JP7650245B2 - Low thermal expansion glass for sealing and coating - Google Patents
Low thermal expansion glass for sealing and coating Download PDFInfo
- Publication number
- JP7650245B2 JP7650245B2 JP2021572715A JP2021572715A JP7650245B2 JP 7650245 B2 JP7650245 B2 JP 7650245B2 JP 2021572715 A JP2021572715 A JP 2021572715A JP 2021572715 A JP2021572715 A JP 2021572715A JP 7650245 B2 JP7650245 B2 JP 7650245B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- glass
- mol
- coating
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は封着・被覆用材料に関し,より具体的には電子デバイス等の物品の製造に際した部材間の封着のために,また例えばシリコンダイオード等の電子部品の電極や抵抗体等各部の保護・絶縁用にそれらの表面を被覆するのに使用できる封着・被覆用ガラスに関し,特に,鉛及びアルカリ金属酸化物を含有しないそのようなガラスに関する。 The present invention relates to a sealing/coating material, more specifically to a sealing/coating glass that can be used for sealing parts when manufacturing articles such as electronic devices, and for coating the surfaces of various parts such as electrodes and resistors of electronic components such as silicon diodes to protect and insulate them, and in particular to such glass that does not contain lead or alkali metal oxides.
電子デバイス等の物品の製造において使用される封着材料には,できるだけ低温で対象物品を封着できること,それらの物品の熱膨張係数に近似していること,及び確実な封着のための焼成時に十分な流動性を示すこと等が求められている。Sealing materials used in the manufacture of items such as electronic devices are required to be able to seal the target items at as low a temperature as possible, to have a thermal expansion coefficient that is close to that of those items, and to exhibit sufficient fluidity during firing to ensure reliable sealing.
また,電子部品の各部の表面に使用される被覆材料においても,(1)被覆対象面と熱膨張係数が近いこと,(2)アルカリ金属成分が少ないこと,(3)工程で酸を使用するため耐酸性があること,(4)焼成時の熱で電子部品等に悪影響を及ぼすことがないよう比較的低温(特に,900℃以下)で焼成できること等必要な特性がある。 In addition, the coating materials used on the surfaces of various parts of electronic components also have necessary characteristics, such as (1) a thermal expansion coefficient close to that of the surface to be coated, (2) low alkali metal content, (3) acid resistance because acid is used in the process, and (4) the ability to be fired at relatively low temperatures (especially below 900°C) so that the heat during firing does not adversely affect the electronic components, etc.
上記の物品において封着や被覆用として使用されているガラスは,一般にPbO-SiO2-B2O3系のものであり,またそれらの熱膨張係数を下げて半導体のそれに近づける目的で,コーディエライトのような低膨張性セラミックを添加して熱膨張係数を調整した材料も使用されてきた。 The glasses used for sealing or coating the above-mentioned articles are generally of the PbO-- SiO.sub.2 - B.sub.2O.sub.3 system , and materials whose thermal expansion coefficients have been adjusted by adding low-expansion ceramics such as cordierite in order to lower the thermal expansion coefficients and bring them closer to that of semiconductors have also been used.
しかし,鉛を含むガラスは,近年,環境上の観点から使用が避けられてきており,鉛を含有しないガラスの開発が行われている。鉛を含まないガラスとしては,ZnO-B2O3-SiO2系ガラス(特許文献1),ZnO-Bi2O3-SiO2系ガラス(特許文献2)等が知られている。 However, in recent years, the use of lead-containing glass has come to be avoided from an environmental perspective, and lead-free glass has been developed. Known examples of lead-free glass include ZnO-B 2 O 3 -SiO 2 glass (Patent Document 1) and ZnO-Bi 2 O 3 -SiO 2 glass (Patent Document 2).
しかし,これまで開発されてきた無鉛ガラスには,軟化温度が高くそのため焼成温度が高いという問題点や,軟化温度を下げるようZnOの含量を高めたものでは耐酸性に劣るという問題点がある。However, the lead-free glass developed so far has problems such as a high softening temperature, which requires high firing temperatures, and glass with an increased ZnO content to lower the softening temperature has poor acid resistance.
本発明の目的は,酸化鉛及びアルカリ金属酸化物を含有せず,900℃以下という比較的低温で焼成でき,耐酸性に優れるガラスであって,熱膨張係数が,40~70×10-7/℃というガラスとしては比較的低い範囲にある封着・被覆用材料を提供することにある。 The object of the present invention is to provide a sealing/coating material which does not contain lead oxide or alkali metal oxide, can be fired at a relatively low temperature of 900°C or less, has excellent acid resistance, and has a thermal expansion coefficient of 40 to 70 x 10 -7 /°C, which is a relatively low range for glass.
本発明者は,上述の従来技術の問題点の解決に向けて研究を重ねた結果,ある特定範囲の成分を特定範囲の割合で組み合わせて製造したガラスは,900℃以下の温度で流動性を有して対象物の封着・被覆に好適に使用でき,耐酸性に優れ,熱膨張係数が約40~70×10-7/℃の範囲に入るガラスとなることを見出し,この知見に基づき更に検討を重ねて本発明を完成させるに至った。すなわち,本発明は以下を提供する。 As a result of extensive research aimed at solving the problems of the prior art described above, the present inventors discovered that glass manufactured by combining a certain range of components in a certain ratio has fluidity at temperatures below 900°C and can be suitably used for sealing and coating objects, has excellent acid resistance, and has a thermal expansion coefficient within the range of approximately 40 to 70×10 -7 /°C, and further research based on this finding led to the completion of the present invention.
1.実質的に酸化鉛もアルカリ金属酸化物も含有せず,モル%で,
SiO2 : 30~55%
Al2O3 : 1~17%
B2O3 : 2~28%
ZnO : 0~14%
MgOとCaOのうち少なくとも1種: 合計5~25%
Bi2O3 : 0~12%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。
2.実質的に酸化鉛,アルカリ金属酸化物を含有せず,モル%で,
SiO2 : 31~53%
Al2O3 : 3~15%
B2O3 : 4~24%
ZnO : 1~14%
MgOとCaOのうち少なくとも1種: 合計5~20%
Bi2O3 : 0より大~11%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。
3.実質的に酸化鉛,アルカリ金属酸化物を含有せず,モル%で,
SiO2 : 36~51%
Al2O3 : 5~15%
B2O3 : 6~22%
ZnO : 5~14%
MgOとCaOのうち少なくとも1種: 合計5~18%
Bi2O3 : 0.5~11%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。
4.MgOを5モル%以上含有する,上記1~3の何れかの封着・被覆用ガラス。
5.実質的に酸化鉛,アルカリ金属酸化物を含有せず,モル%で,
SiO2 : 33~43%
Al2O3 : 3~15%
B2O3 : 13~28%
ZnO : 0~10%未満
MgOとCaOのうち少なくとも1種: 合計10~25%
Bi2O3 : 0~5%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。
6.実質的に酸化鉛,アルカリ金属酸化物を含有せず,モル%で,
SiO2 : 35~42%
Al2O3 : 8~15%
B2O3 : 15~22%
ZnO : 3~10%未満
MgOとCaOのうち少なくとも1種: 合計15~23%
を含有し,
Bi2O3 : 0~1%未満
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。
7.MgO,CaO及びBi2O3の合計に対するSiO2のモル比:
[SiO2/(MgO+CaO+Bi2O3)]
が1~5である,上記1~6の何れかの封着・被覆用ガラス。
8.粉末の形態である上記1~5の何れかの封着・被覆用ガラス。
9.上記6の粉末とフィラー粉末とを含んでなる封着・被覆用材料であって,両粉末の合計量に対する該フィラー粉末の含量が40重量%を超えないものである封着・被覆用材料。
10.上記7の封着・被覆用材料であって,有機バインダー及び溶剤を含んでなるものである,封着・被覆用ペースト。1. Contains substantially no lead oxide or alkali metal oxide, and contains, in mole percent:
SiO2 : 30-55%
Al2O3: 1-17%
B2O32-28%
ZnO : 0-14%
At least one of MgO and CaO: 5-25% in total
Bi2O3: 0-12%
contains,
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
2. Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 31-53%
Al2O3: 3-15%
B2O34-24%
ZnO: 1-14%
At least one of MgO and CaO: 5-20% in total
Bi2O3: 0 to 11%
contains,
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
3. Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 36-51%
Al2O3: 5-15%
B2O36-22%
ZnO: 5-14%
At least one of MgO and CaO: 5-18% in total
Bi2O3 : 0.5~11%
contains,
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
4. Any of the sealing and coating glasses 1 to 3 above, containing 5 mol % or more of MgO.
5. Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 33-43%
Al2O3: 3-15%
B2O3 : 13-28%
ZnO: 0-10% or less
At least one of MgO and CaO: 10-25% in total
Bi2O3: 0-5%
contains,
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
6. Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 35-42%
Al2O38-15%
B2O3 : 15-22%
ZnO: 3-10%
At least one of MgO and CaO: 15-23% in total
contains,
Bi2O3: 0 to less than 1%
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
7. MgO, CaO and Bi2O3SiO2Molar ratio of:
[SiO2/(MgO+CaO+Bi2O3) ]
A sealing/coating glass as set forth above in any one of 1 to 6, wherein is 1 to 5.
8. Any one of the sealing/coating glasses 1 to 5 above in powder form.
9. A sealing/coating material comprising the powder of 6 above and a filler powder, wherein the content of the filler powder relative to the total amount of both powders does not exceed 40% by weight.
10. A sealing/coating paste which is the sealing/coating material as set forth in 7 above and contains an organic binder and a solvent.
上記構成になる本発明の封着・被覆用材料は,900℃以下で焼成することができる。また本発明のガラスの粉末は,セラミックフィラーと混合して焼成した際にフィラーと反応することがないため,焼成時に結晶が析出することが殆どなく,仮に析出してもごく僅かな析出に止まるため,焼成時の流動性に優れており,冷却固化後の機械的強度が高く耐久性に優れた封着,被覆材として使用することができる。また本発明の封着・被覆用材料は,熱膨張係数を約40~70×10-7/℃の範囲で容易に調節することができる。従って,発明の封着・被覆用材料は,封着,被覆に特に適した材料として使用することができる。 The sealing/coating material of the present invention having the above-mentioned configuration can be fired at 900°C or less. Furthermore, since the glass powder of the present invention does not react with a ceramic filler when mixed with the filler and fired, crystals are hardly precipitated during firing, and even if they do precipitate, the amount is very small. Therefore, the material has excellent fluidity during firing and can be used as a sealing/coating material with high mechanical strength and excellent durability after cooling and solidifying. Furthermore, the sealing/coating material of the present invention can easily have a thermal expansion coefficient adjusted to within the range of about 40 to 70 x 10 -7 /°C. Therefore, the sealing/coating material of the present invention can be used as a material particularly suitable for sealing and coating.
本発明の封着・被覆用ガラスを構成する各成分と,本発明の目的の達成に適したそれらの含量範囲は以下の通りである。The components constituting the sealing/coating glass of the present invention and their content ranges suitable for achieving the objectives of the present invention are as follows:
SiO2はガラスを形成する成分であり,30~55モル%の範囲で含有させることが好ましい。これは,SiO2の含量が30モル%より少ない場合,ガラスが得られないおそれがあり,また得られたとしても封着に使用できない程熱膨張係数が高いガラスとなるおそれがあるのと,SiO2の含量が55モル%より多くなるとガラスが溶融し難くなり,特にSiO2が未溶融物として溶け残るおそれがあるからである。ガラスの形成性,望ましい熱膨張係数及び溶融性の安定した達成を考慮すると,SiO2の含量は,より好ましくは31~53モル%,更に好ましくは36~51モル%である。 SiO 2 is a component that forms glass, and is preferably contained in the range of 30 to 55 mol %. This is because if the SiO 2 content is less than 30 mol %, glass may not be obtained, or even if it is obtained, the glass may have a high thermal expansion coefficient that cannot be used for sealing, and if the SiO 2 content is more than 55 mol %, the glass may be difficult to melt, and in particular, SiO 2 may remain unmelted as an unmelted material. In consideration of the formability of glass and stable achievement of a desired thermal expansion coefficient and meltability, the SiO 2 content is more preferably 31 to 53 mol %, and even more preferably 36 to 51 mol %.
Al2O3はガラスを形成する成分であり,1~17モル%の範囲で含有させることが好ましい。これは,Al2O3の含量が1モル%より少ない場合,ガラスが得られないおそれがあるのと,Al2O3は,含量が17モル%より多い場合,未溶融物として溶け残るおそれがあるからである。ガラスの形成性及び溶融性の安定した達成を考慮すると,Al2O3の含量は,より好ましくは3~15モル%,更に好ましくは5~15モル%である。 Al 2 O 3 is a component for forming glass, and is preferably contained in the range of 1 to 17 mol %. This is because if the content of Al 2 O 3 is less than 1 mol %, glass may not be obtained, and if the content of Al 2 O 3 is more than 17 mol %, it may remain unmelted. In consideration of stable achievement of glass formability and meltability, the content of Al 2 O 3 is more preferably 3 to 15 mol %, and further preferably 5 to 15 mol %.
B2O3はガラスを形成する成分であり,2~28モル%の範囲で含有させることが好ましい。これは,B2O3の含量が2モル%より少ない場合,ガラスが得られないおそれがあり,また得られたとしても封着に使用できない程軟化温度が高いガラスとなるおそれがあるのと,B2O3の含量が28モル%より多いと,封着,被覆に使用できない程熱膨張係数が高いガラスとなるおそれがあるからである。ガラスの形成性,望ましい軟化温度及び熱膨張係数の安定した達成を考慮すると,B2O3の含量は,より好ましくは4~24モル%,更に好ましくは6~22モル%である。 B 2 O 3 is a component for forming glass, and is preferably contained in the range of 2 to 28 mol %. This is because if the content of B 2 O 3 is less than 2 mol %, glass may not be obtained, or even if it is obtained, the glass may have a high softening temperature that cannot be used for sealing, and if the content of B 2 O 3 is more than 28 mol %, the glass may have a high thermal expansion coefficient that cannot be used for sealing or coating. In consideration of the formability of glass and stable achievement of a desired softening temperature and thermal expansion coefficient, the content of B 2 O 3 is more preferably 4 to 24 mol %, and even more preferably 6 to 22 mol %.
本発明の封着,被覆用ガラスにおけるSiO2とB2O3の合計含量は,50モル%以上であることが好ましい。SiO2とB2O3の合計含量が50モル%未満であると,ガラスが得られないおそれがあるためである。ガラスの形成性の安定した達成を考慮すると,SiO2とB2O3の合計含量は,より好ましくは55モル%以上,更に好ましくは57モル%以上である。 The total content of SiO2 and B2O3 in the sealing and coating glass of the present invention is preferably 50 mol% or more. If the total content of SiO2 and B2O3 is less than 50 mol%, there is a risk that glass cannot be obtained. In consideration of stable achievement of glass formability, the total content of SiO2 and B2O3 is more preferably 55 mol% or more, and further preferably 57 mol% or more.
ZnOは,必須成分ではないが,ガラスの形成性を高めるように作用するから,含有させることが好ましく,その場合含量は14モル%以下とすることが好ましい。ZnOの含量が14モル%より多い場合,耐酸性が悪いガラスを生じるおそれがあるからである。得られるガラスの形成性及び耐酸性の安定した達成を考慮すると,ZnOの含量は,より好ましくは1~14モル%であり,更に好ましくは5~14モル%である。但しこれらの範囲に限らず,ZnOの含有量は,例えば10モル%未満,或いは9.5モル%以下,9モル%以下等としてもよく,即ち0~10モル%未満,0~9.5モル%,0~9モル%等といった範囲であってよい。また,これらの範囲の下限も,前記と同様,0モル%の代わりに1モル%,3モル%等としてもよい。ZnO is not an essential component, but since it acts to enhance the formability of glass, it is preferable to include it, and in that case, the content is preferably 14 mol% or less. If the ZnO content is more than 14 mol%, there is a risk of producing a glass with poor acid resistance. In consideration of the formability of the obtained glass and stable achievement of acid resistance, the ZnO content is more preferably 1 to 14 mol%, and even more preferably 5 to 14 mol%. However, without being limited to these ranges, the ZnO content may be, for example, less than 10 mol%, or 9.5 mol% or less, 9 mol% or less, that is, 0 to less than 10 mol%, 0 to 9.5 mol%, 0 to 9 mol%, etc. In addition, the lower limit of these ranges may be 1 mol%, 3 mol%, etc. instead of 0 mol%, as described above.
MgO及びCaOはガラスの形成性を高める成分であり,少なくともいずれか1種類を合計で5~25モル%の範囲で含有させることが好ましい。これはMgOとCaOの合計量が5モル%より少ない場合,本発明の望ましい温度範囲では封着ができない程軟化温度が高いガラスとなるおそれがあるのと,それらの合計含量が25モル%より多い場合,ガラスが得られないおそれがあるからである。ガラスの形成性及び流動性の安定した達成を考慮すると,MgOとCaOの合計含量は,より好ましくは5~20モル%,更に好ましくは5~18モル%である。MgOとCaOのうち,特にMgOは,ガラスの形成性を維持したまま熱膨張係数を下げる方向に作用するため,少なくとも5モル%含有させることが好ましい。得られるガラスの熱膨張係数を低くすることも考慮すると,CaOは併用せずMgOのみを上記の何れかの範囲で含有させることがより好ましい。MgO and CaO are components that enhance the formability of glass, and it is preferable to include at least one of them in a total range of 5 to 25 mol%. This is because if the total amount of MgO and CaO is less than 5 mol%, the glass may have a high softening temperature that is not suitable for sealing in the desired temperature range of the present invention, and if the total content is more than 25 mol%, glass may not be obtained. In consideration of stable achievement of glass formability and fluidity, the total content of MgO and CaO is more preferably 5 to 20 mol%, and even more preferably 5 to 18 mol%. Of MgO and CaO, MgO in particular acts to lower the thermal expansion coefficient while maintaining the formability of glass, so it is preferable to include at least 5 mol%. In consideration of lowering the thermal expansion coefficient of the obtained glass, it is more preferable to include only MgO in any of the above ranges without using CaO in combination.
Bi2O3はガラス状態を安定させ,且つガラスの軟化温度を下げる成分であり,必須成分ではないが,含有させることが好ましく,その場合含量は12モル%以下とすることが好ましい。これはBi2O3の含量が12モル%を超えるとガラスの形成性が低下するかあるいは焼成時に結晶が析出し易くなり,封着,被覆不良が発生するおそれがあるからである。得られるガラスの形成性及び封着,被覆性能の確保を考慮すると,Bi2O3の含量は,より好ましくは0より大~11モル%,更に好ましくは0.5~11モル%である。但しこれらの範囲に限らず,Bi2O3の含有量は,例えば5モル%未満,或いは3モル%以下,1モル%以下等としてもよく,即ち0~10モル%未満,0~3モル%未満,0~1モル%未満等といった範囲であってよい。また,これらの範囲の下限も,前記と同様,0モル%の代わりに0.5モル%としてもよい。 Bi 2 O 3 is a component that stabilizes the glass state and lowers the softening temperature of the glass. Although it is not an essential component, it is preferable to include it, and in that case, the content is preferably 12 mol% or less. This is because if the content of Bi 2 O 3 exceeds 12 mol%, the formability of the glass decreases or crystals are easily precipitated during firing, which may cause sealing and coating defects. In consideration of the formability of the obtained glass and the securing of sealing and coating performance, the content of Bi 2 O 3 is more preferably greater than 0 to 11 mol%, and even more preferably 0.5 to 11 mol%. However, without being limited to these ranges, the content of Bi 2 O 3 may be, for example, less than 5 mol%, or 3 mol% or less, or 1 mol% or less, that is, it may be in a range such as 0 to less than 10 mol%, 0 to less than 3 mol%, or 0 to less than 1 mol%. In addition, the lower limit of these ranges may be 0.5 mol% instead of 0 mol%, as described above.
ZrO2は必須成分ではないが,ガラスの耐酸性を向上させるように作用するから含有させることが好ましく,その場合含量は7モル%以下とすることが好ましい。これはZrO2の含量が7モル%を超えるとガラスの形成性が悪くなるかあるいは焼成時に結晶が析出し易くなり,封着,被覆不良が発生するおそれがあるからである。ZrO2の含量は得られるガラスの形成性及び封着,被覆性能の確保を考慮すると,ZrO2の含量は,好ましくは0.1~5モル%,より好ましくは1~5モル%である。 ZrO2 is not an essential component, but since it acts to improve the acid resistance of the glass, it is preferable to include it, and in that case, the content is preferably 7 mol% or less. This is because if the ZrO2 content exceeds 7 mol%, the glass formability may deteriorate or crystals may easily precipitate during firing, which may cause sealing and coating defects. In consideration of the formability of the obtained glass and the securing of sealing and coating performance, the ZrO2 content is preferably 0.1 to 5 mol % , more preferably 1 to 5 mol%.
本発明の封着,被覆用ガラスでは,MgO,CaO,Bi2O3の合計含量(モル%)に対するSiO2の含量(モル%)の比〔SiO2/(MgO+CaO+Bi2O3)〕が1~5であることが好ましい。この比が1未満の場合,得られるガラスの耐酸性が低下するおそれがあるのと,この比が5を超える場合,焼成に過剰な高温を要する程に軟化温度が高くなるおそれがあるからである。耐酸性及び適切な軟化温度の確保を考慮すると,比〔SiO2/(MgO+CaO+Bi2O3)〕は2~4であることがより好ましい。 In the sealing and coating glass of the present invention, the ratio of the SiO2 content (mol%) to the total content (mol%) of MgO, CaO, and Bi2O3 [ SiO2 /(MgO+ CaO + Bi2O3 )] is preferably 1 to 5. If this ratio is less than 1, the acid resistance of the resulting glass may be reduced, and if this ratio exceeds 5, the softening temperature may be so high that an excessively high temperature is required for firing. In consideration of ensuring acid resistance and an appropriate softening temperature, the ratio [ SiO2 /(MgO+CaO+ Bi2O3 )] is more preferably 2 to 4 .
上記成分に加えて,製造時におけるガラスの安定性の向上,結晶化の抑制,熱膨張係数の調整の目的で,La2O3,Nb2O5,TeO2,CeO2,TiO2等を合計で5モル%まで加えることができる。 In addition to the above components, La2O3 , Nb2O5 , TeO2 , CeO2 , TiO2 , etc. may be added in a total amount of up to 5 mol % for the purposes of improving the stability of the glass during production, suppressing crystallization, and adjusting the thermal expansion coefficient.
本発明の封着・被覆用ガラスは,焼成時の熱で電子部品等に悪影響を及ぼすことがないよう900℃以下で焼成されることが好ましいため,その軟化点は,おおよその目安ではあるが,約600℃~750℃の範囲にあることが好ましく,約650℃~730℃の範囲にあることがより好ましい。The sealing/coating glass of the present invention is preferably fired at 900°C or less so that the heat during firing does not adversely affect electronic components, etc., and therefore, as a rough guideline, its softening point is preferably in the range of approximately 600°C to 750°C, and more preferably in the range of approximately 650°C to 730°C.
(2)セラミックフィラー
本発明のガラスからなる粉末には,封着・被覆用材料として使用する際の熱膨張係数の調整及び強度の向上の目的で,必要に応じてセラミックスフィラーを配合することができる。セラミックスフィラーの配合量は,ガラスとの合計量の40重量%以下で適宜設定することができる。配合するセラミックフィラーの例としては,コーディエライト,ジルコン,リン酸ジルコニウム,チタン酸アルミニウム,ムライト,アルミナ,ウィレマイト,シリカ(α―クォーツ,クリストバライト,トリジマイト)が挙げられる。
(2) Ceramic filler: The powder made of the glass of the present invention can be mixed with a ceramic filler as necessary for the purpose of adjusting the thermal expansion coefficient and improving the strength when used as a sealing/coating material. The amount of ceramic filler mixed can be appropriately set to 40% by weight or less of the total amount with the glass. Examples of ceramic fillers to be mixed include cordierite, zircon, zirconium phosphate, aluminum titanate, mullite, alumina, willemite, and silica (α-quartz, cristobalite, and tridymite).
本発明の封着・被覆用ガラスは,粉末の形で又はこれとセラミック粉末との混合粉末の形で,封着・被覆用材料として使用することができる。また例えば,これらの粉末に,バインダーや溶剤を更に配合したペーストやシート等のような,封止・被覆対象物の表面に適用するのにより便利な形態の封着・被覆用材料として使用することもできる。The sealing/coating glass of the present invention can be used as a sealing/coating material in the form of a powder or in the form of a mixed powder of the glass with a ceramic powder. It can also be used as a sealing/coating material in a form that is more convenient for application to the surface of the object to be sealed/coated, such as a paste or sheet obtained by further mixing a binder or a solvent with the powder.
本発明の封着・被覆用ガラスからなる粉末又はこれとセラミックフィラーとの混合粉末をペーストの形態とするには,それらの粉末を溶剤及び有機バインダーの少なくとも1種と混合すればよい。例えば,粉末形態の本発明のガラスからなる粉末,溶剤及び有機バインダーを混合することによってペーストを調製することができる。ペーストの調製に際し,粉末の形態の封着・被覆用ガラスの平均粒径は,特に限定されないが,通常は1~10μmとするのが好ましく,2~8μmとするのがより好ましい。To make a powder of the sealing/coating glass of the present invention or a mixed powder of the same and a ceramic filler into a paste, the powder may be mixed with at least one of a solvent and an organic binder. For example, a paste can be prepared by mixing a powder of the glass of the present invention in powder form, a solvent, and an organic binder. When preparing the paste, the average particle size of the sealing/coating glass in powder form is not particularly limited, but is usually preferably 1 to 10 μm, and more preferably 2 to 8 μm.
前記有機バインダーとして何を用いるかについては特に制限されず,封着・被覆用材料の具体的用途に応じて,公知のバインダーの中から適宜採用することができる。例えば,エチルセルロース等のセルロース樹脂が挙げられるが,これらに限定されない。There is no particular restriction on what kind of organic binder is used, and any known binder may be appropriately selected depending on the specific application of the sealing/coating material. Examples include, but are not limited to, cellulose resins such as ethyl cellulose.
前記溶剤としては,用いる有機バインダーに応じて適宜選択すればよく,例えばエタノール,メタノール,イソプロパノール等のアルコール類;テルピネオール(α-テルピネオール,又はα-テルピネオールを主成分としたβ-テルピネオール及びγ-テルピネオールとの混合物)等の有機溶剤が挙げられるが,これらに限定されない。なお溶剤は,単独で用いてもよく,2種以上を併用してもよい。The solvent may be appropriately selected depending on the organic binder used, and examples thereof include, but are not limited to, alcohols such as ethanol, methanol, isopropanol, and organic solvents such as terpineol (α-terpineol, or a mixture of α-terpineol as the main component with β-terpineol and γ-terpineol). The solvents may be used alone or in combination of two or more.
ペーストの調製においては,上記以外にも,必要に応じて,例えば可塑剤,増粘剤,増感剤,界面活性剤,分散剤等の公知の添加剤を適宜配合することができる。In preparing the paste, in addition to the above, known additives such as plasticizers, thickeners, sensitizers, surfactants, dispersants, etc. may be appropriately blended as necessary.
シートの形態の封着・被覆用材料の製造は,例えば,溶剤,有機バインダー等の添加剤を適宜選択して本発明の封着・被覆用ガラスの粉末又はセラミックフィラーとの混合粉末に添加,混合し,混合物を基材上に塗布し,塗膜を室温又は加熱下に乾燥させればよい。 To manufacture a sealing/coating material in sheet form, for example, additives such as a solvent and an organic binder are appropriately selected and added to and mixed with the sealing/coating glass powder of the present invention or a mixed powder with a ceramic filler, the mixture is applied to a substrate, and the coating film is dried at room temperature or under heat.
以下,実施例を挙げて本発明を更に詳細に説明するが,本発明がこれらの実施例により限定されることは意図しない。The present invention will now be described in more detail with reference to the following examples, but it is not intended that the present invention be limited to these examples.
〔ガラス及びガラス粉末の製造〕
表1~7の実施例1~49及び及び表8の比較例1~4に示すガラス組成(成分含量はモル%表示)となるように原料を調合,混合し,該混合物を白金るつぼに入れ,1400~1500℃の温度で1時間溶融した後,双ロール法で急冷してガラスフレークを得ると共に,ガラス融液の一部は予め加熱しておいたカーボン板に流し出してガラスブロックを作製した。得られたガラスフレークは,ポットミルを用いて粉砕しガラス粉末とした。また,ガラスブロックは,後述のようにしてDTA測定装置を用いてガラス粉末について測定されたガラス転移温度より約50℃高い温度に設定した電気炉に入れて徐冷を行った。
[Production of Glass and Glass Powder]
Raw materials were prepared and mixed to obtain the glass compositions (component contents are expressed in mol%) shown in Examples 1 to 49 in Tables 1 to 7 and Comparative Examples 1 to 4 in Table 8. The mixture was placed in a platinum crucible and melted at a temperature of 1400 to 1500°C for 1 hour, and then quenched by a twin-roll method to obtain glass flakes, and a part of the molten glass was poured onto a preheated carbon plate to produce a glass block. The obtained glass flakes were pulverized using a pot mill to obtain glass powder. The glass block was then slowly cooled in an electric furnace set at a temperature about 50°C higher than the glass transition temperature measured for the glass powder using a DTA measuring device as described below.
〔ガラス及びフィラーの混合粉末の調製〕
表10の実施例50~53に示す割合で,上記実施例からランダムに選択した4通りの実施例のガラス粉末に,セラミックフィラー粉末を同表に示す含量となるように調合し,混合粉末をそれぞれ調製した。
[Preparation of mixed powder of glass and filler]
The glass powders of four examples randomly selected from the above examples were mixed with ceramic filler powder in the amounts shown in Table 10 for Examples 50 to 53 to prepare mixed powders.
〔評価1〕
実施例1~49,比較例1~4の各ガラスにつき,ガラス粉末を用いてガラス転移温度,軟化温度,及び結晶化温度を,並びにガラスブロックを用いて熱膨張係数を,次の方法によりそれぞれ測定した。結果は表1~8に示す。
[Evaluation 1]
For each of the glasses of Examples 1 to 49 and Comparative Examples 1 to 4, the glass transition temperature, softening temperature, and crystallization temperature were measured using glass powder, and the thermal expansion coefficient was measured using a glass block, by the following methods. The results are shown in Tables 1 to 8.
(1)ガラス転移温度,軟化温度,結晶化温度
ガラス粉末約60~80mgを白金セルに充填し,DTA測定装置(リガク社製Thermo Plus EVO2 TG-DTA8122)を用いて,室温から20℃/分で昇温させてガラス転移温度(Tg),軟化温度(Ts),及び結晶化温度(Tp)を測定した。
(1) Glass transition temperature, softening temperature, and crystallization temperature Approximately 60 to 80 mg of glass powder was filled into a platinum cell, and the glass transition temperature (Tg), softening temperature (Ts), and crystallization temperature (Tp) were measured by raising the temperature from room temperature at 20° C./min using a DTA measurement device (Rigaku Thermo Plus EVO2 TG-DTA8122).
(2)熱膨張係数
上記のガラスブロックを約5×5×15mmに切り出し,研磨して測定用のサンプルとした。TMA測定装置を用いて,室温から10℃/分で昇温したときに得られる熱膨張曲線から,50℃と300℃の2点に基づく熱膨張係数(α)を求めた。
(2) Thermal expansion coefficient The above glass block was cut into a size of about 5 × 5 × 15 mm and polished to prepare a measurement sample. Using a TMA measuring device, the thermal expansion coefficient (α) was calculated based on two points, 50 ° C and 300 ° C, from the thermal expansion curve obtained when the temperature was raised from room temperature at a rate of 10 ° C / min.
〔評価2〕
耐酸性
実施例31,32,及び比較例1~4の各ガラスについて,次の方法により耐酸性を測定した。即ち,上記のガラスブロックを約5×5×15mmに切り出し,70%硝酸に浸漬させて室温で2時間静置させた。浸漬前に対する浸漬後のガラスブロックの重量変化の割合(%)を求めた。結果は表9に示す。
[Evaluation 2]
Acid resistance The acid resistance of each of the glasses of Examples 31 and 32 and Comparative Examples 1 to 4 was measured by the following method. That is, the above glass blocks were cut into approximately 5 x 5 x 15 mm, immersed in 70% nitric acid, and left to stand at room temperature for 2 hours. The ratio (%) of the weight change of the glass block after immersion to the weight before immersion was calculated. The results are shown in Table 9.
〔評価3〕
流動性(900℃焼成)
実施例31,32,及び比較例1~4の各ガラスについて,次の方法により900℃で焼成した際の流動性を調べた。即ち,各ガラス粉末約5gを内径20mmの金型に入れ,プレス成形して圧粉体にし,それらを昇温速度200℃/時間で900℃まで昇温し,その温度に1時間保持した後,それらの焼成状態を観察した。結果を表9に示す。表面にガラス光沢があり,流動したものを○,表面にガラス光沢がなく,流動性がなかったものを×とした。
[Evaluation 3]
Fluidity (baked at 900°C)
The fluidity of each of the glasses of Examples 31 and 32 and Comparative Examples 1 to 4 was examined when fired at 900°C by the following method. That is, about 5 g of each glass powder was placed in a mold having an inner diameter of 20 mm, and pressed into a green compact, which was then heated to 900°C at a heating rate of 200°C/hour and held at that temperature for 1 hour, after which the fired state was observed. The results are shown in Table 9. Glasses that had a glassy luster on the surface and flowed were marked with an ◯, and glasses that did not have a glassy luster on the surface and had no fluidity were marked with an X.
〔評価4〕
混合粉末の圧粉体の熱膨張係数
実施例50~53に混合粉末約5gを内径20mmの金型に入れ,プレス成形して圧粉体とした。各圧粉体を900℃で1時間焼成し,得られた焼結体を約5×5×15mmに切り出し,試験体を作製した。試験体につき,TMA測定装置を用いて,室温から10℃/分で昇温したときに得られる熱膨張曲線から50℃と300℃の2点に基づく熱膨張係数(α)を求めた。結果を表10に示す。
[Evaluation 4]
Thermal expansion coefficient of compact of mixed powders In Examples 50 to 53, about 5 g of the mixed powder was placed in a mold with an inner diameter of 20 mm and pressed to form a compact. Each compact was sintered at 900°C for 1 hour, and the resulting sintered body was cut into a size of about 5 x 5 x 15 mm to prepare a test specimen. For the test specimen, the thermal expansion coefficient (α) was determined based on two points, 50°C and 300°C, from the thermal expansion curve obtained when the temperature was raised from room temperature at a rate of 10°C/min using a TMA measuring device. The results are shown in Table 10.
上記の表に見られるように,実施例1~49のガラスは,軟化温度が615℃~767℃の範囲にあるため,何れも900℃を超えない温度において十分な流動性を持たせた状態での焼成が可能である。また,900℃未満に結晶化温度を有する実施例1及び39のガラスは,軟化温度と結晶化温度との差が十分に大きく(差は,それぞれ185℃及び246℃),結晶化を起こさない温度での焼成が可能であり,残りの実施例のガラスは,何れも結晶化が検出されないか,或いは結晶化温度が900℃を超えているため,900℃未満の温度における焼成時に結晶化が起こるおそれはない。また,何れの実施例のガラスも,本発明における好ましい40~70×10-7/℃の範囲内の膨張係数を示している。更に,SiO2含量が低い(それぞれ15.3及び25.0モル%)比較例1及び2のガラスは,耐酸性試験での重量減少が顕著であるのに比べ,実施例31及び32に見られるように本発明のガラスは耐酸性に優れている。また比較例2のガラスは更に,熱膨張係数が71×10-7/℃と大きい点でも本発明の目的には適さない。また,比較例3のガラスは,結晶化温度がかなり低い(777℃)ことに加えて軟化温度と結晶化温度との差が小さい(差は167℃)ため,流動性低下の原因となる実質的な結晶化を抑制しつつ焼成するように温度制御するのが困難であり,比較例4のガラスは,軟化温度と結晶化温度との差が非常に狭い(差は118℃)ため,焼成における結晶化の抑制は尚更困難である。 As can be seen from the above table, the glasses of Examples 1 to 49 have softening temperatures in the range of 615°C to 767°C, and therefore can be fired in a state of sufficient fluidity at temperatures not exceeding 900°C. The glasses of Examples 1 and 39, which have crystallization temperatures below 900°C, have a sufficiently large difference between the softening temperature and the crystallization temperature (the differences are 185°C and 246°C, respectively), and can be fired at temperatures that do not cause crystallization. In the glasses of the remaining Examples, no crystallization is detected or the crystallization temperatures exceed 900°C, and therefore there is no risk of crystallization occurring during firing at temperatures below 900°C. The glasses of all Examples also exhibit an expansion coefficient within the range of 40 to 70 x 10 -7 /°C, which is preferred in the present invention. Furthermore, the glasses of Comparative Examples 1 and 2, which have low SiO2 contents (15.3 and 25.0 mol%, respectively), show significant weight loss in the acid resistance test, whereas the glasses of the present invention have excellent acid resistance, as seen in Examples 31 and 32. The glass of Comparative Example 2 is also not suitable for the purpose of the present invention because of its large thermal expansion coefficient of 71 x 10-7 /°C. The glass of Comparative Example 3 has a fairly low crystallization temperature (777°C) and a small difference between the softening temperature and the crystallization temperature (the difference is 167°C), making it difficult to control the temperature so as to perform firing while suppressing substantial crystallization, which causes a decrease in fluidity, and the glass of Comparative Example 4 has a very narrow difference between the softening temperature and the crystallization temperature (the difference is 118°C), making it even more difficult to suppress crystallization during firing.
表11~13に示すガラス組成となるように,実施例1~53と同様にして,実施例54~69のガラスを製造し,それぞれ粉末及びガラスブロックを作製し,ガラス転移温度,軟化温度,結晶化温度,及び熱膨張係数を測定した(一部は未測定)。結果は表11~13に示す。The glasses of Examples 54 to 69 were manufactured in the same manner as Examples 1 to 53 so as to have the glass compositions shown in Tables 11 to 13. Powders and glass blocks were prepared for each, and the glass transition temperature, softening temperature, crystallization temperature, and thermal expansion coefficient were measured (some were not measured). The results are shown in Tables 11 to 13.
表11~13に見られる通り,実施例54~69のガラスは,実施例1~49のガラスと同等の結果を示した。As can be seen in Tables 11 to 13, the glasses of Examples 54 to 69 showed results equivalent to those of Examples 1 to 49.
このように,本発明のガラスは,軟化温度,熱膨張係数の点で半導体などの物品の封着に適しており,且つ耐酸性に優れたものとしても提供できるため,広範な種々の電子デバイスや電子部品各部の封着,接着に用いることが可能である。 As such, the glass of the present invention is suitable for sealing items such as semiconductors in terms of its softening temperature and thermal expansion coefficient, and can also be provided with excellent acid resistance, making it suitable for use in sealing and bonding a wide variety of electronic devices and various parts of electronic components.
本発明のガラスは,粉末の形態で,単独あるいはセラミックフィラー粉末との混合粉末として,900℃以下の温度での流動性に優れた封着,被覆用材料として電子デバイスその他の物品の封着・被覆に使用することができる。また,フィラーとガラスが反応する懸念がなく,電子デバイス等の物品に用いられる半導体と熱膨張係数が近く熱応力の問題も生じ難く,封着・被覆部分の機械的強度及び耐久性が高く,更に耐酸性に優れたものしても提供できるから,それらの物品の封着,被覆用材料として有利に使用することが可能である。The glass of the present invention can be used in the form of powder, either alone or as a mixed powder with ceramic filler powder, as a sealing and coating material with excellent fluidity at temperatures below 900°C for sealing and coating electronic devices and other articles. In addition, there is no risk of reaction between the filler and the glass, the thermal expansion coefficient is close to that of the semiconductors used in articles such as electronic devices, so problems with thermal stress are unlikely to occur, the mechanical strength and durability of the sealing and coating parts are high, and it can also be provided with excellent acid resistance, so it can be advantageously used as a sealing and coating material for such articles.
Claims (10)
SiO2 : 30~55%
Al2O3 : 3~17%
B2O3 : 2~28%
ZnO : 1~14%
MgOとCaOのうち少なくとも1種: 合計15~25%
Bi2O3 : 0~12%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。 Substantially free of lead oxide or alkali metal oxides, in mole percent,
SiO2 : 30-55%
Al2O3:3~17%
B2O32-28%
ZnO : 1-14%
At least one of MgO and CaO: 15-25% in total
Bi2O3: 0-12%
contains,
SiO2and B2O3The total content of is 50 mol% or more,
Glass for sealing and coating, characterized by:
SiO2 : 31~53%
Al2O3 : 3~15%
B2O3 : 4~24%
ZnO : 1~14%
MgOとCaOのうち少なくとも1種: 合計15~20%
Bi2O3 : 0より大~11%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。 Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 31-53%
Al2O3 : 3-15 %
B2O3 : 4-24%
ZnO: 1-14%
At least one of MgO and CaO: 15 to 20% in total
Bi2O3 : 0 to 11%
Contains
The total content of SiO2 and B2O3 is 50 mol% or more ;
A sealing and coating glass characterized by the above.
SiO2 : 36~51%
Al2O3 : 5~15%
B2O3 : 6~22%
ZnO : 5~14%
MgOとCaOのうち少なくとも1種: 合計15~18%
Bi2O3 : 0.5~11%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。 Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 36-51%
Al2O3 : 5-15 %
B2O3 : 6-22%
ZnO: 5-14%
At least one of MgO and CaO: 15 to 18% in total
Bi2O3 : 0.5-11%
Contains
The total content of SiO2 and B2O3 is 50 mol% or more ;
A sealing and coating glass characterized by the above.
SiO2 : 33~43%
Al2O3 : 3~15%
B2O3 : 13~28%
ZnO : 1~10%未満
MgOとCaOのうち少なくとも1種: 合計15~25%
Bi2O3 : 0~5%
を含有し,
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。 Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 33-43%
Al2O3 : 3-15 %
B2O3 : 13-28%
ZnO: 1 to less than 10% At least one of MgO and CaO: 15 to 25% in total
Bi2O3 : 0-5%
Contains
The total content of SiO2 and B2O3 is 50 mol% or more ;
A sealing and coating glass characterized by the above.
SiO2 : 35~42%
Al2O3 : 8~15%
B2O3 : 15~22%
ZnO : 3~10%未満
MgOとCaOのうち少なくとも1種: 合計15~23%
を含有し,
Bi2O3 : 0~1%未満
SiO2とB2O3の合計含量が50モル%以上であること,
を特徴とする,封着・被覆用ガラス。 Substantially free of lead oxide and alkali metal oxides, in mole percent:
SiO2 : 35-42%
Al2O3 : 8-15 %
B2O3 : 15-22%
ZnO: 3 to less than 10% At least one of MgO and CaO: 15 to 23% in total
Contains
Bi 2 O 3 : 0 to less than 1% The total content of SiO 2 and B 2 O 3 is 50 mol% or more;
A sealing and coating glass characterized by the above.
[SiO2/(MgO+CaO+Bi2O3)]
が1~6である,請求項1~4の何れかの封着・被覆用ガラス。 Molar ratio of SiO2 to the sum of MgO, CaO and Bi2O3 :
[SiO 2 /(MgO+CaO+Bi 2 O 3 )]
The sealing/coating glass according to any one of claims 1 to 4, wherein is 1 to 6.
10. The sealing/coating paste according to claim 9, comprising an organic binder and a solvent.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020007278 | 2020-01-21 | ||
JP2020007278 | 2020-01-21 | ||
PCT/JP2021/001458 WO2021149633A1 (en) | 2020-01-21 | 2021-01-18 | Sealing/coating glass with low thermal expandability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021149633A1 JPWO2021149633A1 (en) | 2021-07-29 |
JP7650245B2 true JP7650245B2 (en) | 2025-03-24 |
Family
ID=76992378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021572715A Active JP7650245B2 (en) | 2020-01-21 | 2021-01-18 | Low thermal expansion glass for sealing and coating |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7650245B2 (en) |
CN (1) | CN115038674A (en) |
TW (1) | TW202132233A (en) |
WO (1) | WO2021149633A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024185514A1 (en) * | 2023-03-03 | 2024-09-12 | Agc株式会社 | Glass, glass powder, paste, fired product, and glass article |
WO2024253095A1 (en) * | 2023-06-08 | 2024-12-12 | 日本電気硝子株式会社 | Material for coating semiconductor element, and sintered body for coating semiconductor element |
WO2024253096A1 (en) * | 2023-06-08 | 2024-12-12 | 日本電気硝子株式会社 | Glass for coating semiconductor element and sintered body for coating semiconductor element |
WO2025018225A1 (en) * | 2023-07-18 | 2025-01-23 | 日本電気硝子株式会社 | Semiconductor element coating glass, and semiconductor element coating material comprising same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267750A (en) | 2002-03-15 | 2003-09-25 | Nihon Yamamura Glass Co Ltd | Glass composition for coating resistive element |
JP2011230973A (en) | 2010-04-30 | 2011-11-17 | Nippon Electric Glass Co Ltd | Bismuth-based non-lead glass and composite material |
JP2020097511A (en) | 2018-12-17 | 2020-06-25 | Agc株式会社 | Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8402866A (en) * | 1984-09-19 | 1986-04-16 | Philips Nv | ELECTRIC LAMP AND GLASS COMPOSITION. |
JPH0297435A (en) * | 1988-10-03 | 1990-04-10 | Tdk Corp | High temperature glass sealed thermistor element |
JPH06191885A (en) * | 1992-12-22 | 1994-07-12 | Asahi Glass Co Ltd | Sealing glass and circuit parts |
JPH10139477A (en) * | 1996-11-13 | 1998-05-26 | Nippon Electric Glass Co Ltd | Highly expandable glass composition |
JP5877750B2 (en) * | 2012-03-30 | 2016-03-08 | 日本山村硝子株式会社 | Alkali-free glass filler |
CN104025267B (en) * | 2012-05-08 | 2017-02-15 | 新电元工业株式会社 | Resin-sealed semiconductor device and production method for resin-sealed semiconductor device |
JP6880528B2 (en) * | 2016-06-27 | 2021-06-02 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device using it |
JP2018098412A (en) * | 2016-12-15 | 2018-06-21 | 住友金属鉱山株式会社 | Composition for thick film resistor, paste for thick film resistor, thick film resistor and manufacturing methods thereof |
-
2021
- 2021-01-18 WO PCT/JP2021/001458 patent/WO2021149633A1/en active Application Filing
- 2021-01-18 JP JP2021572715A patent/JP7650245B2/en active Active
- 2021-01-18 CN CN202180009687.3A patent/CN115038674A/en active Pending
- 2021-01-20 TW TW110102073A patent/TW202132233A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267750A (en) | 2002-03-15 | 2003-09-25 | Nihon Yamamura Glass Co Ltd | Glass composition for coating resistive element |
JP2011230973A (en) | 2010-04-30 | 2011-11-17 | Nippon Electric Glass Co Ltd | Bismuth-based non-lead glass and composite material |
JP2020097511A (en) | 2018-12-17 | 2020-06-25 | Agc株式会社 | Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head |
Also Published As
Publication number | Publication date |
---|---|
TW202132233A (en) | 2021-09-01 |
CN115038674A (en) | 2022-09-09 |
JPWO2021149633A1 (en) | 2021-07-29 |
WO2021149633A1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7650245B2 (en) | Low thermal expansion glass for sealing and coating | |
JP2003095697A (en) | Sealing composition | |
JP3951514B2 (en) | Silica tin phosphate glass and sealing material | |
JP4930897B2 (en) | Bi2O3-B2O3 sealing material | |
JP5906888B2 (en) | Glass frit and crystallized glass | |
JP2002241143A (en) | Sealing composition | |
JP2016135733A (en) | Lead-free glass and sealing material | |
WO2007132754A1 (en) | Bismuth-based sealing material and bismuth-base paste material | |
JP5751744B2 (en) | Glass | |
JP2003146691A (en) | Low melting point glass, and production method therefor | |
JP2003238199A (en) | Press frit | |
KR101570310B1 (en) | Bismuth-based glass composition | |
JP6934352B2 (en) | Sealing material | |
JPWO2001090012A1 (en) | Glass composition and glass-forming material containing the composition | |
JP2001322832A (en) | Sealing composition | |
JP7506566B2 (en) | Sealing and coating materials | |
JP2022155512A (en) | Sealing composition | |
JP4229045B2 (en) | Electronic circuit board and lead-free glass for producing electronic circuit board | |
JP7491020B2 (en) | Glass for covering semiconductor elements and semiconductor covering material using the same | |
JPS638060B2 (en) | ||
JP5026121B2 (en) | Antimony phosphate glass composition | |
JPH07126035A (en) | Low-melting glass | |
JP7616507B2 (en) | Glass composition and sealing material | |
WO2024262306A1 (en) | Glass composition, sealing material, and sealing material paste | |
JP2025003302A (en) | Glass composition, sealing material, and sealing material paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7650245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |