearing status of respiratory air purifying devices, characterized by detecting and recording the presence and/or distance and/or wearing status of "respiratory air purifying devices" of other people in the vicinity using camera images. Image processing is used to determine the type of "respiratory air purifying devices" worn by people in the vicinity and whether or not they are wearing them, and the results are recorded.
In Example 6, a camera unit containing three cameras with 120° angle-of-view lenses is installed on the top of the helmet, constantly capturing images of the entire surroundings (360°) of the wearer, and processing the images in real time. The controller is attached to the helmet and serves as an integrated "breathing air purifying device." It is also possible to connect to a smartphone (e.g., via Bluetooth) and have the smartphone handle some or all of the image processing.
It is also effective to install visible light LEDs or LEDs that emit infrared light with wavelengths that can be detected by a camera in multiple places on the helmet and use the light emitted (lighting or blinking patterns) to match the other party in Bluetooth communication.

実施例7は,本発明に関連する実施例である.実施例7は,ウイルスの遮蔽率を,「呼吸空気浄化器具」の外部から内部への侵入に対する遮蔽率と,「呼吸空気浄化器具」の内部から外部への漏洩に対する遮蔽率とに分離して取り扱うことを特徴とする呼吸空気浄化器具装着状況の記録・管理システムである.一般に,「呼吸空気浄化器具」は,実際の装着状態において,Sr_inとSr_outが大きく異なることがありえるので,上記のように,Sr_inとSr_outを分けて取り扱うことは,より精密に「呼吸空気浄化器具の着用必要割合Wr_target」を求める上で有効である. Example 7 is an example related to the present invention. Example 7 is a recording and management system for the wearing status of a respiratory air purifying device, characterized by handling the virus shielding rate separately as the shielding rate against intrusion from the outside to the inside of the "respiratory air purifying device" and the shielding rate against leakage from the inside to the outside of the "respiratory air purifying device". In general, when a "respiratory air purifying device" is actually worn, Sr_in and Sr_out can differ significantly, so handling Sr_in and Sr_out separately as described above is effective in determining the "required wearing rate Wr_target of the respiratory air purifying device" more precisely.

前述のように,ウイルス遮蔽率をSrを,ヘルメット外部から内部への侵入に対する遮蔽率をSr_in,ヘルメット内部から外部への漏洩に対する遮蔽率をSr_outと分離して,取り扱う.近似的に以下の関係式が導かれる.
R0m = (1- Wr Sr_in) (1- Wr Sr_out) R0
上記を,R0m,R0,Sr_in,Sr_outを定数, Wrを未知数としたWrの二次方程式として解くことにより,各マスク(呼吸空気浄化器具)の着用必要割合Wrを求めることができる.0≦Sr_in≦1,0≦Sr_out≦1より,解は,以下となる.
Wr = [[(Sr_in+Sr_out)-[(Sr_in+Sr_out)2-4(Sr_in)(Sr_out)(1-R0m/R0)]0.5] /[2(Sr_in)(Sr_out)]
上式により,政府が発表するR0,R0mに基づき,当該マスク(呼吸空気浄化器具)の,着用必要割合Wr_targetを計算することができる.
As mentioned above, the virus shielding rate is treated as Sr, the shielding rate against intrusion from the outside of the helmet to the inside as Sr_in, and the shielding rate against leakage from the inside of the helmet to the outside as Sr_out. The following approximate relationship can be derived.
R0m = (1- Wr Sr_in) (1- Wr Sr_out) R0
By solving the above as a quadratic equation in Wr, where R0m, R0, Sr_in, and Sr_out are constants and Wr is the unknown, the required proportion Wr of each mask (respiratory air purifying device) to be worn can be calculated. Since 0≦Sr_in≦1, 0≦Sr_out≦1, the solution is as follows.
Wr = [[(Sr_in+Sr_out)-[(Sr_in+Sr_out) 2 -4(Sr_in)(Sr_out)(1-R0m/R0)] 0.5 ] /[2(Sr_in)(Sr_out)]
Using the above formula, we can calculate the required wearing rate of the mask (respiratory air purifying device), Wr_target, based on the R0 and R0m announced by the government.

図12に,基本再生産数R0を修正基本再生産数R0m=0.5,または,1.0に修正するために必要な「呼吸空気浄化器具(Sr,in=1.0, Sr,out=0.9)」の着用必要割合Wr_targetを示す.未感染者のみが着用するとした場合,及び,未感染者と感染者の両方が着用するとした場合,それぞれについて示す.図12に示す例は,全ての国民,または,当該集団の全ての構成員が,同一の遮蔽率(Sr,in=1.0, Sr,out=0.9)の呼吸空気浄化器具を使用する場合である. Figure 12 shows the required proportion of people wearing "respiratory air purifying devices (Sr,in=1.0, Sr,out=0.9)" Wr_target, which is necessary to revise the basic reproduction number R0 to the corrected basic reproduction number R0m = 0.5 or 1.0. This is shown for both the case where only uninfected people wear them, and the case where both uninfected and infected people wear them. The example shown in Figure 12 is when all citizens, or all members of the group in question, use respiratory air purifying devices with the same shielding rate (Sr,in=1.0, Sr,out=0.9).

図12から,例えば,基本再生産数R0=5の場合,修正基本再生産数R0m=0.5,または,1.0に修正するために必要な「呼吸空気浄化器具(Sr,in=1.0, Sr,out=0.9)」の着用必要割合Wr_targetは,未感染者のみがマスク着用するとした場合で0.58 (58%) ,未感染者と感染者の両方が着用するとした場合で0.72 (72%) であると読み取れる. From Figure 12, for example, when the basic reproduction number R0=5, the required proportion Wr_target of people wearing "respiratory air purifying devices (Sr,in=1.0, Sr,out=0.9)" required to correct the corrected basic reproduction number R0m to 0.5 or 1.0 can be seen to be 0.58 (58%) when only uninfected people wear masks, and 0.72 (72%) when both uninfected and infected people wear them.

この実施例では,装着の有無のみを検出し,一日毎に,屋外での当該マスク(呼吸空気浄化器具)の着用時間Tout_mask,および,屋外での当該マスク(呼吸空気浄化器具)の非着用時間Tout_nomaskを計数して,当該マスク(呼吸空気浄化器具)の着用割合実績Wr_avdを次式により計算する.
Wr_avd = (Tout_mask)/Tout_mask + Tout_nomask)
運用例として,国民一人一人は,自身の当該マスク(呼吸空気浄化器具)の割合実績Wr_avdが,政府が設定するマスク(呼吸空気浄化器具)着用割合Wr以上になるように努力する義務を負うという仕組みが考えられる.
In this embodiment, only whether or not the mask is worn is detected, and the time Tout_mask during which the mask (respiratory air purifying device) is worn outdoors and the time Tout_nomask during which the mask (respiratory air purifying device) is not worn outdoors are counted each day, and the actual wearing ratio Wr_avd of the mask (respiratory air purifying device) is calculated using the following formula.
Wr_avd = (Tout_mask)/Tout_mask + Tout_nomask)
As an example of how this could be implemented, a system could be considered in which each citizen is obligated to make efforts to ensure that their actual mask (respiratory air purifying device) wearing rate Wr_avd is equal to or greater than the mask (respiratory air purifying device) wearing rate Wr set by the government.

実施例8は,請求項1の実施例である.実施例8は,ポンプ給気機能付きマスクにおいて,装着の呼吸に合わせて,呼気時には流入量目標値・設定値を小さく,および/または,内圧目標量を小さくし,吸気時には流入量目標値を大きく,および/または,内圧目標値・設定値を大きくすることを特徴とする,呼吸空気浄化器具の実施例である.
図3に示すヘルメット一体型の呼吸空気浄化器具のソフトウェアを改編することにより,実施例8を実施した.実施例8では,呼吸に合わせて,呼気(吐き出す)時は流入量・圧力を弱め,吸気(吸い込む)時は流入量・圧力を高める制御を行う.これにより,ヘルメット内の呼気に含まれる二酸化炭素を,効率良く排出し,二酸化炭素の滞留を低減できる
実施例8においては,以下のような2種類の制御法を選択できるようにしている.
Example 8 is an example of claim 1. Example 8 is an example of a respiratory air purifying device characterized in that, in a mask with a pump air supply function, the inflow target value/set value and/or the internal pressure target value are reduced during exhalation, and the inflow target value and/or the internal pressure target value are increased during inhalation, in accordance with the breathing pattern when the mask is worn.
Example 8 was implemented by modifying the software of the helmet-integrated breathing air purifying device shown in Figure 3. In Example 8, control is performed to reduce the inflow volume and pressure during exhalation (exhalation) and increase the inflow volume and pressure during inhalation (inhalation) in accordance with breathing. This allows the carbon dioxide contained in the exhaled air inside the helmet to be efficiently discharged and reduces the accumulation of carbon dioxide in Example 8, which allows the following two types of control methods to be selected.

[制御法1]
上述の方法で計算される時々刻々と変化するQbreethの値により,流量設定値Qin, setを以下のように設定する.
Qbreeth(L/min)≧ 2 (L/min) : 流量設定値Qin, set ≧ 50 (L/min)
Qbreeth(L/min)≦ -2 (L/min) : 流量設定値Qin, set ≧ 150 (L/min)
-2 (L/min) <Qbreeth(L/min)<2 (L/min) : 流量設定値Qin, set ≧ 100 (L/min)
圧力設定値ΔP set≧50 (Pa),CO2濃設定値Cco2≦2000 (ppm)は,それぞれ,固定値とする.
流量設定値Qin, set,圧力設定値ΔP set,CO2濃設定値Cco2の条件を満たす範囲において,最低限の出力でポンプを駆動する制御を行う.流量設定値Qin, set,圧力設定値ΔP set,CO2濃設定値Cco2のいずれかの条件が満たされない場合,ポンプ出力設定は増やされていく.
[Control method 1]
Based on the ever-changing value of Qbreeth calculated by the above method, the flow rate setting value Qin,set is set as follows:
Qbreeth (L/min) ≧ 2 (L/min) : Flow rate setting value Qin, set ≧ 50 (L/min)
Qbreeth (L/min) ≦ -2 (L/min) : Flow rate setting value Qin, set ≧ 150 (L/min)
-2 (L/min) < Qbreeth (L/min) < 2 (L/min) : Flow rate setting value Qin, set ≧ 100 (L/min)
The pressure set value ΔPset≧50 (Pa) and the CO2 concentration set value Cco2≦2000 (ppm) are fixed values.
The pump is controlled to operate at the minimum output within the range that satisfies the conditions of the flow rate setting value Qin, set, pressure setting value ΔP set, and CO2 concentration setting value Cco2. If any of the conditions of the flow rate setting value Qin, set, pressure setting value ΔP set, or CO2 concentration setting value Cco2 are not satisfied, the pump output setting is increased.

[制御法2]
上述の方法で計算される時々刻々と変化するQbreethの値により,圧力設定ΔP setを以下のように設定する.
Qbreeth(L/min)≧ 2 (L/min) : 流量設定ΔP set ≧ 50 (Pa)
Qbreeth(L/min)≦ -2 (L/min) : 流量設定ΔP set ≧ 150 (Pa)
-2 (L/min) <Qbreeth(L/min)<2 (L/min) : 流量設定ΔP set = 100 (Pa)
流量設定値Qin, set≧ 100(L/min),CO2濃設定値Cco2≦2000 (ppm)は,それぞれ,固定値とする.
流量設定値Qin, set,圧力設定値ΔP set,CO2濃設定値Cco2の条件を満たす範囲において,最低限の出力でポンプを駆動する制御を行う.流量設定値Qin, set,圧力設定値ΔP set,CO2濃設定値Cco2のいずれかの条件が満たされない場合,ポンプ出力設定は増やされていく.
[Control method 2]
Based on the ever-changing value of Qbreeth calculated using the method described above, the pressure setting ΔPset is set as follows:
Qbreeth (L/min) ≧ 2 (L/min): Flow rate setting ΔP set ≧ 50 (Pa)
Qbreeth (L/min) ≦ -2 (L/min): Flow rate setting ΔP set ≧ 150 (Pa)
-2 (L/min) <Qbreeth (L/min) <2 (L/min): Flow rate setting ΔP set = 100 (Pa)
The flow rate setting value Qin,set ≧ 100 (L/min) and the CO2 concentration setting value Cco2 ≦ 2000 (ppm) are fixed values.
The pump is controlled to operate at the minimum output within the range that satisfies the conditions of the flow rate setting value Qin, set, pressure setting value ΔP set, and CO2 concentration setting value Cco2. If any of the conditions of the flow rate setting value Qin, set, pressure setting value ΔP set, or CO2 concentration setting value Cco2 are not satisfied, the pump output setting is increased.

上記の議論では,ヘルメット内の体積変化率Qv(L/min)を無視できるものをしてきた.無視できない場合においては,第一近似としてヘルメット・フード部の体積変化が,ヘルメット内外の圧力差ΔPによる弾性変形によるものと仮定できる場合は,次式で校正することが有効である.
Qv= a ΔP (L/min)
ここで,a(L/min/Pa)は定数である.
In the above discussion, we have assumed that the volume change rate Qv (L/min) inside the helmet can be ignored. If it cannot be ignored, and if we can assume, as a first approximation, that the volume change in the helmet/hood section is due to elastic deformation caused by the pressure difference ΔP between the inside and outside of the helmet, it is effective to calibrate it with the following formula.
Qv = a ΔP (L/min)
Here, a (L/min/Pa) is a constant.

吸気をポンプにより強制吸気とすることに加え,排気もポンプによる強制排気とする場合は,吸気ポンプの総給気量Qin(L/min)は,ヘルメットの内側と外側の差圧ΔP(Pa),および,吸気ポンプ印加電圧V(V)により,次式により,近似的に校正できる.
Qin(ΔP,V) = aΔP+ bV + c
同様に,排気ポンプの総排気量Qout(L/min)は,ヘルメットの内側と外側の差圧ΔP(Pa),および,排気ポンプ印加電圧V(V)により,次式により,近似的に校正できる.
Qout(ΔP,V) = aΔP+ bV + c
ここで,a,b,cは定数である.なお,より精密な校正式が必要な場合は,多項式近似とすると良い.
In addition to forcing air in through a pump, if the exhaust is also forcibly exhausted through a pump, the total air supply volume Qin (L/min) of the intake pump can be approximately calibrated using the differential pressure ΔP (Pa) between the inside and outside of the helmet and the voltage V (V) applied to the intake pump, using the following formula:
Qin(ΔP, V) = aΔP+ bV + c
Similarly, the total exhaust volume Qout (L/min) of the exhaust pump can be approximately calibrated using the differential pressure ΔP (Pa) between the inside and outside of the helmet and the exhaust pump applied voltage V (V) using the following equation.
Qout(ΔP, V) = aΔP+ bV + c
Here, a, b, and c are constants. If a more precise calibration formula is required, a polynomial approximation is recommended.

単純な内圧一定制御,または,単純な流入流量一定制御,または,流出流量一定制御を行った場合では,呼吸に合わせてポンプの出力は変化する.実施例8の制御は,より,呼吸を助け,ヘルメット内のCO2濃度を低減する上で効果がある.CO2濃度低減のためには,清浄化された空気のヘルメット内部への吹き出し口の位置・形状,ヘルメット内の構造,ヘルメット内への吐き出し口の位置・形状が,呼気を滞留させることなくヘルメット外部へ速やかに吐き出されるようなヘルメット内の気流の流れを決める上で重要な要素である.実施例8では,清浄化された空気のヘルメット内部への吹き出し口の位置・形状を,外部からの清浄化された空気の流れが装着者の口元へ向かうように,設計している. When simple constant internal pressure control, simple constant inflow flow rate control, or constant outflow flow rate control is performed, the pump output changes in accordance with breathing. The control of Example 8 is more effective in aiding breathing and reducing the CO2 concentration inside the helmet. To reduce the CO2 concentration, the position and shape of the outlet for purified air into the helmet, the internal structure of the helmet, and the position and shape of the outlet into the helmet are important factors in determining the airflow inside the helmet so that exhaled air is quickly expelled outside the helmet without stagnation. In Example 8, the position and shape of the outlet for purified air into the helmet is designed so that the flow of purified air from outside is directed toward the wearer's mouth.

実施例9は,請求項2の実施例である.実施例9は,給気ポンプ一つとヘルメット装着の流量センサ,圧力センサ,CO2センサを用いた制御により,流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付き呼吸空気浄化器具の実施例である. Example 9 is an example of claim 2. Example 9 is an example of a respiratory air purifying device with a pump air supply function, characterized by satisfying set conditions for flow rate, pressure, and CO2 concentration through control using one air supply pump and a helmet-mounted flow sensor, pressure sensor, and CO2 sensor.

図13は,本実施形態に係る基本制御系のブロック図である.本実施形態に係る制御系は,1つの給気ポンプ付いたヘルメットと流量センサ,圧力センサ,CO2濃度センサ各1個とフィードバック制御器から構成される.制御対象への入力信号は,ポンプへの入力で,例えば一定電圧のオンオフ比率(PWM Dutyとも称する)信号である.また,制御対象の出力信号は,各種センサ出力である流量Q,圧力P,CO2濃度である.ヘルメットからの排気については,フィルタを介した自然排気である. Figure 13 is a block diagram of the basic control system according to this embodiment. The control system according to this embodiment is composed of a helmet with an air supply pump, one flow sensor, one pressure sensor, one CO2 concentration sensor, and a feedback controller. The input signal to the controlled object is the input to the pump, and is, for example, a constant voltage on-off ratio (also called PWM Duty) signal. The output signals of the controlled object are the flow rate Q, pressure P, and CO2 concentration, which are the outputs of various sensors. Air is naturally exhausted from the helmet via a filter.

図14にポンプ制御方法のイメージ図を示す.流量Q,圧力P,CO2に対しそれぞれ満たすべき閾値Q*,P*,CO2*を設定する.Q*は人の呼吸(10L/min)に対して十分大きな値とし,P*はヘルメット内が微陽圧となるような値とし,CO2*はヘルメット内のCO2濃度が人体に影響を与えないよう十分低い値とする.フィードバック制御においては,この閾値に対し,下記の3つの条件が同時に満たされた場合にポンプへの入力Dutyを減少させ,一つでも満たされない場合には入力Dutyを増大させる.
Q>Q*, P>P*, CO2<CO2*
この制御法により,1つの給気ポンプで圧力,流量,CO2濃度の全ての閾値条件を満たしつつ,ポンプの過駆動によるエネルギー消費を抑えた制御が可能である.
Figure 14 shows an image of the pump control method. Threshold values Q*, P*, and CO2* are set for the flow rate Q, pressure P, and CO2, respectively. Q* is set to a value large enough for a person's breathing (10 L/min), P* is set to a value that creates a slight positive pressure inside the helmet, and CO2* is set to a value low enough so that the CO2 concentration inside the helmet does not affect the human body. In feedback control, if the three conditions below are met simultaneously with respect to this threshold, the input duty to the pump is reduced, and if any one of them is not met, the input duty is increased.
Q>Q*, P>P*, CO2<CO2*
This control method makes it possible to satisfy all threshold conditions for pressure, flow rate, and CO2 concentration with a single air supply pump while minimizing energy consumption caused by overdriving the pump.

実施例10は,請求項3の実施例である.実施例10は,ポンプの流量Qが印加電圧Vと外部と内部の差圧Pの関数Q(V, P)となることを利用し,流量センサを用いずにその推定値により流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付き呼吸空気浄化器具である.同様に,ポンプの圧力Pが印加電圧Vと流量Qの関数P(V, Q)となることを利用し,圧力センサを用いずにその推定置により,流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付き呼吸空気浄化器具の実施例である. Example 10 is an example of claim 3. Example 10 is a respiratory air purifying device with a pump air supply function, characterized in that it utilizes the fact that the pump flow rate Q is a function Q(V, P) of the applied voltage V and the external/internal pressure difference P, and satisfies the setting conditions for flow rate, pressure, and CO2 concentration by its estimated value without using a flow sensor. Similarly, this is an example of a respiratory air purifying device with a pump air supply function, characterized in that it utilizes the fact that the pump pressure P is a function P(V, Q) of the applied voltage V and the flow rate Q, and satisfies the setting conditions for flow rate, pressure, and CO2 concentration by its estimated value without using a pressure sensor.

請求項9に記載のマスクにおいて,ポンプの流量Qが印加電圧Vと圧力Pの関数Q(V, P)となることを利用し,流量センサを用いずにその推定値により流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付きマスク.同様に,ポンプの圧力Pが印加電圧Vと流量Qの関数P(V, Q)となることを利用し,圧力センサを用いずにその推定置により,流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付きマスクである. The mask with pump air supply function according to claim 9 utilizes the fact that the pump flow rate Q is a function Q(V, P) of the applied voltage V and pressure P, and satisfies the setting conditions for flow rate, pressure, and CO2 concentration by estimating the flow rate, pressure, and CO2 concentration without using a flow rate sensor. Similarly, the mask with pump air supply function utilizes the fact that the pump pressure P is a function P(V, Q) of the applied voltage V and flow rate Q, and satisfies the setting conditions for flow rate, pressure, and CO2 concentration by estimating the flow rate, pressure, and CO2 concentration without using a pressure sensor.

図15は,使用するポンプ単体での印加電圧に対する圧力-流量の特性を示している.事前にこのような特性を取得することで,そのポンプをマスクに設置したときの流量を,ポンプの印加電圧と圧力から推定できる. Figure 15 shows the pressure-flow characteristics for the applied voltage for the pump alone. By obtaining such characteristics in advance, the flow rate when the pump is installed on the mask can be estimated from the applied voltage and pressure of the pump.

図15を例に,導出例を以下に示す.印加電圧V1時の近似曲線からその傾きは,-Q1/P1,切片はQ1となる.同様に,V2, V3に対する傾きはそれぞれ,-Q2/P2,-Q3/P3となり,切片はQ2,Q3となる.導出した電圧に対する傾き座標(V1, -Q1/P1), (V2, -Q2/P2), (V3, -Q3/P3)から,図16の電圧-傾き特性を導出し,その近似直線をy1=aV+bとする.同様に導出した電圧に対する切片座標(V1, Q1), (V2, Q2),(V3, Q3)から,図17の電圧-切片特性を導出し,その近似直線をy2=cV+dとする.ここで,近似直線の導出は最小2乗法などで導出すればよい.また,近似直線は曲線による近似でもよい. An example of derivation is shown below, using Figure 15 as an example. The slope of the approximation curve when the applied voltage is V1 is -Q1/P1, and the intercept is Q1. Similarly, the slopes for V2 and V3 are -Q2/P2 and -Q3/P3, respectively, and the intercepts are Q2 and Q3. The voltage-slope characteristics in Figure 16 are derived from the derived voltage slope coordinates (V1, -Q1/P1), (V2, -Q2/P2), and (V3, -Q3/P3), and the approximate straight line is y1=aV+b. Similarly, the voltage-intercept characteristics in Figure 17 are derived from the derived voltage intercept coordinates (V1, Q1), (V2, Q2), and (V3, Q3), and the approximate straight line is y2=cV+d. The approximate straight line can be derived using the least squares method, etc. The approximate straight line can also be an approximation using a curve.

導出した傾きと切片に対する近似直線y1,y2を利用し,流量QはP, Vの計測値から,次式により近似的に推定できる.
Qest(P,V) = y1 P+y2 = (aV+b) P + (cV+d)
流量推定値Qestを用いたポンプ給気機能付きマスクの制御ブロック図を図18に示す.ポンプへの入力PWM Duty値から電圧を算出し,圧力センサ値とともに圧力推定を行う.その推定値Qestを計測値の代わりにフィードバックすることで,すべての閾値条件を満たす制御が可能である.
Using the approximate straight lines y1 and y2 for the derived slope and intercept, the flow rate Q can be approximately estimated from the measured values of P and V using the following formula.
Qest(P,V) = y1 P+y2 = (aV+b) P + (cV+d)
Figure 18 shows a control block diagram of a mask with a pump air supply function using the estimated flow rate Qest. The voltage is calculated from the input PWM Duty value to the pump, and pressure is estimated together with the pressure sensor value. By feeding back the estimated value Qest instead of the measured value, control that satisfies all threshold conditions is possible.

同様に,事前測定した図15の特性からPest(Q,V)の特性を導出し,流量センサではなく,圧力センサを用いずにその推定置により同様の制御を行うことも可能である. Similarly, it is possible to derive the characteristics of Pest(Q,V) from the characteristics in Figure 15, which were measured in advance, and perform similar control using the estimated position without using a pressure sensor rather than a flow sensor.

この制御法により,ポンプ給気機能付きマスクに流量センサ(または圧力センサ)を設置せずとも,流量,圧力,CO2濃度の閾値条件を満たす制御が給気ポンプ,圧力センサ(または流量センサ),CO2センサ各一つで可能である. This control method makes it possible to achieve control that satisfies the threshold conditions for flow rate, pressure, and CO2 concentration using only one air supply pump, pressure sensor (or flow sensor), and CO2 sensor, without the need to install a flow sensor (or pressure sensor) on the mask with pump air supply function.

実施例11は,請求項4の実施例である.実施例11は,CO2濃度が設定値を超えた場合,流量の設定値を上げ,かつ警報(音,光など)を出すことを特徴とする,呼吸空気浄化器具である. Example 11 is an example of claim 4. Example 11 is a respiratory air purifying device that is characterized by increasing the flow rate setting and issuing an alarm (sound, light, etc.) when the CO2 concentration exceeds a set value.

図19に検出したCO2濃度が設定値を超えた場合,すばやく流量の設定値を増加させる制御法に対する実施例を示す.この例では,1つのポンプによる流量と圧力の制御系において,CO2濃度の検出値が閾値を超えた場合,CO2濃度制御器により流量の設定値Q*を増加させる.同時に,装着者にLEDや音により視覚,聴覚を通した警報を促す.また,図20に別の実施例を示す.2つのポンプによる流量と圧力の個別の制御系において,検出したCO2濃度が閾値を超えた場合に,上記と同様に,CO2濃度制御器により流量の設定値Q*を増加させるとともに装着者に警報を促す.本発明手法は,ポンプの数量に関係なく,各種のフィードバック制御系において付加的に適用できる.CO2濃度,圧力,流量に加え,脈拍,呼吸数,バッテリ残量などのセンサをさらに付加し,スマホに表示,スマホで設定変更が可能となるように機能を構築してもよい. Figure 19 shows an embodiment of a control method that quickly increases the flow rate setting when the detected CO2 concentration exceeds the set value. In this example, in a flow rate and pressure control system using one pump, when the detected CO2 concentration exceeds a threshold, the CO2 concentration controller increases the flow rate setting value Q*. At the same time, the wearer is alerted visually and audibly by LEDs and sound. Figure 20 shows another embodiment. In a separate flow rate and pressure control system using two pumps, when the detected CO2 concentration exceeds a threshold, the CO2 concentration controller increases the flow rate setting value Q* and alerts the wearer in the same way as above. The method of the present invention can be applied additively to various feedback control systems, regardless of the number of pumps. In addition to the CO2 concentration, pressure, and flow rate, sensors for pulse rate, respiratory rate, remaining battery level, etc. can be added, and functions can be constructed so that the information can be displayed on a smartphone and settings can be changed on the smartphone.

本発明のCO2濃度が閾値を超えた場合に流量の設定値を増大させる手法により,ヘルメット内のCO2濃度を素早く設定値以下に制御するとともに,装着者に注意喚起を促し,人体に影響が出ないように制御することが可能である. By using the method of the present invention to increase the flow rate setting when the CO2 concentration exceeds a threshold, it is possible to quickly control the CO2 concentration inside the helmet to below the set value, while also alerting the wearer to the risk of injury.

実施例12は,請求項5の実施例である.実施例12は非常時に装置表面のつまみを引くことにより呼吸のための開口を開くことを特徴とする,呼吸空気浄化器具である.
図21は,ヘルメット型呼吸空気浄化器具の前面に,ゴム栓で蓋をされた開口部を持ち,非常時に呼吸のための開口部を開くことのできる呼吸空気浄化器具の実施例である.本装置は,口付近のマスクのウィンドウに開けられた開口部と,その開口を塞ぐゴム栓で構成される.開口部は,普段はゴム栓で蓋がされており,空気の出入りはできない.緊急時には,ゴム栓を引き抜くことで開口が開き,換気されて新鮮な空気を呼吸することができる.ゴム栓には,引き抜きやすいようにつまみを付けても良い.開口部はマスクのウィンドウではなくビニールフード部に設けても良い.ビニールフードに開口を設ける際は,樹脂またはゴムのリングでビニールが破れないように補強してもよい.
本発明の,非常時に装置表面のつまみを引くことにより呼吸のための開口を開く手法により,ポンプの故障またはバッテリ電圧の低下により,所定の空気供給量を確保できなくなった際に,マスクを脱ぐ手間無く,素早く新鮮な空気の呼吸用の開口を開くことができ,非常時のマスク内の酸素濃度の低下とCO2濃度の上昇による人体への影響を防ぐことができる.
Example 12 is an example of claim 5. Example 12 is a breathing air purifying device characterized in that in an emergency, an opening for breathing is opened by pulling a knob on the surface of the device.
Figure 21 shows an embodiment of a helmet-type respiratory air purifying device that has an opening covered with a rubber plug on the front, and can open the opening for breathing in an emergency. This device consists of an opening in the mask window near the mouth and a rubber plug that covers the opening. The opening is normally covered with a rubber plug, preventing air from entering or leaving. In an emergency, the opening can be opened by pulling out the rubber plug, allowing ventilation and allowing fresh air to be breathed. The rubber plug may have a knob attached to make it easier to pull out. The opening may be located in the vinyl hood rather than in the mask window. When creating an opening in the vinyl hood, it may be reinforced with a resin or rubber ring to prevent the vinyl from tearing.
The method of the present invention, which opens the breathing opening by pulling the knob on the surface of the device in an emergency, allows the opening for breathing fresh air to be quickly opened without the need to remove the mask when the required amount of air supply cannot be secured due to pump failure or low battery voltage, preventing the effects on the human body of a drop in oxygen concentration and a rise in CO2 concentration inside the mask in an emergency.

実施例13は,請求項6の実施例である.実施例13は,非常時に口付近の排気フィルタのつまみを引くことにより呼吸のための開口を開くことを特徴とする,呼吸空気浄化器具である.
図22は,ヘルメット型呼吸空気浄化器具の前面に,取り外し可能なフィルタを持ち,非常時に呼吸のための開口部を開くことのできる呼吸空気浄化器具の実施例である.本装置は装着者の口近辺のウィンドウに空いた開口部と,開口部を塞ぐ排気フィルタで構成されている.通常時は,開口部は排気フィルタで覆われており,ヘルメット内の正圧で内部の空気が外に排出されている.ポンプの動作が停止した非常時には,フィルタ表面のつまみを引いてフィルタを取り外すことで開口が開き,マスク内の空気が換気されて新鮮な空気を呼吸することができる.開口部はマスクのウィンドウではなくビニールフード部に設けても良い.開口部は,フィルタを支えるために樹脂またはゴムのリングで補強してもよい.
図23は,排気フィルタを通気性の高い薄いフィルタと通気性は悪いがウイルス遮蔽率の高い厚いフィルタに分けた2重フィルタの実施例である.本フィルタは,緊急時に厚いフィルタのみ外す事ができる.通気性の高い薄いフィルタにより,換気が可能であり,加えて,薄いフィルタのみであっても,大きな飛沫は防げるため,感染の確率を大きく下げることが可能である.より高い通気性が必要な場合は,薄いフィルタも外すことができても良い.
Example 13 is an example of claim 6. Example 13 is a breathing air purifying device characterized in that in an emergency, an opening for breathing is opened by pulling the tab of an exhaust filter near the mouth.
Figure 22 shows an embodiment of a helmet-type respiratory air purifying device that has a removable filter on the front and can open an opening for breathing in an emergency. This device consists of an opening in a window near the wearer's mouth and an exhaust filter that covers the opening. Under normal circumstances, the opening is covered by the exhaust filter, and the air inside is exhausted to the outside by the positive pressure inside the helmet. In an emergency when the pump stops working, the opening can be opened by pulling the knob on the surface of the filter to remove it, and the air inside the mask is ventilated, allowing the wearer to breathe fresh air. The opening may be provided in the vinyl hood instead of the mask window. The opening may be reinforced with a resin or rubber ring to support the filter.
Figure 23 shows an example of a double filter in which the exhaust filter is divided into a thin, highly breathable filter and a thick filter that has poor breathability but a high virus blocking rate. In an emergency, only the thick filter can be removed. The thin, highly breathable filter allows ventilation, and even the thin filter alone can prevent large droplets, greatly reducing the chance of infection. If higher breathability is required, the thin filter may also be removable.

本発明の,非常時に口付近の排気フィルタのつまみを引くことにより呼吸のための開口を開く機構により,ポンプの故障またはバッテリ電圧の低下により,所定の空気供給量を確保できなくなった際に,マスクを脱ぐ手間無く,素早く新鮮な空気の呼吸用の開口を開くことができ,非常時のマスク内の酸素濃度の低下とCO2濃度の上昇による人体への影響を防ぐことができる.加えて,2重フィルタを用いると,感染の確率を下げつつマスク内の換気を行うことが可能である. The mechanism of this invention allows the opening for breathing to be opened by pulling the knob on the exhaust filter near the mouth in an emergency. When the required amount of air supply cannot be secured due to pump failure or low battery voltage, the opening for breathing fresh air can be quickly opened without the trouble of removing the mask, preventing the effects on the human body of a drop in oxygen concentration and an increase in CO2 concentration inside the mask in an emergency. In addition, the use of a double filter makes it possible to ventilate inside the mask while reducing the chance of infection.

実施例14は,請求項7実施例である.実施例14は,非常時に自動的に呼吸のための開口を開くことを特徴とする,呼吸空気浄化器具である.
本装置は口近辺のウィンドウに空いた開口部と,開口部を塞ぐフィルタ,ソレノイドとバネで構成されたフィルタのロック・解放機構,バッテリ及びコントローラで構成される.ポンプの動作状況は,コントローラにおいてバッテリ電圧及びポンプのモーターの逆起電力を測定することで確認される.バッテリ電圧がしきい値以下に低下,またはモーターの逆起電力がしきい値以下に低下した際は,それぞれバッテリ切れ,ポンプの故障として判断され,フィルタロック機構のソレノイドが動作される.バッテリが瞬時に切断された場合も対応できるように,コントローラ内部のコンデンサにソレノイドの駆動に必要な電力を貯めておいてもよい.ソレノイドが動作してプランジャがソレノイド内部に引き込まれると,ロックが外れバネの力により排気フィルタが外れ開口が開く.その際,フィルタ部を通気性の高い薄いフィルタと通気性は悪いがウイルス遮蔽率の高い厚いフィルタに分けた2重フィルタ構造としておき,緊急時には厚いフィルタのみ外れるようにしても良い.薄いフィルタのみであっても,大きな飛沫は防げるため,感染の確率を大きく下げることが可能である.図24は2重フィルタの自動解放機構の実施例である.
本発明の,非常時に自動的に呼吸のための開口を開く機構により,ポンプの停止を自動で検出し,自動で外気を取り入れることが可能となるため,非常時のマスク内の酸素濃度の低下とCO2濃度の上昇による人体への影響を防ぐことが可能である.
Example 14 is an example of claim 7. Example 14 is a breathing air purifying device that automatically opens an opening for breathing in an emergency.
This device is composed of an opening in the window near the mouth, a filter that closes the opening, a filter lock/release mechanism consisting of a solenoid and a spring, a battery, and a controller. The operating status of the pump is confirmed by measuring the battery voltage and the back electromotive force of the pump motor in the controller. When the battery voltage drops below a threshold value, or when the back electromotive force of the motor drops below a threshold value, it is determined that the battery is dead or the pump is broken, respectively, and the solenoid of the filter lock mechanism is activated. In order to be able to respond to the case where the battery is suddenly disconnected, the power required to drive the solenoid may be stored in a capacitor inside the controller. When the solenoid operates and the plunger is pulled into the solenoid, the lock is released and the exhaust filter is released by the force of the spring, opening the opening. In this case, the filter part may be made into a double filter structure divided into a thin filter with high breathability and a thick filter with poor breathability but high virus shielding rate, and only the thick filter may be removed in an emergency. Even with only a thin filter, it is possible to prevent large droplets, greatly reducing the probability of infection. Figure 24 shows an example of an automatic release mechanism for a dual filter.
The mechanism of the present invention that automatically opens the breathing opening in an emergency automatically detects when the pump has stopped and automatically allows outside air to be taken in, thereby preventing the effects on the human body of a decrease in oxygen concentration and an increase in CO2 concentration inside the mask in an emergency.

実施例15は,本発明に関連する実施例である.実施例15は,周囲の他者の装着している呼吸空気浄化器具装着状況の記録・管理システムと通信し,周囲の人のマスク着用状況と感染予防指数を表示することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.
本システムは,Wi-FiやBluetooth等の無線通信手段を持ち,周囲の記録・管理システムと通信して,呼吸空気浄化器具の位置,呼吸空気浄化器具の装着状況,呼吸空気浄化器具の種類を相互に情報交換する.集められた情報は,呼吸空気浄化器具の表示装置に地図とともに表示される.表示装置が拡張現実機能を持つ場合,視界内の人に重畳して呼吸空気浄化器具の装着状況や呼吸空気浄化器具の種類と感染予防の性能を表示しても良い.また,拡張現実表示装置のカメラを用いて呼吸空気浄化器具を未装着の人がいる際は,危険人物として強調表示しても良い.
本発明の,周囲の他者の装着している呼吸空気浄化器具装着状況の記録・管理システムと通信し,周囲の人のマスク着用状況と感染予防指数を表示するという特徴により,呼吸空気浄化器具を付けていない人物を避けたり,知人の装着状況を見て食事に誘うかどうかを判断したりすることが可能である.
Example 15 is an example related to the present invention. Example 15 is a recording and management system for the wearing status of respiratory air purifying devices, characterized by communicating with a recording and management system for the wearing status of respiratory air purifying devices worn by other people in the vicinity, and displaying the mask wearing status and infection prevention index of the surrounding people.
This system has wireless communication means such as Wi-Fi and Bluetooth, and communicates with surrounding record and management systems to exchange information on the location of the respiratory air purification device, the status of wearing the respiratory air purification device, and the type of respiratory air purification device. The collected information is displayed on the display device of the respiratory air purification device along with a map. If the display device has an augmented reality function, it may be superimposed on people within the field of view to display the status of wearing the respiratory air purification device, the type of respiratory air purification device, and its infection prevention performance. In addition, if there is a person not wearing a respiratory air purification device, the camera of the augmented reality display device may be used to highlight them as a dangerous person.
The present invention has the feature of communicating with a recording and management system that records the wearing status of respiratory air purifying devices worn by others in the vicinity and displaying the mask wearing status and infection prevention index of those in the vicinity, making it possible to avoid people who are not wearing respiratory air purifying devices, or to decide whether to invite an acquaintance to a meal based on their wearing status.

実施例16は,本発明に関連する実施例である.実施例16は,感染者の移動経路をサーバに問合せ,表示装置内の地図や装着者の視野に感染の危険度を色分けして表示することを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.
本システムはWi-Fiやモバイルデータ通信により,インターネットへ接続する機能とGPSおよびWi-Fiおよびモバイル通信の基地局からの電波状況を用いた位置計測機能と呼吸空気浄化器具の表示装置に情報を表示する機能で構成される.また,インターネット上には感染者の過去の移動経路のデータベースが設置されているとする.本システムは,インターネットを通じて,感染者の移動経路データベースへアクセスし,自身のこれまでの経路および現在地周辺において感染者が付近にいなかったかを照合する.照合の結果,過去の経路で感染者と遭遇していた場合は,場所と日時を装着者の呼吸空気浄化器具に表示し,感染者が周囲を一定期間以内に通過していた場合は,その付近の空間を危険度の高い空間として,呼吸空気浄化器具に地図上とともに危険度を色分けして表示する.表示装置が拡張現実機能を持つ場合,視界内の床に危険度を色分けして表示しても良い.
本発明の,感染者の移動経路をサーバに問合せ,表示装置内の地図や装着者の視野に感染の危険度を色分けして表示する特徴により,本システム利用者は,周囲の危険度を直感的に知ることができ,危険な場所への立ち入りを避けることが可能になる.
Example 16 is an example related to the present invention. Example 16 is a recording and management system for the wearing status of respiratory air purification devices, characterized by querying a server for the movement route of an infected person and displaying the risk of infection in a color-coded manner on a map in a display device or in the field of vision of the wearer.
This system is composed of a function to connect to the Internet via Wi-Fi or mobile data communication, a function to measure the location using GPS and radio wave conditions from Wi-Fi and mobile communication base stations, and a function to display information on the display device of the respiratory air purifying device. In addition, it is assumed that a database of the past movement routes of infected people is installed on the Internet. This system accesses the database of the movement routes of infected people via the Internet and checks whether there were any infected people nearby along the wearer's previous route and around the current location. If the result of the check is that an infected person has been encountered on the wearer's previous route, the location and date and time are displayed on the wearer's respiratory air purifying device, and if an infected person has passed by the surrounding area within a certain period of time, the space nearby is deemed to be a high-risk space, and the risk level is displayed in a color-coded manner on the respiratory air purifying device along with a map. If the display device has an augmented reality function, the risk level may also be displayed in a color-coded manner on the floor within the field of view.
The present invention has the feature of querying a server about the movement routes of infected people and displaying the risk of infection in a color-coded manner on a map within the display device or in the wearer's field of vision, allowing users of the system to intuitively know the level of danger in their surroundings and avoid entering dangerous places.

実施例17は,本発明に関連する実施例である.実施例17は,呼吸空気浄化器具のカメラを利用して,周囲の映像と音声を記録し,後に再生する機能と,再生権は装着者本人のみが所有し,警察等の捜査依頼に関して一時的に再生権を委譲できることを特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.
本システムは,呼吸空気浄化器具が持つカメラの映像を暗号化して記録する機能と,暗号化パスワードを時間とともに変化させる機能と,装着者本人を認証する機能と,特定時間の暗号化パスワードを再発行する機能を持つ.カメラの撮影した画像または映像は暗号化されて本システムに保存される.その暗号化パスワードは時間とともに変動する.本人認証が成功すると,本システムは要求された時刻のパスワードを再発行し,呼吸空気浄化器具または別の表示装置で,再発行されたパスワードを用いて暗号化を解除することで,本システムで録画された画像または映像を見ることができる.警察等からの捜査への協力依頼が来た場合は,本人の認証と同意がある場合のみ,システムは要求された時間帯の暗号化されたデータと再発行したパスワードを警察のもつ記録媒体,または警察の管理するWEB上の記録領域へ転送する.
本発明の,呼吸空気浄化器具のカメラを利用して,周囲の映像と音声を記録し,後に再生する機能と,再生権は装着者本人のみが所有し,警察等の捜査依頼に関して一時的に再生権を委譲できる特徴により,装着者本人は生活ログとして本システムに記録された映像を鑑賞することができるほか,プライバシーを守りつつ事件や事故の捜査にも役立てることが可能である.
Example 17 is an example related to the present invention. Example 17 is a recording and management system for the wearing status of a respiratory air purifying device, which has the following features: a function for recording surrounding video and audio using the camera of the respiratory air purifying device and for later playback; playback rights are held only by the wearer himself/herself; and playback rights can be temporarily transferred in response to a request for investigation by the police or the like.
This system has the functions of encrypting and recording images from the camera attached to the respiratory air purifying device, changing the encryption password over time, authenticating the wearer, and reissuing the encryption password for a specific time. Images or images captured by the camera are encrypted and stored in this system. The encryption password changes over time. If identity authentication is successful, the system reissues the password for the requested time, and the images or videos recorded by this system can be viewed by decrypting them using the reissued password on the respiratory air purifying device or another display device. If a request for cooperation in an investigation is made by the police or other organizations, the system will transfer the encrypted data for the requested time period and the reissued password to a recording medium owned by the police, or to a recording area on the web managed by the police, only with the wearer's authentication and consent.
The present invention has the function of using the camera of the respiratory air purifying device to record video and audio of the surroundings and play them back later, and the feature that the playback rights are held solely by the wearer and can be temporarily transferred in response to an investigation request from the police or other authorities. This allows the wearer to view the video recorded in the system as a daily log, and can also be used to help investigate crimes and accidents while protecting privacy.

実施例18は,本発明に関連する実施例である.実施例18は,スマートフォンのアプリを用いて呼吸空気浄化器具を装着した写真を撮影することにより,画像解析にて装着されている呼吸空気浄化器具の種類を判定する機能を有し,さらに複数の角度から撮影された写真から装着方法の正誤を判定し,正しい装着方法を教示する機能を有する事を特徴とする,呼吸空気浄化器具装着状況の記録・管理システムである.
本システムは,スマートフォンアプリと呼吸空気浄化器具により構成される.呼吸空気浄化器具を装着し,装着者の頭部をスマートフォンのカメラで撮影すると,スマートフォン内で,または,インターネット経由でサーバへ画像が送られて,画像解析により呼吸空気浄化器具の種類が判別されスマートフォンに表示される.加えて,呼吸空気浄化器具が正しく装着されているかどうかを判定し,正しく装着できていない場合は正しい装着方法をスマートフォン画面に表示する.
本発明の,スマートフォンのアプリを用いて呼吸空気浄化器具を装着した写真を撮影することにより,画像解析にて装着されている呼吸空気浄化器具の種類を判定する機能,複数の角度から撮影された写真から装着方法の正誤を判定し正しい装着方法を教示する機能により,マスクの種類ごとに異なるマスクの装着方法を間違えることによる感染を防ぐ事が可能である.
Example 18 is an example related to the present invention. Example 18 is a recording and management system for the wearing status of a respiratory air purifying device, which has a function of determining the type of respiratory air purifying device being worn through image analysis by taking a photograph of the device being worn using a smartphone app, and further has a function of determining whether the wearing method is correct or incorrect from photographs taken from multiple angles, and instructing the wearer on the correct wearing method.
This system consists of a smartphone app and a respiratory air purifying device. When the wearer puts on the respiratory air purifying device and takes a picture of their head with the smartphone camera, the image is sent to a server either in the smartphone or via the internet, and the type of respiratory air purifying device is identified through image analysis and displayed on the smartphone. In addition, it determines whether the respiratory air purifying device is worn correctly, and if it is not, the correct way to wear it is displayed on the smartphone screen.
By using a smartphone app to take a photograph of the respiratory air purifying device being worn, the present invention has a function to determine the type of respiratory air purifying device being worn through image analysis, and a function to determine whether the device is being worn correctly from photos taken from multiple angles and provide instructions on the correct way to wear it, making it possible to prevent infection from being caused by wearing masks incorrectly, as there are different ways of wearing them for each type of mask.

実施例19は,請求項8の実施例である.実施例19は,内部にマイク及び/またはスピーカと,外部にマイク及び/またはスピーカを持ち,呼吸空気浄化器具外部の音を装着者に聞こえやすくし,及び/または,装着者の音声を外部に拡声して伝える事を特徴とする,呼吸空気浄化器具である.
図25は,マスク内側にあって装着者本人の声を拾うマイク1とマスク外側にあって外部に拡声するスピーカ1と,マスク外側にあって外部の音を拾うマイク2とマスク内側にあって外部の音を装着者へ伝えるスピーカ2とで構成される実施例である.マイク1で拾われた装着者の音声は,スピーカ1により増幅されて放射される.マイク2で拾われたマスク外部の音声は,スピーカ2により装着者に増幅されて伝達される.マスク外側のスピーカ1及びマイク2はスマートフォンを用いても良い.
本発明の,呼吸空気浄化器具外部の音を装着者に聞こえやすくし,装着者の音声を外部に拡声して伝えるという特徴により,内部の遮音性が高い呼吸空気浄化器具を装着していても,周囲の人と会話することが可能である.
Example 19 is an example of claim 8. Example 19 is a breathing air purifying device characterized by having an internal microphone and/or speaker and an external microphone and/or speaker, making sounds outside the breathing air purifying device easier for the wearer to hear, and/or amplifying and transmitting the wearer's voice to the outside.
Figure 25 shows an embodiment consisting of a microphone 1 located inside the mask that picks up the wearer's voice, a speaker 1 located outside the mask that amplifies the voice to the outside, a microphone 2 located outside the mask that picks up external sounds, and a speaker 2 located inside the mask that transmits external sounds to the wearer. The wearer's voice picked up by microphone 1 is amplified and radiated by speaker 1. Sound outside the mask picked up by microphone 2 is amplified and transmitted to the wearer by speaker 2. Speaker 1 and microphone 2 on the outside of the mask may be replaced by a smartphone.
The present invention has the feature of making sounds outside the respiratory air purifying device easier for the wearer to hear and amplifying the wearer's voice to the outside, making it possible to talk to people around you even when wearing a respiratory air purifying device with high internal sound insulation.

実施例20は,請求項9の実施例である.実施例20は,マイクおよびスピーカを持ち,他の呼吸空気浄化器具と無線通信により音声データを送受信して会話する機能を持ち,通話対象及び範囲を設定可能で,通話状況を視覚的に表示する機能を持つ事を特徴とする,呼吸空気浄化器具である.
本装置は,装着者本人の声を拾うマイクと装着者に音を伝えるスピーカ,無線通信装置で構成される.装着者同士の会話はBluetoothもしくは無線LANを経由して行われる.会話は1対1およびグループ間通話でもよいし,1対多で会話するためのブロードキャストモードを持っていても良い.ブロードキャストモードでは,近くにいる受信者全員に音声データが送信される.受信者の呼吸空気浄化器具では,無線LANまたはBluetoothの電波強度から推定される発信者との距離に応じて,音声データを再生するか無視するかが決定される.その際,声の大きさによって発信者の音声が再生される距離を自動的に変えても良い.たとえば,ブロードキャストモードで小さな声で発話した場合は,距離の近い呼吸空気浄化器具のみで再生され,大きな声で発話した場合は離れた場所にある呼吸空気浄化器具でも再生される.また,声の大きさによって,1対1もしくは,グループ通話から,ブロードキャストモードに自動で切り替わっても良い.たとえば,離れた場所にいる呼吸空気浄化器具装着者と会話している際に,周囲にいる人に危険が迫っているのに気がついた際に,とっさに大きな声で「危ない!」と発言することでブロードキャストモードに切り替わり,周囲にいる呼吸空気浄化器具装着者に注意喚起することが可能になる.発話者と受信者のリストは呼吸空気浄化器具の表示装置に表示される.表示装置が拡張現実機能を持つ場合,装着者の視界内で発話者と受信者の頭上に発話と受信の様子をアイコンで表示してもよい.
本発明の,マイクおよびスピーカを持ち,他の呼吸空気浄化器具と無線通信により音声データを送受信して会話する機能を持ち,通話対象及び範囲を設定可能で,通話状況を視覚的に表示する機能を持つという特徴により,工事現場のような騒音環境下でも音声による会話が可能となり,通話対象以外の呼吸空気浄化器具装着者にも注意喚起を行うことが可能になるため,呼吸空気浄化器具の利便性を高めるとともに,安全な運用が可能である.
Example 20 is an example of claim 9. Example 20 is a breathing air purifying device that has a microphone and a speaker, has a function of communicating with other breathing air purifying devices by sending and receiving voice data via wireless communication, is capable of setting the communication target and range, and has a function of visually displaying the communication status.
This device is composed of a microphone that picks up the wearer's voice, a speaker that transmits sound to the wearer, and a wireless communication device. Conversations between wearers are conducted via Bluetooth or wireless LAN. Conversations can be one-to-one or group calls, or a broadcast mode for one-to-many conversations can be provided. In broadcast mode, voice data is sent to all nearby receivers. The receiver's breathing air purifying device determines whether to play or ignore the voice data depending on the distance from the sender estimated from the wireless LAN or Bluetooth signal strength. In this case, the distance at which the sender's voice is played can be automatically changed depending on the volume of the voice. For example, if the user speaks softly in broadcast mode, the voice is only played on the breathing air purifying device that is close by, and if the user speaks loudly, the voice is also played on the breathing air purifying device that is far away. In addition, depending on the volume of the voice, the device can automatically switch from one-to-one or group calls to broadcast mode. For example, if you are talking to a person wearing respiratory air purification equipment in a remote location and notice that someone nearby is in danger, you can quickly say "Danger!" in a loud voice to switch to broadcast mode and alert the people wearing respiratory air purification equipment nearby. A list of speakers and receivers is displayed on the display device of the respiratory air purification equipment. If the display device has an augmented reality function, the speech and reception status may be displayed as icons above the heads of the speaker and receiver within the wearer's field of vision.
The features of the present invention, which has a microphone and speaker, has the ability to communicate with other respiratory air purifying devices by sending and receiving voice data via wireless communication, is able to set the call recipient and range, and has the ability to visually display the call status, make it possible to have voice conversations even in noisy environments such as construction sites, and can also alert other wearers of respiratory air purifying devices who are not the intended recipient of the conversation, thereby increasing the convenience of the respiratory air purifying device and enabling safe operation.

実施例21は,請求項10の実施例である.実施例21は,GPSにより位置を,磁気センサにより方位を測定し,位置,発信者の向き,声の大きさに応じて音声の伝達範囲を自動的に設定する事を特徴とする,呼吸空気浄化器具である.
本装置は,装着者本人の声を拾うマイクと装着者に音を伝えるスピーカ,無線通信装置,GPS,地磁気センサで構成される.装着者同士の会話はBluetoothもしくは無線LANを経由して行われる.会話は1対1およびグループ間通話でもよいし,1対多で会話するための選択的ブロードキャストモードを持っていても良い.図26に選択的ブロードキャスト機能利用時の発信者と受信者の位置関係を示す.発信者および受信者の呼吸空気浄化器具は,GPSにより位置,地磁気センサにより向きを測定し,発信者および受信者の位置および向いている方向の情報を互いに共有する.発信者の前方に扇形の領域が設定され,発信者からの距離に応じて,範囲境界線A,範囲境界線B,範囲境界線Cで区切られている.発信者の声が小さい場合は,範囲境界線Aの内部にいる受信者Aの呼吸空気浄化器具のみで発信者の音声が再生され,それ以外の受信者の呼吸空気浄化器具では再生されない.発信者が大きな声で発言した場合,範囲境界線Bまでを再生範囲とし,受信者Aと受信者Bの呼吸空気浄化器具で発信者の音声が再生される.受信者Cは,発信者からの扇形の範囲から外れているため,発信者の音声が再生されない.
発話者と受信者のリストは呼吸空気浄化器具の表示装置に表示される.表示装置が拡張現実機能を持つ場合,装着者の視界内で発話者と受信者の頭上に発話と受信の様子をアイコンで表示してもよい.
本発明の,GPSにより位置を,磁気センサにより方位を測定し,位置,発信者の向き,声の大きさに応じて音声の伝達範囲を自動的に設定するという特徴により,1対多の無線通話においては,声の届く範囲を直感的に制御できることに加え,誰に声が届いていて誰に届いていないかが視覚的に明らかとなり,盗み聞きを防ぐことが可能となる.
Example 21 is an example of claim 10. Example 21 is a respiratory air purifying device characterized by measuring the position by GPS and the direction by a magnetic sensor, and automatically setting the voice transmission range according to the position, the direction of the caller, and the volume of the voice.
This device is composed of a microphone that picks up the wearer's voice, a speaker that transmits sound to the wearer, a wireless communication device, a GPS, and a geomagnetic sensor. Conversations between wearers are carried out via Bluetooth or wireless LAN. Conversations can be one-to-one or group calls, or a selective broadcast mode for one-to-many conversations can be provided. Figure 26 shows the relative positions of the sender and receiver when using the selective broadcast function. The sender's and receiver's respiratory air purifying devices measure their positions using GPS and their orientations using a geomagnetic sensor, and share information on the sender's and receiver's positions and facing directions with each other. A fan-shaped area is set in front of the sender, and is divided into range boundaries A, B, and C according to the distance from the sender. If the sender's voice is quiet, the sender's voice is only played on the respiratory air purifying device of receiver A who is within range boundary A, and is not played on the respiratory air purifying devices of other receivers. If the sender speaks loudly, the playback range is set to range boundary B, and the sender's voice is played on the respiratory air purifying devices of receiver A and receiver B. Since receiver C is outside the fan-shaped range from the sender, the sender's voice is not played back to receiver C.
The list of speakers and receivers is displayed on the display of the respiratory air purification device. If the display has an augmented reality function, the speaker and receiver status may be displayed as icons above their heads within the wearer's field of view.
The present invention has the feature of measuring the position using GPS and the direction using a magnetic sensor, and automatically setting the voice transmission range according to the position, the caller's direction, and the volume of the voice. This not only makes it possible to intuitively control the range within which the voice can reach in one-to-many wireless calls, but also makes it visually clear who has and has not received the voice, thereby preventing eavesdropping.

実施例22は,請求項11の実施例である.実施例22は,センサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて,装着者の健康状態をモニタする事を特徴とする,呼吸空気浄化器具である.
図27に,呼吸空気浄化器具の持つセンサ(マイク,圧力センサおよび脳波センサ)を用いて,装着者の健康状態をモニタする機能を有する呼吸空気浄化器具の実施例を示す.マイクにより呼吸音,いびきの大きさと頻度を計測し,圧力センサで呼吸の深さを計測し,脳波センサで脳の活動状態を計測する.それぞれのセンサの値は装置内に記録され,解析される.
本発明の,センサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて,装着者の健康状態をモニタする特徴により,肺炎や睡眠時無呼吸症候群などの呼吸器系の疾患の発見と睡眠の質の測定を行うことが可能になる.
Example 22 is an example of claim 11. Example 22 is a respiratory air purifying device characterized by using sensors (a microphone, a pressure sensor, a flow sensor, a carbon dioxide sensor, and an electroencephalogram sensor) to monitor the health condition of the wearer.
Figure 27 shows an example of a breathing air purifying device that has the function of monitoring the wearer's health condition using the sensors (microphone, pressure sensor, and EEG sensor) contained in the breathing air purifying device. The microphone measures breathing sounds and the volume and frequency of snoring, the pressure sensor measures breathing depth, and the EEG sensor measures brain activity. The values of each sensor are recorded in the device and analyzed.
The present invention's feature of monitoring the wearer's health condition using sensors (microphone, pressure sensor, flow sensor, carbon dioxide sensor and brainwave sensor) makes it possible to detect respiratory diseases such as pneumonia and sleep apnea syndrome and to measure sleep quality.

実施例23は,請求項12の実施例である.実施例23は,呼吸空気浄化器具内部にあるセンサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて装着者の健康状態をモニタし,アロマディフューザとスピーカを用いて状況に合わせた香りと環境音を発生させる事を特徴とする,呼吸空気浄化器具である.
図28は,マイク,圧力センサ,脳波センサ,スピーカ,アロマディフューザを持つ呼吸空気浄化器具の実施例である.本システムは,装着者の健康状態をマイク,圧力センサ,脳波センサでモニタし,状況に合わせた香りと環境音をアロマディフューザとスピーカで発生させる.たとえば,仕事中は覚醒を促すミントの香りとリズミカルな曲,睡眠前は気持ちを落ち着かせるラベンダーの香りと遠くから聞こえるさざ波の音などである.
本装置の,センサ(マイク,圧力センサ,流量センサ,二酸化炭素センサおよび脳波センサ)を用いて装着者の健康状態をモニタし,アロマディフューザとスピーカを用いて状況に合わせた香りと環境音を発生させるという特徴により,状況に応じて装着者の気持ちを切り替える手助けをし,装着者の生活の質(QOL)を向上させることが可能である.
Example 23 is an example of claim 12. Example 23 is a breathing air purifying device characterized by monitoring the wearer's health condition using sensors (a microphone, a pressure sensor, a flow sensor, a carbon dioxide sensor, and an electroencephalogram sensor) inside the breathing air purifying device, and generating fragrances and environmental sounds according to the situation using an aroma diffuser and a speaker.
Figure 28 shows an example of an air purifying device with a microphone, pressure sensor, EEG sensor, speaker, and aroma diffuser. This system monitors the wearer's health condition using the microphone, pressure sensor, and EEG sensor, and emits scents and environmental sounds appropriate to the situation using the aroma diffuser and speaker. For example, a mint scent and rhythmic music to wake you up while working, or a lavender scent and the sound of distant rippling waves to calm you before sleep.
This device uses sensors (microphone, pressure sensor, flow sensor, carbon dioxide sensor, and brainwave sensor) to monitor the wearer's health condition, and uses an aroma diffuser and speaker to generate scents and environmental sounds appropriate to the situation, helping the wearer change their mood depending on the situation and improving their quality of life (QOL).

実施例24は,請求項13の実施例である.実施例24は,オゾン発生装置を有し,器具内部の殺菌消臭を行うことを特徴とする,呼吸空気浄化器具である.
図29は,オゾン発生器を持ち,呼吸空気浄化器具内部へオゾンを放出して内部の殺菌と消臭を行う呼吸空気浄化器具の実施例である.オゾン発生器で発生したオゾンは,ポンプの風にのって呼吸空気浄化器具内部へ拡散される.人が呼吸空気浄化器具を装着している間は,人体に影響がない程度の低濃度(0.01ppm以下)のオゾンを発生し,人が呼吸空気浄化器具を脱いだあとは,高濃度(1ppm以上)のオゾンを発生させ,呼吸空気浄化器具内部の細菌とウイルスを殺菌・不活性化し,同時に臭いの元となる有機物を分解し消臭する.
呼吸空気浄化器具は,皮脂の付着,呼吸器に含まれる湿気により細菌が繁殖しやすい状況にあり,細菌による有機物の分解過程で発生する悪臭も発生しやすい状況である.本装置の,オゾン発生装置を有し,器具内部の殺菌消臭を行うという特徴により,呼吸空気浄化器具を清潔に保ち,不快な悪臭の発生を抑えることが可能である.
Example 24 is an example of claim 13. Example 24 is a breathing air purifying device having an ozone generator and performing sterilization and deodorization inside the device.
Figure 29 shows an example of a breathing air purifying device that has an ozone generator and releases ozone into the device to sterilize and deodorize the inside. The ozone generated by the ozone generator is carried by the wind from the pump and diffused into the device. While a person is wearing the device, it generates ozone at a low concentration (0.01 ppm or less) that has no effect on the human body, and after the person takes it off, it generates ozone at a high concentration (1 ppm or more), sterilizing and inactivating bacteria and viruses inside the device and at the same time decomposing the organic matter that causes the odor and deodorizing it.
Respiratory air purifying devices are prone to bacterial growth due to the adhesion of sebum and moisture in the respiratory tract, and are also prone to producing foul odors that are generated during the bacterial decomposition of organic matter. This device has an ozone generator and is capable of sterilizing and deodorizing the inside of the device, making it possible to keep respiratory air purifying devices clean and suppress the generation of unpleasant odors.

ロックダウンを不要化する社会基盤として提案している「自由外出マスク」の装着率を自動的に測定できるシステムは,極めて大きな潜在的な需要があると考えている.本発明に基づく「呼吸空気浄化器具装着状況の記録・管理システム.」について,巨大な新産業が創出されることが予想される.

We believe there is a huge potential demand for a system that can automatically measure the wearing rate of "masks when going out freely," which we have proposed as a social infrastructure that will make lockdowns unnecessary. We anticipate that a huge new industry will be created for the "recording and management system for the wearing status of respiratory air purifying devices" based on this invention.

Claims (3)

ポンプ給気機能付きマスクにおいて,装着の呼吸に合わせて,呼気時には流入量目標値を小さく,および/または,内圧目標値を小さくし,吸気時には流入量目標値を大きく,および/または,内圧目標値を大きくすることを特徴とする,呼吸空気浄化器具. A respiratory air purifying device characterized by a mask with pump air supply function that reduces the target inflow volume and/or the target internal pressure during exhalation, and increases the target inflow volume and/or the target internal pressure during inhalation, in accordance with the breathing pattern when the mask is worn. 給気ポンプ一つとヘルメット装着の流量センサ,圧力センサ,CO2センサを用いた制御により,流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,ポンプ給気機能付き呼吸空気浄化器具. A respiratory air purifying device with pump air supply function that satisfies set conditions for flow rate, pressure, and CO2 concentration through control using a single air supply pump and a helmet-mounted flow sensor, pressure sensor, and CO2 sensor. ポンプの流量Qが印加電圧Vと外部と内部の差圧Pの関数Q(V,P)となることを利用し,流量センサを用いずにその推定値により流量,圧力,CO2濃度の設定条件を満たすことを特徴とする,請求項2に記載のポンプ給気機能付き呼吸空気浄化器具.
The respiratory air purifying device with pump air supply function described in claim 2 is characterized in that the pump flow rate Q is a function Q(V,P) of the applied voltage V and the external/internal pressure difference P, and the setting conditions for flow rate, pressure, and CO2 concentration are met by the estimated value without using a flow sensor.
JP2024065047A 2020-10-22 2024-04-13 Respiratory air purification equipment Active JP7653735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024065047A JP7653735B2 (en) 2020-10-22 2024-04-13 Respiratory air purification equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020177304A JP7515044B2 (en) 2020-10-22 2020-10-22 Method and management system for managing mask wearing status and contact with others
JP2024065047A JP7653735B2 (en) 2020-10-22 2024-04-13 Respiratory air purification equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020177304A Division JP7515044B2 (en) 2020-10-22 2020-10-22 Method and management system for managing mask wearing status and contact with others

Publications (2)

Publication Number Publication Date
JP2024095808A JP2024095808A (en) 2024-07-10
JP7653735B2 true JP7653735B2 (en) 2025-03-31

Family

ID=81459950

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020177304A Active JP7515044B2 (en) 2020-10-22 2020-10-22 Method and management system for managing mask wearing status and contact with others
JP2024065047A Active JP7653735B2 (en) 2020-10-22 2024-04-13 Respiratory air purification equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020177304A Active JP7515044B2 (en) 2020-10-22 2020-10-22 Method and management system for managing mask wearing status and contact with others

Country Status (1)

Country Link
JP (2) JP7515044B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010349A (en) 2001-06-29 2003-01-14 Koken Ltd Respiration equipment
US20050103343A1 (en) 2003-11-19 2005-05-19 Safety Tech International Inc. Breath responsive filter blower respirator system
JP2007045565A (en) 2005-08-09 2007-02-22 Mitsubishi Electric Corp Information transmitting device for man-conveyor
JP2013172779A (en) 2012-02-23 2013-09-05 Koken Ltd Respiration protector
JP2016506791A (en) 2013-02-01 2016-03-07 スリーエム イノベイティブ プロパティズ カンパニー Respirator with clean air suction chamber
WO2016121134A1 (en) 2015-01-27 2016-08-04 株式会社重松製作所 Respiration device
JP2019524331A (en) 2016-08-24 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Respirator with improved user comfort
JP2020503102A (en) 2016-08-26 2020-01-30 ライオット ソリューションズ インコーポレイテッドRiot Solutions,Inc. System and method for non-invasively and non-contact health monitoring
JP3228847U (en) 2020-04-22 2020-11-12 隆久 対馬 Pneumatic mask device
JP2021165452A (en) 2020-04-08 2021-10-14 マフレン株式会社 mask
JP2022022644A (en) 2020-06-30 2022-02-07 特定非営利活動法人e自警ネットワーク研究会 Helmet type mask with forced intake and exhaust function

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091002A2 (en) 2009-02-03 2010-08-12 Avon Protection Systems, Inc. Respirator kit and contoured plenum therefor
GB0919101D0 (en) 2009-11-02 2009-12-16 3M Innovative Properties Co Method of controlling a powered air purifying respirator
JP5564728B2 (en) 2012-10-23 2014-08-06 柴田科学株式会社 In-plane environment measuring device and in-plane environment measuring method
JP5486123B1 (en) 2013-10-12 2014-05-07 純馬 青木 Odor presentation device and method
JP6364747B2 (en) 2013-11-14 2018-08-01 オムロン株式会社 Monitoring device and monitoring method
EP3786980A4 (en) 2018-04-27 2021-06-09 Panasonic Intellectual Property Management Co., Ltd. Pathogen distribution information provision system, pathogen distribution information provision server and pathogen distribution information provision method
KR20200020375A (en) * 2018-08-17 2020-02-26 주식회사 한진지티씨 a smart negative pressure managing system using bigdata for disease transmission
JP7103640B2 (en) 2018-10-16 2022-07-20 山本光学株式会社 Mask adhesion judgment device
CN111263298A (en) 2020-03-02 2020-06-09 广州富港万嘉智能科技有限公司 Isolated person monitoring method, storage medium, portable electronic equipment, mask, monitoring device and isolated person monitoring system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010349A (en) 2001-06-29 2003-01-14 Koken Ltd Respiration equipment
US20050103343A1 (en) 2003-11-19 2005-05-19 Safety Tech International Inc. Breath responsive filter blower respirator system
JP2007045565A (en) 2005-08-09 2007-02-22 Mitsubishi Electric Corp Information transmitting device for man-conveyor
JP2013172779A (en) 2012-02-23 2013-09-05 Koken Ltd Respiration protector
JP2016506791A (en) 2013-02-01 2016-03-07 スリーエム イノベイティブ プロパティズ カンパニー Respirator with clean air suction chamber
WO2016121134A1 (en) 2015-01-27 2016-08-04 株式会社重松製作所 Respiration device
JP2019524331A (en) 2016-08-24 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Respirator with improved user comfort
JP2020503102A (en) 2016-08-26 2020-01-30 ライオット ソリューションズ インコーポレイテッドRiot Solutions,Inc. System and method for non-invasively and non-contact health monitoring
JP2021165452A (en) 2020-04-08 2021-10-14 マフレン株式会社 mask
JP3228847U (en) 2020-04-22 2020-11-12 隆久 対馬 Pneumatic mask device
JP2022022644A (en) 2020-06-30 2022-02-07 特定非営利活動法人e自警ネットワーク研究会 Helmet type mask with forced intake and exhaust function

Also Published As

Publication number Publication date
JP2024095808A (en) 2024-07-10
JP2022068554A (en) 2022-05-10
JP7515044B2 (en) 2024-07-12

Similar Documents

Publication Publication Date Title
US12194322B2 (en) Wearable device for delivering air
US10276022B2 (en) Breathing apparatus with one or more safety sensors
US20210219636A1 (en) Ultraviolet face mask
US12048855B1 (en) Reusable purified air breathing device
US20220126126A1 (en) Jet Air Curtain For Personal Respiratory Protection
US20230191169A1 (en) Headpiece, face shield and method of using a headpiece
US20230226383A1 (en) Method and apparatus for personal isolation and/or protection
JP2025004234A (en) Helmet-type mask with forced ventilation function
Fujii An engineering alternative to lockdown during COVID-19 and other airborne infectious disease pandemics: Feasibility study
JP7653735B2 (en) Respiratory air purification equipment
US20220096700A1 (en) Device that uses ultraviolet light to purify air
US20210330999A1 (en) Sterile Body Suit Apparatus, System, and Method
US20230201408A1 (en) Electronic Breathing Mask with UVC Air Purification System and Peripherals
Haas et al. Rapid development of a novel portable negative pressure device
RU2801062C1 (en) Face protection device against hazardous gas medium
Fujii An Engineering Alternative to Lockdown Against COVID-19 and Other Airborne Infectious Diseases: Toward a Lockdown Free Society Against Next Pandemics
TR202017351A2 (en) A MULTI-PURPOSE MASK SYSTEM THAT DISINFECTS AND / OR STERILIZES THE AIR THAT ENTERS THE MASK WITH THE HELP OF THE PURPLE
US20230191170A1 (en) Respirator mask with integated ultraviolet lighting system
JP6792925B1 (en) Blower system for large-scale facilities that blows outside air into the mask gap space

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250311

R150 Certificate of patent or registration of utility model

Ref document number: 7653735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150