JP7647718B2 - Evaluation method for coal for ferro-coke. - Google Patents
Evaluation method for coal for ferro-coke. Download PDFInfo
- Publication number
- JP7647718B2 JP7647718B2 JP2022160434A JP2022160434A JP7647718B2 JP 7647718 B2 JP7647718 B2 JP 7647718B2 JP 2022160434 A JP2022160434 A JP 2022160434A JP 2022160434 A JP2022160434 A JP 2022160434A JP 7647718 B2 JP7647718 B2 JP 7647718B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- ferro
- coke
- evaluating
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003245 coal Substances 0.000 title claims description 160
- 239000000571 coke Substances 0.000 title claims description 64
- 238000011156 evaluation Methods 0.000 title claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 68
- 238000003763 carbonization Methods 0.000 claims description 39
- 230000004927 fusion Effects 0.000 claims description 39
- 229910052742 iron Inorganic materials 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 14
- -1 secondary amine compound Chemical class 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 11
- 238000010000 carbonizing Methods 0.000 claims description 10
- 229920001169 thermoplastic Polymers 0.000 claims description 9
- 239000004416 thermosoftening plastic Substances 0.000 claims description 9
- VETPHHXZEJAYOB-UHFFFAOYSA-N 1-n,4-n-dinaphthalen-2-ylbenzene-1,4-diamine Chemical compound C1=CC=CC2=CC(NC=3C=CC(NC=4C=C5C=CC=CC5=CC=4)=CC=3)=CC=C21 VETPHHXZEJAYOB-UHFFFAOYSA-N 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 238000002156 mixing Methods 0.000 description 34
- 230000000694 effects Effects 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000011338 soft pitch Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、石炭と鉄鉱石との混合物を乾留することによって得られるフェロコークスの原料である石炭の評価方法に関する。 The present invention relates to a method for evaluating coal, which is the raw material for ferro-coke obtained by carbonizing a mixture of coal and iron ore.
高炉の操業を効率よく行うために、石炭をコークス炉で乾留して製造したコークスが高炉に装入されている。高炉内に装入されたコークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、コークスの代わりに冶金用のフェロコークスを用いる技術が知られている。 To operate blast furnaces efficiently, coke produced by carbonizing coal in a coke oven is charged into the furnace. The coke charged into the furnace serves several purposes, including as a spacer to improve ventilation inside the furnace, as a reducing agent, and as a heat source. In recent years, a technology has been developed that uses metallurgical ferro-coke instead of coke in order to improve the reactivity of coke.
フェロコークスの製造方法としては、主原料となる石炭、鉄鉱石について予め粉砕、乾燥などの調製を行い、その後、数mass%のバインダーとともに混練機内で攪拌、混練後、ダブルロール式の成型機にて成型物とし、この成型物を竪型の乾留炉で乾留し、フェロコークスとする方法が想定される。乾留後のフェロコークスは、高炉原料として一定以上の品質(強度、反応性)を求められるほか、乾留炉内で成型物同士が融着せず、粒子単体として乾留炉より排出される必要があるため、乾留時の成型物の融着率も重要となる。 The manufacturing method for ferro coke is expected to involve preparing the main raw materials, coal and iron ore, by crushing and drying them in advance, then stirring and kneading them in a kneading machine with a few mass percent of binder, forming them into molded products in a double-roll molding machine, and carbonizing these molded products in a vertical carbonization furnace to produce ferro coke. As a blast furnace feedstock, the ferro coke after carbonization is required to have a certain level of quality (strength, reactivity), and since the molded products need to be discharged from the carbonization furnace as individual particles without fusing together in the furnace, the fusion rate of the molded products during carbonization is also important.
このように、フェロコークスにはさまざまな品質が求められており、その品質を制御するための原料評価技術の開発が進められている。例えば、特許文献1では、原料に含まれる易軟化性石炭のボタン指数(CSN)の値と配合率の積により、フェロコークス強度への影響を評価する方法が提案されている。また、特許文献2では、鉄鉱石中の結晶水の割合に応じて定められたギーセラー最高流動度(MF)を有する石炭を使用することが提案されている。 As such, various qualities are required for ferro-coke, and raw material evaluation technologies to control that quality are being developed. For example, Patent Document 1 proposes a method for evaluating the effect on ferro-coke strength based on the product of the Coal Saturation Number (CSN) value of soft coal contained in the raw material and the blending ratio. Also, Patent Document 2 proposes using coal with a Gieseler maximum fluidity (MF) determined according to the proportion of crystallization water in the iron ore.
上記のように、フェロコークスの品質を制御するための原料評価技術は、検討されてきているものの十分には確立していない。例えば、特許文献1では、原料に含まれる易軟化性石炭のボタン指数の値と配合率の積によりフェロコークス強度への影響を評価する方法が提案されている。しかしながら、この方法ではCSN2.0以下の難軟化性石炭の影響については触れられていない。また、特許文献2では、ギーセラープラストメータによる最高流動度の値を用いているが、フェロコークスでは多量の使用が想定される低MFの石炭(例えば、MFが10ddpm以下)に対しては、その測定精度は高くないことが知られている。さらに、特許文献1および特許文献2において、乾留時の成型物融着率への影響についての評価方法については殆ど検討されておらず、特に軟化性の低い低MFの易軟化性石炭については十分に確立された評価方法は存在していない。
As mentioned above, raw material evaluation techniques for controlling the quality of ferro-coke have been studied but have not been fully established. For example, Patent Document 1 proposes a method for evaluating the impact on ferro-coke strength based on the product of the button index value and the blending ratio of softening coal contained in the raw material. However, this method does not mention the impact of softening coal with CSN 2.0 or less. In addition, Patent Document 2 uses the maximum fluidity value measured by a Gieseler plastometer, but it is known that the measurement accuracy is not high for low MF coal (for example,
本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、フェロコークスの強度および乾留炉内での融着率を正確に評価することができるフェロコークス用石炭の評価方法を提案することにある。 The present invention was made in consideration of these circumstances, and its purpose is to propose a method for evaluating coal for ferro-coke that can accurately evaluate the strength of ferro-coke and its fusion rate in a carbonization furnace.
前記の目的を実現するため、発明者らは、複数の銘柄および配合比で石炭、鉱石を組み合わせてフェロコークスを製造し、その性状と強度および乾留時の成型物の融着率との関係の調査を実施して、本発明を達成した。 To achieve the above objective, the inventors produced ferro-coke by combining coal and ore of multiple brands and blending ratios, and investigated the relationship between its properties, strength, and the fusion rate of the briquettes during carbonization, thereby achieving the present invention.
即ち、本発明は、石炭と鉄鉱石との混合物を成型し乾留してなるフェロコークスの原料としての石炭を評価する方法であって、芳香環を有する1級もしくは2級アミン系化合物であるN、N’-ジ-2-ナフチル-p-フェニレンジアミンが添加されて軟化溶融特性が向上した石炭の軟化溶融特性に関する物性値を指標として、前記石炭の軟化溶融特性を評価することを特徴とする、フェロコークス用石炭の評価方法である。 That is, the present invention is a method for evaluating coal as a raw material for ferro-coke, which is made by molding and carbonizing a mixture of coal and iron ore, and is characterized in that the method evaluates the thermoplastic properties of coal using as indicators the physical property values related to the thermoplastic properties of coal whose thermoplastic properties have been improved by the addition of N,N'-di-2-naphthyl-p-phenylenediamine, which is a primary or secondary amine compound having an aromatic ring.
なお、前記のように構成される本発明に係るフェロコークス用石炭の評価方法においては、
(1)前記石炭の軟化溶融特性に関する物性値が、ギーセラー最高流動度MFであること、
(2)前記アミン系化合物が添加される前の石炭は、ギーセラー最高流動度MFが10ddpm以下の低MFの石炭であること、
(3)本評価方法を、フェロコークスの強度の評価および乾留炉でのフェロコークス成型物の融着率の評価に用いること、
(4)本評価方法を、ギーセラー最高流動度MFが200ddpm以上の高MFの石炭とギーセラー最高流動度MFが10ddpm以下の低MFの石炭とを組み合わせ、かつ、高MFの石炭と低MFの石炭の配合重量の総和に対する高MFの石炭の重量比率が15mass%以上の時に用いること、
(5)本評価方法を、石炭と鉄鉱石との原料重量の総和に対する鉄鉱石の重量比率が40mass%以下の時に用いること、
(6)上記フェロコークス用石炭の評価方法を用いて、使用可能と評価された石炭を含む配合炭を乾留してフェロコークスを製造すること、
がより好ましい解決手段となるものと考えられる。
In the method for evaluating coal for ferrocoke according to the present invention configured as described above,
(1) A physical property value relating to the thermoplasticity and melting characteristics of the coal is Gieseler maximum fluidity (MF);
(2) The coal before the addition of the amine compound is a low-MF coal having a Gieseler maximum fluidity MF of 10 ddpm or less;
(3) This evaluation method is used to evaluate the strength of ferro-coke and the adhesion rate of ferro-coke briquettes in a carbonization furnace.
(4) This evaluation method is used when a high MF coal having a Gieseler maximum fluidity MF of 200 ddpm or more is combined with a low MF coal having a Gieseler maximum fluidity MF of 10 ddpm or less, and the weight ratio of the high MF coal to the total blend weight of the high MF coal and the low MF coal is 15 mass% or more;
(5) This evaluation method is used when the weight ratio of iron ore to the total weight of coal and iron ore is 40 mass% or less.
(6) producing ferro coke by carbonizing a coal blend containing coal evaluated as usable using the above-mentioned method for evaluating coal for ferro coke;
is considered to be a more preferable solution.
上述したように構成される本発明によれば、芳香環を有する1級もしくは2級アミン系化合物であるN、N’-ジ-2-ナフチル-p-フェニレンジアミンが添加されて軟化溶融特性が向上した石炭の軟化溶融特性に関する物性値を指標として、石炭の軟化溶融特性を評価することで、その石炭および鉄鉱石の混合物を成型し乾留してなるフェロコークスの強度および乾留炉内での融着率を正確に評価することが可能となり、安定的に高品質なフェロコークスを製造できるほか、乾留炉内での融着による乾留炉外排出不良などの想定外のトラブルを抑止することが可能となる。 According to the present invention configured as described above, by evaluating the thermoplastic properties of coal using as an index the physical property values related to the thermoplastic properties of coal whose thermoplastic properties have been improved by the addition of N,N'-di-2-naphthyl-p-phenylenediamine, a primary or secondary amine compound having an aromatic ring, it becomes possible to accurately evaluate the strength and fusion rate in a carbonization furnace of ferro-coke obtained by molding and carbonizing a mixture of that coal and iron ore, and it becomes possible to stably produce high-quality ferro-coke and prevent unexpected problems such as poor discharge from the carbonization furnace due to fusion in the carbonization furnace.
以下、本発明の実施の形態について具体的に説明する。なお、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 The following is a detailed description of the embodiments of the present invention. Note that the following embodiments are intended to exemplify devices and methods for embodying the technical ideas of the present invention, and are not intended to specify the configurations described below. In other words, the technical ideas of the present invention can be modified in various ways within the technical scope described in the claims.
発明者らは複数の銘柄および配合比で石炭、鉱石を組み合わせてフェロコークスを製造し、その性状と強度および乾留時の成型物の融着率との関係の調査を実施し、以下の結果を見出した。 The inventors produced ferro-coke by combining coal and ore of multiple brands and blending ratios, and investigated the relationship between its properties, strength, and the fusion rate of the briquettes during carbonization, finding the following results.
フェロコークスの製造において、ギーセラー最高流動度MFが10ddpm以下の軟化性の低い難軟化性石炭(以下、低MF炭)のみを用いた場合は、ほぼ融着は起こらず、銘柄による違いは確認できなかった。一方、低MF炭とギーセラー最高流動度MFが200ddpm以上である軟化性の高い易軟化性石炭(以下、高MF炭)とを組み合わせてフェロコークスを製造した場合、低MF炭のMFの値に違いがなくとも、低MFの石炭の銘柄ごとに融着率に及ぼす影響が異なることを見出した。 When ferro-coke was produced using only low-softening coal (hereinafter referred to as low MF coal) with a Gieseler maximum fluidity MF of 10 ddpm or less, fusion hardly occurred, and no differences due to brand could be confirmed. On the other hand, when ferro-coke was produced by combining low MF coal with high-softening coal (hereinafter referred to as high MF coal) with a Gieseler maximum fluidity MF of 200 ddpm or more, it was found that the effect on the fusion rate differs depending on the brand of low MF coal, even if there was no difference in the MF value of the low MF coal.
この影響を評価するために、石炭の種々の性状について調査した結果、コークスに用いる非粘結炭の粘結性の評価方法として、特許文献3に記載のN、N’-ジ-2-ナフチル-p-フェニレンジアミンを添加した石炭の軟化溶融特性に関する物性値としての最高流動度MFと、この低MF炭の融着率の違いに相関があることを見出した。これは、低MF炭の粘結性が乾留時の成型物の融着に影響していることを示唆しており、低MF炭に対してN、N’-ジ-2-ナフチル-p-フェニレンジアミンなどの石炭の軟化溶融性を向上させる試薬を添加することで、従来のギーセラープラストメータ法では検知できなかった低MF炭の僅かな粘結性の違いを評価することができたためであると推察される。 To evaluate this effect, various coal properties were investigated, and it was found that there is a correlation between the maximum fluidity (MF), a physical property value related to the thermoplasticity of coal to which N,N'-di-2-naphthyl-p-phenylenediamine has been added, as described in Patent Document 3, a method for evaluating the caking properties of non-caking coal used for coke, and the difference in the fusion rate of this low MF coal. This suggests that the caking properties of low MF coal affect the fusion of the briquettes during carbonization, and it is presumed that this is because by adding a reagent such as N,N'-di-2-naphthyl-p-phenylenediamine that improves the thermoplasticity of coal to low MF coal, it is possible to evaluate slight differences in the caking properties of low MF coal that could not be detected by the conventional Gieseler plastometer method.
上記の通り、本発明に係る評価方法は、高MF炭と低MF炭とを組み合わせた場合の融着率の評価に用いることが有効である。特に、高MF炭と低MF炭とを組み合わせた場合の高MF炭の重量配合比が、石炭全体の重量に対し15mass%以上の時に、本発明に係る評価方法を適用することが望ましい。これは、低MFの石炭粒子同士は乾留時の接着性が乏しく、成型物同士を融着させることができないため銘柄ごとの差はなかったものの、低MF炭と高MF炭とを組み合わせた場合、高MF炭が高MF炭もしくは低MF炭と接着することで成型物同士を融着させることができ、高MF炭と低MF炭の界面の接着のし易さに、低MF炭の銘柄ごとのわずかな軟化溶融性の違いが影響を及ぼしたものと推察される。 As described above, the evaluation method according to the present invention is effective for evaluating the fusion rate when high MF coal and low MF coal are combined. In particular, it is desirable to apply the evaluation method according to the present invention when the weight blending ratio of high MF coal when high MF coal and low MF coal are combined is 15 mass% or more relative to the total weight of the coal. This is because, although there was no difference between brands because low MF coal particles have poor adhesion during carbonization and cannot fuse the molded products together, when low MF coal and high MF coal are combined, the molded products can be fused together by adhering the high MF coal to the high MF coal or low MF coal, and it is presumed that the slight difference in softening and melting properties of each brand of low MF coal affects the ease of adhesion at the interface between the high MF coal and low MF coal.
また、非溶融性の粒子である鉄鉱石の配合比が高い場合も融着は起きないため、鉄鉱石の重量比率が鉄鉱石と石炭との重量を合わせた全体の重量に対し、40mass%以下の場合に、この評価方法は有効となる。一方で、フェロコークス強度への影響の評価は、高MFの石炭の比率や鉄鉱石の比率に拠らず、その影響を評価することができた。これは、成型物の融着には影響を及ぼさない低MF炭の粒子同士の接着についても、強度には影響を及ぼしたためと推察される。 Fusion also does not occur when the blending ratio of iron ore, which is a non-meltable particle, is high, so this evaluation method is effective when the weight ratio of iron ore is 40 mass% or less of the total weight of iron ore and coal combined. On the other hand, the impact on ferro-coke strength could be evaluated regardless of the ratio of high MF coal or iron ore. This is presumably because the adhesion between low MF coal particles, which does not affect the fusion of the molded product, also affected the strength.
なお、添加して石炭の軟化溶融特性を向上させるために用いる試薬としては、特許文献3と同様にN、N’-ジ-2-ナフチル-p-フェニレンジアミン以外の石炭の軟化溶融性を向上させるフェノチアジン、カルバゾール、N-フェニル-1-ナフチルアミンなどを用いても評価可能である。 As for reagents that can be added to improve the thermoplasticity of coal, other than N,N'-di-2-naphthyl-p-phenylenediamine, as in Patent Document 3, phenothiazine, carbazole, N-phenyl-1-naphthylamine, and the like that improve the thermoplasticity of coal can also be used for evaluation.
以下に、発明の実施例について詳細に説明する。
この実施例では、以下の方法で低MF炭を配合した場合のフェロコークスの強度DIおよび乾留時の融着率に及ぼす影響を調査した。低MF炭として、従来のギーセラープラストメータ法にて検出されるギーセラー最高流動度MFが等しい石炭5gに対し、試薬として芳香環を有する1級もしくは2級アミン系化合物であるN、N’-ジ-2-ナフチル-p-フェニレンジアミンを0.5g添加し、測定したMF(以後、試薬添加MF)が異なるA~D炭の4銘柄を選定した。A~D炭の従来の試薬を添加しなかった場合の従来法MFと試薬添加MFとを、以下の表1に示す。
The following provides a detailed description of the embodiments of the invention.
In this example, the effect of blending low MF coal on the strength DI of ferro-coke and the fusion rate during carbonization was investigated by the following method. As low MF coal, 0.5 g of N,N'-di-2-naphthyl-p-phenylenediamine, a primary or secondary amine compound having an aromatic ring, was added as a reagent to 5 g of coal with the same Gieseler maximum fluidity MF detected by the conventional Gieseler plastometer method, and four brands of coal, A to D, were selected that had different MFs (hereinafter, reagent-added MF) measured. The conventional MF when the conventional reagent was not added and the reagent-added MF of coals A to D are shown in Table 1 below.
表1に示す低MF炭1銘柄と高MF炭1銘柄とをそれぞれ全量2mm以下に粉砕するとともに、鉄鉱石(T.Fe:56mass%のピソライト鉱石)を全量3mm以下に粉砕し、高速撹拌機内で、粉砕した石炭および鉄鉱石に対し、バインダーとしてのアスファルトピッチ、コールタール、軟ピッチをそれぞれ全原料重量に対し2.4mass%、2.0mass%、3.6mass%添加して、160℃に加熱しながら混練した。その後、ロールサイズ650mmφ×104mmの成型機にて、回転数2rpm、線圧は1~4ton/cmで成型し、30mm×25mm×18mm(6cc)の卵型の成型物とした。続いて、以下のラボスケールの乾留手法(固定層)で、成型物の乾留を行った。縦200mm、横60mm、高さ200mmの乾留缶に成型物を充填し、最大850℃のプログラムヒーティングにより4時間20分かけて乾留した後、窒素雰囲気で冷却した。冷却後、乾留缶内からフェロコークスを取り出し、2個以上のフェロコークスが融着したサンプルの重量比率を融着率と定義し、融着率と低MF炭の試薬添加MFとの関係を調査した。なお、30ton/day規模のパイロットスケールの連続式乾留炉にて、融着率が30mass%以下の場合は、トラブルなく排出されることを確認している。得られたフェロコークスのドラム強度DI(150/15)を測定し、強度に及ぼす配合構成の影響を調査した。 One brand of low MF coal and one brand of high MF coal shown in Table 1 were crushed to 2 mm or less in total, and iron ore (pisolitic ore with T.Fe: 56 mass%) was crushed to 3 mm or less in total. In a high-speed mixer, asphalt pitch, coal tar, and soft pitch were added as binders to the crushed coal and iron ore in amounts of 2.4 mass%, 2.0 mass%, and 3.6 mass%, respectively, based on the total raw material weight, and kneaded while heating to 160°C. After that, the mixture was molded in a molding machine with a roll size of 650 mmφ×104 mm at a rotation speed of 2 rpm and a linear pressure of 1 to 4 ton/cm to obtain an egg-shaped molded product of 30 mm×25 mm×18 mm (6 cc). The molded product was then carbonized using the following laboratory-scale carbonization method (fixed bed). The molded material was filled into a carbonization can with a length of 200 mm, width of 60 mm, and height of 200 mm, and carbonized for 4 hours and 20 minutes by program heating at a maximum temperature of 850°C, and then cooled in a nitrogen atmosphere. After cooling, the ferro-coke was removed from the carbonization can, and the weight ratio of a sample in which two or more ferro-coke particles were fused was defined as the fusion rate, and the relationship between the fusion rate and the reagent-added MF of low-MF coal was investigated. It was confirmed that, in a pilot-scale continuous carbonization furnace with a capacity of 30 ton/day, the fusion rate was 30 mass% or less and the ferro-coke could be discharged without any trouble. The drum strength DI (150/15) of the obtained ferro-coke was measured, and the effect of the composition on the strength was investigated.
高MF炭のMF、配合比、低MF炭銘柄、および鉄鉱石の配合比と得られたフェロコークスの強度および乾留時の融着率の関係を、以下の表2に示す。ここに記載の高MF炭配合比とは、石炭総重量に対する高MF炭の重量比率であり、鉄鉱石の配合比とは石炭と鉱石の総重量に対する鉄鉱石の重量比率で表しており、いずれも単位はmass%である。表2に示したとおり、種々の配合条件にてフェロコークスを調製し、その強度および融着率を測定した。 The relationship between the MF of high MF coal, blending ratio, low MF coal brand, and iron ore blending ratio and the strength and fusion rate during carbonization of the obtained ferro coke is shown in Table 2 below. The high MF coal blending ratio described here is the weight ratio of high MF coal to the total weight of coal, and the iron ore blending ratio is expressed as the weight ratio of iron ore to the total weight of coal and ore, both in mass%. As shown in Table 2, ferro coke was prepared under various blending conditions, and its strength and fusion rate were measured.
※2:鉄鉱石の配合比(mass%)は石炭と鉄鉱石の総量中の鉄鉱石の重量比率で表記
まず、高MF炭の配合比を30mass%、鉄鉱石の配合比を40mass%で一定とし、高MF炭のMFの影響を評価した結果を図1、2に示す。図1の縦軸はフェロコークス強度DIの測定結果であり、図2の縦軸は乾留時融着率の測定結果であり、横軸はいずれも低MF炭の試薬添加logMFである。図1のように、高MF炭のMFが100ddpm~1000ddpmの範囲において、低MF炭の試薬添加logMFが高くなるほど、ドラム強度DI(150/15)は高位となった。一方、図2のように、乾留時融着率は高MF炭のMFが100ddpmの時は、低MF炭の試薬添加logMFの値によらずすべて融着率は0mass%であり、高MF炭のMFが200ddpm以上の場合に、低MF炭の試薬添加logMFが高くなるほど乾留時融着率は高位となった。以上の結果から、低MF炭の試薬添加MFによるフェロコークス強度の評価は高MF炭のMFがいずれの値でも有効であり、乾留時融着率は高MF炭のMFが200ddpm以上の時に評価可能であることを確認した。 First, the blending ratio of high MF coal was fixed at 30 mass%, and the blending ratio of iron ore was fixed at 40 mass%, and the results of evaluating the effect of the MF of high MF coal are shown in Figures 1 and 2. The vertical axis of Figure 1 is the measurement result of ferro coke strength DI, and the vertical axis of Figure 2 is the measurement result of the fusion rate during carbonization, and the horizontal axis of both is the reagent added log MF of low MF coal. As shown in Figure 1, in the range of 100 ddpm to 1000 ddpm for the MF of high MF coal, the higher the reagent added log MF of low MF coal, the higher the drum strength DI (150/15) became. On the other hand, as shown in Figure 2, when the MF of the high MF coal was 100 ddpm, the fusion rate during carbonization was 0 mass%, regardless of the value of the reagent-added log MF of the low MF coal, and when the MF of the high MF coal was 200 ddpm or more, the fusion rate during carbonization increased as the reagent-added log MF of the low MF coal increased. From these results, it was confirmed that the evaluation of ferro coke strength based on the reagent-added MF of low MF coal is effective regardless of the MF value of the high MF coal, and the fusion rate during carbonization can be evaluated when the MF of the high MF coal is 200 ddpm or more.
続いて、MFが200ddpmの高MF炭を用いて、高MF炭の配合比の影響を評価した結果を図3、4に示す。鉄鉱石の配合比は40mass%で一定とした。図3の縦軸はフェロコークス強度DIの測定結果であり、図4の縦軸は乾留時融着率の測定結果であり、横軸はいずれも低MF炭の試薬添加logMFである。図3のように、高MF炭の配合比が5~50mass%の範囲において、低MF炭の試薬添加logMFが高くなるほど、ドラム強度DI(150/15)は高位となった。一方、図4のように、乾留時融着率は高MF炭の配合比が5mass%の時は、低MF炭の試薬添加logMFの値によらずすべて融着率は0mass%であり、高MF炭配合比が15mass%以上の場合は、低MF炭の試薬添加logMFが高くなるほど乾留時融着率は高位となった。以上の結果から、低MF炭の試薬添加MFによるフェロコークス強度の評価はいずれの高MF炭配合比の場合でも有効であり、乾留時融着率は高MF炭配合比が15mass%以上の時に評価可能であることを確認した。 Next, the effect of the blending ratio of high MF coal was evaluated using high MF coal with an MF of 200 ddpm, and the results are shown in Figures 3 and 4. The blending ratio of iron ore was fixed at 40 mass%. The vertical axis of Figure 3 is the measurement result of ferro coke strength DI, and the vertical axis of Figure 4 is the measurement result of the fusion rate during carbonization, and the horizontal axis of both is the reagent added log MF of low MF coal. As shown in Figure 3, in the blending ratio of high MF coal range of 5 to 50 mass%, the drum strength DI (150/15) became higher as the reagent added log MF of low MF coal increased. On the other hand, as shown in Figure 4, when the blending ratio of high MF coal was 5 mass%, the fusion rate during carbonization was 0 mass%, regardless of the value of the reagent-added log MF of the low MF coal, and when the blending ratio of high MF coal was 15 mass% or more, the higher the reagent-added log MF of the low MF coal, the higher the fusion rate during carbonization. From the above results, it was confirmed that the evaluation of ferro coke strength based on the reagent-added MF of low MF coal is effective for all high MF coal blending ratios, and the fusion rate during carbonization can be evaluated when the blending ratio of high MF coal is 15 mass% or more.
さらに、MFが200ddpmの高MF炭を用いて、高MF炭の配合比を30mass%に固定し、鉄鉱石の配合比の影響を評価した結果を図5、6に示す。図5の縦軸はフェロコークス強度DIの測定結果であり、図6の縦軸は乾留時融着率の測定結果であり、横軸はいずれも低MF炭の試薬添加MFである。図5のように、鉄鉱石の配合比10~50mass%の範囲において、低MF炭の試薬添加logMFが高くなるほど、ドラム強度DI(150/15)は高位となった。一方、図6のように、乾留時融着率は、鉄鉱石の配合比が50mass%の時は、MF炭の試薬添加logMFの値によらずすべて融着率は0mass%であり、鉄鉱石の配合比が40mass%以下の場合は、低MF炭の試薬添加logMFが高くなるほど、乾留時融着率は高位となった。以上の結果から、低MF炭の試薬添加MFによるフェロコークス強度の評価はいずれの鉄鉱石配合比の場合でも有効であり、乾留時融着率は鉄鉱石配合比40mass%以下の時に評価可能であることを確認した。 Furthermore, using high MF coal with an MF of 200 ddpm, the blending ratio of high MF coal was fixed at 30 mass%, and the results of evaluating the effect of the blending ratio of iron ore are shown in Figures 5 and 6. The vertical axis of Figure 5 is the measurement result of ferro coke strength DI, and the vertical axis of Figure 6 is the measurement result of the fusion rate during carbonization, and the horizontal axis is the reagent-added MF of low MF coal in both cases. As shown in Figure 5, in the range of the blending ratio of iron ore from 10 to 50 mass%, the drum strength DI (150/15) became higher as the reagent-added log MF of low MF coal increased. On the other hand, as shown in Figure 6, when the iron ore blending ratio is 50 mass%, the fusion rate during carbonization is 0 mass%, regardless of the value of the reagent-added log MF of the MF coal, and when the iron ore blending ratio is 40 mass% or less, the higher the reagent-added log MF of the low MF coal, the higher the fusion rate during carbonization. From the above results, it was confirmed that the evaluation of ferro-coke strength using the reagent-added MF of low MF coal is effective for all iron ore blending ratios, and that the fusion rate during carbonization can be evaluated when the iron ore blending ratio is 40 mass% or less.
以上の結果から、従来のギーセラープラストメータ法で、10ddpm以下の低MF炭をフェロコークス原料として用いる場合、低MF炭の試薬添加MFを用いることで、いずれの配合構成の場合でも、フェロコークス強度への影響が評価可能であること、また、高MF炭と低MF炭を組み合わせる場合において、高MF炭の配合比が15mass%以上かつ鉄鉱石の配合比が40mass%以下の場合では、低MF炭の試薬添加MFが乾留時の融着率の評価に有効であることを確認した。 These results confirm that when low MF coal of 10 ddpm or less is used as a ferro-coke raw material using the conventional Gieseler plastometer method, the effect on ferro-coke strength can be evaluated in any blend configuration by using a reagent-added MF of low MF coal. Also, when combining high MF coal and low MF coal, when the blend ratio of high MF coal is 15 mass% or more and the blend ratio of iron ore is 40 mass% or less, the reagent-added MF of low MF coal is effective in evaluating the fusion rate during carbonization.
本発明に係るフェロコークス用石炭の評価方法は、本発明の評価方法に従って評価した石炭および鉄鉱石の混合物を成型し乾留してなるフェロコークスの強度および乾留炉内での融着率を正確に評価することが可能となり、安定的に高品質なフェロコークスを製造できるほか、乾留炉内での融着による乾留炉外排出不良などの想定外のトラブルを抑止することが可能となるため、産業上有用である。 The evaluation method for coal for ferro-coke according to the present invention makes it possible to accurately evaluate the strength and fusion rate in a carbonization furnace of ferro-coke obtained by molding and carbonizing a mixture of coal and iron ore evaluated according to the evaluation method of the present invention, and is industrially useful because it enables stable production of high-quality ferro-coke and prevents unexpected problems such as poor discharge from the carbonization furnace due to fusion in the furnace.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022160434A JP7647718B2 (en) | 2022-10-04 | 2022-10-04 | Evaluation method for coal for ferro-coke. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022160434A JP7647718B2 (en) | 2022-10-04 | 2022-10-04 | Evaluation method for coal for ferro-coke. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2024053917A JP2024053917A (en) | 2024-04-16 |
JP7647718B2 true JP7647718B2 (en) | 2025-03-18 |
Family
ID=90670617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022160434A Active JP7647718B2 (en) | 2022-10-04 | 2022-10-04 | Evaluation method for coal for ferro-coke. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7647718B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119602A (en) | 2005-10-28 | 2007-05-17 | Jfe Steel Kk | Ferro-coke manufacturing method |
JP2011032371A (en) | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Method for producing iron ore-containing coke |
JP2015040270A (en) | 2013-08-23 | 2015-03-02 | Jfeスチール株式会社 | Method for producing coke, coke, modified coal, modified blended coal, and method for modifying coal or blended coal |
WO2016125727A1 (en) | 2015-02-06 | 2016-08-11 | Jfeスチール株式会社 | Ferrocoke manufacturing method |
WO2016136191A1 (en) | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method of evaluating coal and method of manufacturing coke |
JP2022032852A (en) | 2020-08-14 | 2022-02-25 | Jfeスチール株式会社 | Method for selecting a modifier for improving the fluidity of coal, a modifier, a method for reforming coal, and a method for producing coke. |
-
2022
- 2022-10-04 JP JP2022160434A patent/JP7647718B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119602A (en) | 2005-10-28 | 2007-05-17 | Jfe Steel Kk | Ferro-coke manufacturing method |
JP2011032371A (en) | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Method for producing iron ore-containing coke |
JP2015040270A (en) | 2013-08-23 | 2015-03-02 | Jfeスチール株式会社 | Method for producing coke, coke, modified coal, modified blended coal, and method for modifying coal or blended coal |
WO2016125727A1 (en) | 2015-02-06 | 2016-08-11 | Jfeスチール株式会社 | Ferrocoke manufacturing method |
WO2016136191A1 (en) | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method of evaluating coal and method of manufacturing coke |
JP2017125206A (en) | 2015-02-25 | 2017-07-20 | Jfeスチール株式会社 | Coal evaluation method and coke production method |
JP2022032852A (en) | 2020-08-14 | 2022-02-25 | Jfeスチール株式会社 | Method for selecting a modifier for improving the fluidity of coal, a modifier, a method for reforming coal, and a method for producing coke. |
Non-Patent Citations (1)
Title |
---|
堀田謙弥,フェロコークス乾留時の軟化溶融・還元挙動に及ぼす鉱石性状の影響,材料とプロセス,2024年03月01日,Vol.37 No.1,Page.ROMBUNNO.9 |
Also Published As
Publication number | Publication date |
---|---|
JP2024053917A (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0665579A (en) | Raw material blending method for forming coal for the production of forming coke for metallurgy | |
JP4892929B2 (en) | Ferro-coke manufacturing method | |
JP7647718B2 (en) | Evaluation method for coal for ferro-coke. | |
JP5017969B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
JP6241336B2 (en) | Method for producing blast furnace coke | |
JP4048756B2 (en) | Coke production method with uniform quality | |
JP4892930B2 (en) | Ferro-coke manufacturing method | |
JP7574965B1 (en) | Method for estimating coke strength and method for producing coke | |
KR102288801B1 (en) | Method of manufacturing coke | |
JP5309966B2 (en) | Method for producing highly reactive coke | |
JP7493121B1 (en) | Coke manufacturing method | |
JP4892928B2 (en) | Ferro-coke manufacturing method | |
JPH039989A (en) | Production of coke | |
CN107207966B (en) | Method for producing ferro coke | |
JP7501475B2 (en) | Ferro-coke manufacturing method | |
US2732333A (en) | Graphite containing metallurgical | |
JPS6113517B2 (en) | ||
JP2024149761A (en) | Coke manufacturing method | |
JP7347462B2 (en) | Method for producing molded products and method for producing molded coke | |
WO2024202185A1 (en) | Coke production method | |
JPS6340234B2 (en) | ||
JPS60181190A (en) | Production of coke for blast furnace | |
JPS60174951A (en) | Estimation of coke strength | |
JP3552510B2 (en) | Coke production method | |
JPH0816225B2 (en) | High strength coke and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20241016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250217 |