JP7644897B2 - バリア性積層体、該バリア性積層体を備える包装容器 - Google Patents
バリア性積層体、該バリア性積層体を備える包装容器 Download PDFInfo
- Publication number
- JP7644897B2 JP7644897B2 JP2020163976A JP2020163976A JP7644897B2 JP 7644897 B2 JP7644897 B2 JP 7644897B2 JP 2020163976 A JP2020163976 A JP 2020163976A JP 2020163976 A JP2020163976 A JP 2020163976A JP 7644897 B2 JP7644897 B2 JP 7644897B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- barrier laminate
- vapor
- barrier
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Wrappers (AREA)
- Laminated Bodies (AREA)
Description
前記多層基材は、延伸処理が施されており、
更に、前記多層基材が、少なくともポリプロピレン樹脂層と表面樹脂層とを備え、
前記表面樹脂層が、融点180℃以上の樹脂材料を含み、
前記第1蒸着膜が、無機酸化物から構成され、
前記シーラント層が、第2蒸着膜と、シーラント基材とを備えることを特徴とする。
前記多層基材は、少なくともポリプロピレン樹脂層と表面コート層とを備え、
前記ポリプロピレン樹脂層は、延伸処理が施されており、
かつ前記表面コート層が、極性基を有する樹脂材料を含み、
前記第1蒸着膜が、無機酸化物から構成され、
前記シーラント層が、第2蒸着膜と、シーラント基材とを備えることを特徴とする。
また、本発明によれば、該バリア性積層体を備える包装容器を提供することができる。
本発明のバリア性積層体10は、図1に示すように、多層基材11と、第1蒸着膜12と、接着層13と、シーラント層14とを備え、該多層基材11は、ポリプロプレン樹脂層15と、表面樹脂層16とを少なくとも備え、シーラント層14は、第2蒸着膜17と、シーラント基材18とを備える。
一実施形態において、本発明のバリア性積層体10は、図2に示すように、第1蒸着膜12と接着層13との間に、バリアコート層19をさらに備える。
一実施形態において、多層基材11は、図3に示すように、ポリプロプレン樹脂層15と表面樹脂層16との間に、接着性樹脂層20を備える。
一実施形態において、バリア性積層体10は、図4に示すように、多層基材11と、第1蒸着膜12と、第1蒸着膜12上に設けられたバリアコート層19と、接着層13と、シーラント層14とを備える。該多層基材11は、ポリプロピレン樹脂層15と、接着性樹脂層10と、表面樹脂層16とを備え、接着性樹脂層20は、ポリプロピレン樹脂層15と表面樹脂層16との間に設けられている。シーラント層14は、第2蒸着膜17と、シーラント基材18とを備える。
一実施形態において、本発明のバリア性積層体は、接着層と、シーラント層との間に、中間層を備える(図示せず)。
なお、バリア性積層体のラミネート強度の測定方法については、後述する実施例において説明する。
基材とシーラント層とを同一材料によって構成することにより、基材とシーラント層とを分離する必要がなく、そのリサイクル適正を向上することができる。
シーラント基材を、多層基材が備えるポリプロプレン樹脂層と同一の材料、即ち、ポリプロピレンから構成することにより、回収後の包装容器を層ごとに分離する必要がなく、そのリサイクル適性を向上することができる。
多層基材は、ポリプロプレン樹脂層および表面樹脂層を少なくとも備える。また、多層基材は、ポリプロプレン樹脂層と表面樹脂層との間に接着性樹脂層を備えることができる。
多層基材の縦方向(MD方向)および横方向(TD方向)への延伸倍率は、2倍以上15倍以下であることが好ましく、5倍以上13倍以下であることが好ましい。
延伸倍率を2倍以上とすることにより、多層基材の強度および耐熱性をより向上することができる。また、多層基材への印刷適性を向上することができる。
また、多層基材の破断限界という観点からは、延伸倍率は15倍以下であることが好ましい。
また、多層基材が備えるポリプロプレン樹脂層にヒートシール性を持たせ、封筒貼りにより作製される包装容器(例えば、チューブなど)する場合には、延伸倍率は、2倍以上10倍以下であることが好ましく2.5倍以上7倍以下であることがより好ましい。
このような構成とすることにより、本発明のバリア性積層体により作製される包装容器に、一方向への高い引き裂き容易性を付与することができる。
多層基材の縦方向(MD方向)における引張強度は、横方向(TD方向)における引張強度よりも1.05倍以上大きいことが好ましく、1.10倍以上大きいことがより好ましく、1.2倍以上大きいことがさらに好ましい。
縦方向(MD方向)における引張強度は、例えば、200MPa以上、300MPa以下とすることができる。
本明細書において、引張強度は、JIS K7127:1999に準拠して測定する。測定器としては、オリエンテック社製の引張試験機 STA-1150を用いることができる。
試験片としては、多層基材を幅15mm、長さ150mmの矩形状のフィルムに切り出したものを用いることができる。試験片を保持する一対のチャックの間の、測定開始時の間隔は100mmであり、引張速度は300mm/分である。本願において、特に断らない限り、引張強度の測定時の環境は、温度23℃、相対湿度50%である。
表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
ポリプロピレン樹脂層は、ポリプロピレンにより構成され、単層構造を有するものであっても、多層構造を有するものであってもよい。
多層基材が、ポリプロプレンにより構成される層を備えることにより、該多層基材を使用して作製される包装容器の耐油性を向上することが可能となる。
ポリプロピレンホモポリマーとは、プロピレンのみの重合体であり、ポリプロピレンランダムコポリマーとは、プロピレンとプロピレン以外の他のα-オレフィン(例えばエチレン、ブテン-1、4-メチル-1-ペンテンなど)などとのランダム共重合体であり、ポリプロピレンブロックコポリマーとは、プロピレンからなる重合体ブロックと、上記したプロピレン以外の他のα-オレフィンからなる重合体ブロックを有する共重合体である。
これらポリプロプロピレンの中でも、透明性の観点からは、ホモポリマーまたはランダムコポリマーを使用することが好ましい。包装袋の剛性や耐熱性を重視する場合には、ホモポリマーを使用し、耐衝撃性などを重視する場合にはランダムコポリマーを使用することが好ましい。
また、バイオマス由来のポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを使用することもできる。
ヒートシール改質剤としては、ヒートシール層を構成するポリプロプレンと相溶性に優れるものであれば特に限定されるものではないが、例えば、オレフィンコポリマーなどが挙げられる。
また、ポリプロプレン樹脂層表面に、従来公知のヒートシール剤を塗布、乾燥してもよい。
また、本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
ポリプロピレン樹脂層の厚さを10μm以上とすることにより、多層基材の強度および耐熱性をより向上することができる。
また、ポリプロピレン樹脂層の厚さを50μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。
基材への印刷層形成は、バイオマス由来のインキを用いて行うことができる。これにより、環境負荷をより低減することができる。
印刷層の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。
多層基材は、ポリプロピレン樹脂層上に、180℃以上の融点を有する樹脂材料(以下、高融点樹脂材料ともいう)を含む表面保護層を備え、該表面樹脂層上には高い密着性を有する第1蒸着膜を形成することができ、ガスバリア性を向上することができる。
また、後述するように、該表面樹脂層を備えるバリア性積層体を使用して作製される包装容器は高いラミネート強度を有する。
高融点樹脂材料の融点を185℃以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
多層基材の製膜性という観点からは、高融点樹脂材料の融点は、265℃以下であることが好ましく、260℃以下であることがより好ましく、250℃以下であることがさらに好ましい。
なお、本明細書において、融点は、JIS K7121:2012(プラスチックの転移温度測定方法)に準拠して測定することができる。具体的には、示差走査熱量測定(DSC)装置を用いて、10℃/分の昇温速度でDSC曲線を測定し、融点を求めることができる。
多層基材に含まれる高融点樹脂材料の融点と、ポリプロピレン樹脂層に含まれるポリプロピレンの融点の差が、20℃以上であることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
また、多層基材に含まれる高融点樹脂材料の融点と、ポリプロピレン樹脂層に含まれるポリプロピレンの融点の差が、80℃以下であることにより、多層基材の製膜性をより向上することができる。
本発明において、極性基とは、ヘテロ原子を1個以上含む基を指し、例えば、エステル基、エポキシ基、水酸基、アミノ基、アミド基、カルボキシル基、カルボニル基、カルボン酸無水物基、スルフォン基、チオール基およびハロゲン基などが挙げられる。
これらの中でも、包装容器のガスバリア性およびラミネート強度の観点からは、水酸基、エステル基、アミノ基、アミド基、カルボキシル基およびカルボニル基が好ましく、アミド基がより好ましい。
このような樹脂材料を使用することにより、表面樹脂層上に形成される蒸着膜の密着性を顕著に改善することができ、そのガスバリア性を効果的に向上することができる。
また、本発明の特性を損なわない範囲において、表面樹脂層は、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
多層基材の総厚さに対する、表面樹脂層の厚さの割合を、1%以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
また、多層基材の総厚さに対する、表面樹脂層の厚さの割合を、10%以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。また、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
表面樹脂層の厚さを0.1μm以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
また、表面樹脂層の厚さを5μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。また、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
一実施形態において、多層基材は、ポリプロピレン樹脂層と、表面樹脂層との間に、接着性樹脂層を備えることができ、これにより、これら層間の密着性を向上することができる。
上記した中でも、また、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性という観点からは、ポリオレフィンおよびこの酸変性物が好ましく、ポリプロピレンおよびこの酸変性物が特に好ましい。
接着性ポリプロピレンとしては、市販されるものを使用することができ、例えば、三井化学(株)製、アドマーシリーズを使用することができる。
インフレーション法により製膜することにより、積層フィルムの延伸を同時に行うことができる。
本発明のバリア性積層体は、表面樹脂層上に無機酸化物から構成される、第1蒸着膜を備える。これにより、バリア性積層体のガスバリア性、具体的には、酸素バリア性および水蒸気バリア性を向上することができる。また、本発明のバリア性積層体を用いて作製した包装容器に充填された内容物の質量減少を抑えることができる。
上記した中でも、シリカ、酸化炭化珪素およびアルミナが好ましい。
また、蒸着膜形成後のエージング処理が必要ないため、シリカが特に好ましい。
第1蒸着膜の厚さを1nm以上とすることにより、バリア性積層体の酸素バリア性および水蒸気バリア性をより向上することができる。
また、第1蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができる。さらに、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
プラズマアシスト付きの真空成膜装置を使用した蒸着膜の成膜方法の一実施形態を以下に記載する。
一実施形態において、真空成膜装置は、図5および6に示すように、真空容器A、巻出し部B、成膜用ドラムC、巻取り部D、搬送ロールE、蒸発源F、反応ガス供給部G、防着箱H、蒸着材料IおよびプラズマガンJを備える。
なお、図5は、真空成膜装置のXZ平面方向の概略断面図であり、図6は、真空成膜装置のXY平面方向の概略断面図である。
図5に示すように、真空容器A内の上部に、成膜用ドラムC法に巻き取られている多層基材11が、その表面樹脂層面を下向きに配置され、真空容器A内の成膜用ドラムCより下に、電気的に接地された防着箱Hが配置される。防着箱Hは底面に、蒸発源Fが配置される。蒸発源Fの上面と一定の間隔を空けて対向する位置に、成膜用ドラムCに巻き取られたバリア性積層体10の表面樹脂層面が位置するように、真空容器A内に成膜用ドラムCが配置される。
また、巻出し部Bと成膜用ドラムCとの間、および成膜用ドラムCと巻き取り部Dとの間に、搬送ロールEが配置される。
なお、真空容器は、真空ポンプと連結している(図示せず)。
蒸発源Fは、蒸着材料Iを保持するためのものであり、加熱装置を備える(図示せず)。
反応ガス供給部Gは、蒸発した蒸着材料と反応する反応ガス(酸素、窒素、ヘリウム、アルゴンおよびこれらの混合ガスなど)を供給する部位である。
蒸発源Fから加熱され、蒸発した蒸着材料Iが、多層基材11の表面樹脂層上に、向けて照射され、これと同時に、プラズマガンJからも表面樹脂層に向けてプラズマが照射され、蒸着膜は形成される。
本形成方法の詳細は、特開2011-214089号公報において開示される。
各成膜室における真空度は、1×10~1×10-6Paであることが好ましい。
プラズマ発生装置を使用した蒸着膜の成膜方法の一実施形態を以下に記載する。
まず、多層基材を成膜室へ送り出し、補助ロールを介して、所定の速度で、冷却・電極ドラム上に搬送する。
次いで、ガス供給装置から、成膜室内へ、無機酸化物を含む成膜用モノマーガス、酸素ガスおよび不活性ガスなどを含む混合ガス組成物を供給し、表面樹脂層上に、グロー放電によりプラズマを発生させ、これを照射し、表面樹脂層上に無機酸化物を含む蒸着膜を形成する。
本形成方法の詳細は、特開2012-076292号公報において開示される。
該装置を使用した蒸着膜の成膜方法の一実施形態を以下に記載する。
まず、プラズマ前処理室において、プラズマ供給ノズルから、多層基材が備える表面樹脂層にプラズマが照射される。次いで、成膜室において、プラズマ処理された表面樹脂層上に、蒸着膜が成膜される。
本形成方法の詳細は、国際公開WO2019/087960号パンフレットにおいて開示される。
炭素含有酸化珪素蒸着膜において、炭素の割合Cを上記範囲とすることにより、バリア性積層体を屈曲させてもガスバリア性の低下を抑制できる。
なお、本明細書において、各元素の割合は、モル基準である。
炭素含有酸化珪素蒸着膜において、珪素の割合Siおよび酸素の割合Oを上記範囲とすることにより、バリア性積層体を屈曲させてもガスバリア性の低下をより抑制できる。
(測定条件)
使用機器:「ESCA-3400」(Kratos製)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1253.6eV)
X線出力:150W(10kV・15mA)
X線走査面積(測定領域):約6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar+
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間:30秒で実施し、スペクトルを採取
本発明のバリア性積層体は、蒸着膜またはバリアコート層と、シーラント層との間に接着層を備える。該接着層は、シーラント層が備える第2蒸着膜と隣接して設けられる。
無溶剤型接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤およびウレタン系接着剤などが挙げられ、これらのなかでも2液硬化型のウレタン系接着剤を好ましく使用することができる。
溶剤型接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤およびオレフィン系接着剤などが挙げられる。
接着層をこのような構成とすることにより、本発明のバリア性積層体の酸素バリア性および水蒸気バリア性をより一層向上することができる。
また、通常、蒸着膜を備えた積層体を包装容器に適用する際には、成形機などにより積層体に屈曲負荷がかかるため、蒸着膜に亀裂などが生じる恐れがある。ポリエステルポリオールとイソシアネート化合物を含む組成物の硬化物を含む接着剤を使用することにより、本発明のバリア性積層体の耐屈曲負荷性を改善することができ、酸素バリア性および水蒸気バリア性の低下を抑制することができる。
なお、本明細書において、Tgは、JIS K 7121:2012に準拠して、示差走査熱量測定(DSC)により求めた値である。
〔第1例〕オルト配向多価カルボン酸またはその無水物と、多価アルコールとを重縮合して得られるポリエステルポリオール
〔第2例〕グリセロール骨格を有するポリエステルポリオール
〔第3例〕イソシアヌル環を有するポリエステルポリオール
以下、各ポリエステルポリオールについて説明する。
特に、オルトフタル酸およびその無水物の、多価カルボン酸全成分に対する含有率が70~100質量%であるポリエステルポリオールが好ましい。
他の多価カルボン酸成分は、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸およびドデカンジカルボン酸など脂肪族多価カルボン酸、無水マレイン酸、マレイン酸およびフマル酸などの不飽和結合含有多価カルボン酸、1,3-シクロペンタンジカルボン酸および1,4-シクロヘキサンジカルボン酸などの脂環族多価カルボン酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、これらジカルボン酸の無水物およびこれらジカルボン酸のエステル形成性誘導体などの芳香族多価カルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸およびこれらのジヒドロキシカルボン酸のエステル形成性誘導体などの多塩基酸などが挙げられる。これらの中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。
なお、上記その他の多価カルボン酸を2種以上使用してもよい。
脂肪族多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコールおよびトリプロピレングリコール等が挙げられる。
芳香族多価アルコールとしては、例えば、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ビスフェノールF、テトラメチルビフェノール、これらのエチレンオキサイド伸長物およびこれらの水添加脂肪族化合物等が挙げられる。
一実施形態において、多価アルコール成分は、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む。
但し、R1、R2、R3のうち少なくとも一つは、一般式(2)で表される基を表す。
Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
これらの化合物は、芳香環の任意の炭素原子に置換基を有していてもよい。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
Xの置換基は、中でもヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基およびフェニル基が好ましくヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基およびフェニル基が最も好ましい。
中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール化合物が、酸素バリア性や接着性に特に好ましい。
また、イソシアネート化合物は、芳香族であっても、脂肪族であってもよく、低分子化合物であっても、高分子化合物であってもよい。
さらに、イソシアネート化合物は、公知のイソシアネートブロック化剤を用いて公知慣用の適宜の方法より付加反応させて得られたブロック化イソシアネート化合物であってもよい。
中でも、接着性や耐レトルト性の観点から、イソシアネート基を3個以上有するポリイソシアネート化合物が好ましく、酸素バリア性および水蒸気バリア性の観点からは、芳香族であることが好ましい。
低分子活性水素化合物としては、例えば、エチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンおよびメタキシリレンジアミンなどが挙げられ、分子活性水素化合物としては、各種ポリエステル樹脂、ポリエーテルポリオールおよびポリアミドの高分子活性水素化合物などが挙げられる。
リン酸変性化合物の含有量を0.005質量%以上とすることにより、酸素バリア性および水蒸気バリア性を向上することができる。また、リン酸変性化合物の含有量を10質量%以下とすることにより、接着層の接着性を向上することができる。
板状無機化合物としては、例えば、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト、アンチゴライト、クリソタイルなど)およびパイロフィライト-タルク族(パイロフィライト、タルク、ケロライなど)などが挙げられる。
具体的には、例えば、シクロデキストリン、アルキル化シクロデキストリン、アセチル化シクロデキストリンおよびヒドロキシアルキル化シクロデキストリンなどのシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、分岐環状デキストリンも用いることができる。
また、シクロデキストリンおよびシクロデキストリン誘導体におけるシクロデキストリン骨格は、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれであってもよい。
これらの化合物は単独で用いても2種以上を併用してもよい。また、これらシクロデキストリンおよび/またはその誘導体を以降、デキストリン化合物と総称する場合がある。
置換度としては上記各種樹脂の極性の観点から、0.1個以上14個以下/グルコースの範囲であることが好ましく、0.3個以上8個以下/グルコースの範囲であることがより好ましい。
接着層の厚さを0.5μm以上とすることにより、接着層の接着性を向上することができる。また、接着層が、ポリエステルポリオールとイソシアネート化合物を含む組成物の硬化物を含む接着剤層である場合には、耐屈曲負荷性を向上することができる。
接着層の厚さを6μm以下とすることにより、バリア性積層体の加工適性を向上することができる。
本発明のバリア性積層体において、シーラント層は、第2蒸着膜およびシーラント基材を備える。本発明のバリア性積層体がこのような構成のシーラント層を備える。
第2蒸着膜は、シーラント層の多層基材側に設けられる。
第2蒸着膜は、アルミニウム、ジルコニウム、マグネシウムなどの金属や上記した金属酸化物により構成される。
これらの中でも、酸素バリア性および水蒸気バリア性の観点からは、アルミニウム蒸着膜が好ましい。また、アルミニウム蒸着膜とすることにより、内容物、特に油分に富む内容物が、光の透過により酸化してしまうことを効果的に防止することができる。
蒸着膜の好ましい厚さ、形成方法は、上記した通りであるため、ここでは記載を省略する。
一実施形態において、シーラント基材は、熱によって相互に融着し得る樹脂材料を含む。
熱によって相互に融着し得る樹脂材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、メチルペンテンポリマーおよび環状オレフィンコポリマーなどのポリオレフィンが挙げられる。具体的には、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)、メタロセン触媒を利用して重合したエチレン・α-オレフィン共重合体、エチレンおよびプロピレンのランダムもしくはブロック共重合体等のエチレン-プロピレン共重合体が挙げられる。
熱によって相互に融着し得る樹脂材料としては、例えば、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(EAA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン-メタクリル酸共重合体(EMAA)、エチレン-メタクリル酸メチル共重合体(EMMA)、アイオノマー樹脂、ヒートシール性エチレン-ビニルアルコール樹脂、ポリオレフィンをアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸で変性した酸変性ポリオレフィン、ポリエチレンテレフタレート(PET)などのポリエステル、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂なども挙げられる。
基材とシーラント基材とを同一材料によって構成することにより、基材とシーラント基材とを分離する必要がなく、そのリサイクル適正を向上することができる。即ち、上記した樹脂材料の中でも、積層体を用いて作製した包装容器のリサイクル適性という観点からは、シーラント基材は、ポリプロピレンから構成されることが好ましい。
また、シーラント基材をポリプロプレンにより構成することにより、バリア性積層体を用いて作製される包装容器の耐油性を向上することができる。
シーラント基材の厚さを15μm以上とすることにより、本発明のバリア性積層体を備える包装容器のラミネート強度をより向上することができる。
また、シーラント基材の厚さを100μm以下とすることにより、本発明のバリア性積層体の加工適性をより向上することができる。
本発明のバリア性積層体は、蒸着膜と接着層との間にバリアコート層をさらに備えることができる。これにより、バリア性積層体の酸素バリア性および水蒸気バリア性を向上することができる。
また、バリアコート層にポリビニルアルコールを含有させることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。
バリアコート層の厚さを0.01μm以上とすることにより、バリア性積層体の酸素バリア性および水蒸気バリア性をより向上することができる。バリアコート層の厚さを10μm以下とすることにより、バリア性積層体の加工適性を向上することができる。また、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
このようなバリアコート層を蒸着膜上に設けることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。
R1 nM(OR2)m
(ただし、式中、R1、R2は、それぞれ、炭素数1~8の有機基を表し、Mは金属原子を表し、nは0以上の整数を表し、mは1以上の整数を表し、n+mはMの原子価を表す。)
また、R1およびR2で表される有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基およびi-ブチル基などのアルキル基を挙げることができる。
シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができるが、特に、エポキシ基を有するオルガノアルコキシシランが好ましい。エポキシ基を有するオルガノアルコキシシランとしては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランおよびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して5質量部以上とすることにより、バリア性積層体の酸素バリア性および水蒸気バリア性をより向上することができる。また、ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して500質量部以下とすることにより、ガスバリア性塗布膜の製膜性を向上することができる。
水溶性高分子に対する金属アルコキシドの比を4.5以下とすることにより、バリア性積層体を屈曲させてもガスバリア性の低下を抑制できる。
水溶性高分子に対する金属アルコキシドの比を1.0以上とすることにより、バリア性積層体を用いて包装製品を作製する際に、ヒートシール等の加熱を行ってもガスバリア性の低下を抑制できる。
なお、上記比は、固形分比である。
珪素原子と炭素原子の比を1.60以下とすることにより、バリア性積層体を屈曲させてもガスバリア性の低下を抑制できる。
珪素原子と炭素原子の比を0.50以上とすることにより、バリア性積層体を用いて包装製品を作製する際に、ヒートシール等の加熱を行ってもガスバリア性の低下を抑制できる。
珪素原子と炭素原子の比の上記範囲は、水溶性高分子に対する金属アルコキシドの比を適宜調整することにより達成できる。
なお、本明細書において、珪素原子と炭素原子の比は、モル基準である。
(測定条件)
使用機器:「ESCA-3400」(Kratos製)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1253.6eV)
X線出力:150W(10kV・15mA)
X線走査面積(測定領域):約6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar+
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間:30秒+30秒+60秒(トータル120秒)で実施し、スペクトルを採取
ガスバリア性塗布膜の厚さを0.01μm以上とすることにより、バリア性積層体の酸素バリア性および水蒸気バリア性を向上することができる。また、蒸着膜におけるクラックの発生を防止することができる。
ガスバリア性塗布膜の厚さを100μm以下とすることにより、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
ゾルゲル法触媒としては、酸またはアミン系化合物が好適である。アミン系化合物としては、水に実質的に不溶であり、且つ有機溶剤に可溶な第3級アミンが好適であり、例えば、N,N-ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミンなどが挙げられる。これらの中でも、N,N-ジメチルべンジルアミンが好ましい。
ゾルゲル法触媒は、金属アルコキシド100質量部当り、0.01質量部以上1.0質量部以下の範囲で使用することが好ましく、0.03質量部以上0.3質量部以下の範囲で使用することがより好ましい。
ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、0.01質量部以上とすることにより、その触媒効果を向上することができる。また、ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、1.0質量部以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、ならびに酢酸、酒石酸などの有機酸が用いられる。酸の使用量は、金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上0.05モル以下であることが好ましい。
酸の使用量を金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上とすることにより、触媒効果を向上することができる。また、酸の使用量を金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.05モル以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
水の含有量を金属アルコキシドの合計モル量1モルに対して、0.1モル以上とすることにより、本発明のバリア性積層体の酸素バリア性および水蒸気バリア性を向上することができる。また、水の含有量をアルコキシドの合計モル量1モルに対して、100モル以下とすることにより、加水分解反応を速やかに行うことができる。
まず、金属アルコキシド、水溶性高分子、ゾルゲル法触媒、水、有機溶剤および必要に応じてシランカップリング剤などを混合し、組成物を調製する。該組成物中では次第に重縮合反応が進行する。
次いで、蒸着膜上に、上記従来公知の方法により、該組成物を塗布、乾燥する。この乾燥により、金属アルコキシドおよび水溶性高分子(組成物が、シランカップリング剤を含む場合は、シランカップリング剤も)の重縮合反応がさらに進行し、複合ポリマーの層が形成される。
最後に、該組成物を、例えば、20~250℃、好ましくは50~220℃の温度で、1秒~10分間加熱することにより、ガスバリア性塗布膜を形成することができる。
一実施形態において、本発明のバリア性積層体は、接着層と、シーラント層との間に中簡層を備える。これにより、本発明のバリア性積層体にコシを持たせることができ、その強度を向上することができる。
中間層の厚さを10μm以上とすることにより、バリア性積層体の強度をより向上することができる。
また、ポリプロピレン樹脂層の厚さを50μm以下とすることにより、バリア性積層体の加工適性をより向上することができる。
本発明のバリア性積層体21は、図8に示すように、多層基材22と、第1蒸着膜23と、接着層24と、シーラント層25とを備え、該多層基材22は、ポリプロプレン樹脂層26と、表面コート層27とを少なくとも備え、シーラント層25は、第2蒸着膜28と、シーラント基材29とを備える。
一実施形態において、本発明のバリア性積層体20は、図9に示すように、第1蒸着膜23と接着層24との間に、バリアコート層30をさらに備える。
一実施形態において、本発明のバリア性積層体は、接着層と、シーラント層との間に、中間層を備える(図示せず)。
なお、バリア性積層体のラミネート強度の測定方法については、後述する実施例において説明する。
多層基材は、ポリプロピレン樹脂層と、表面コート層とを備える。
ポリプロピレン樹脂層は、ポリプロピレンにより構成され、単層構造を有するものであっても、多層構造を有するものであってもよい。
多層基材が、ポリプロプレンにより構成される層を備えることにより、該多層基材を使用して作製される包装容器の耐油性を向上することが可能となる。
ポリプロピレン樹脂層の縦方向(MD方向)および横方向(TD方向)への延伸倍率は、2倍以上15倍以下であることが好ましく、5倍以上13倍以下であることが好ましい。
延伸倍率を2倍以上とすることにより、ポリプロピレン樹脂層の強度および耐熱性をより向上することができる。また、ポリプロピレン樹脂層への印刷適性を向上することができる。
また、ポリプロピレン樹脂層の破断限界という観点からは、延伸倍率は15倍以下であることが好ましい。
ポリプロピレンホモポリマーとは、プロピレンのみの重合体であり、ポリプロピレンランダムコポリマーとは、プロピレンとプロピレン以外の他のα-オレフィン(例えばエチレン、ブテン-1、4-メチル-1-ペンテンなど)などとのランダム共重合体であり、ポリプロピレンブロックコポリマーとは、プロピレンからなる重合体ブロックと、上記したプロピレン以外の他のα-オレフィンからなる重合体ブロックを有する共重合体である。
これらポリプロプロピレンの中でも、透明性の観点からは、ホモポリマーまたはランダムコポリマーを使用することが好ましい。包装袋の剛性や耐熱性を重視する場合には、ホモポリマーを使用し、耐衝撃性などを重視する場合にはランダムコポリマーを使用することが好ましい。
また、バイオマス由来のポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを使用することもできる。
また、本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
ポリプロピレン樹脂層の厚さを10μm以上とすることにより、多層基材の強度および耐熱性をより向上することができる。
また、ポリプロピレン樹脂層の厚さを50μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。
環境負荷の観点から、基材への印刷層形成は、バイオマス由来のインキを用いて行われることが好ましい。
印刷層の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。これらの中でも、環境負荷の観点から、フレキソ印刷法が好ましい。
表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
多層基材は、ポリプロピレン樹脂層上に、極性基を有する樹脂材料を含む表面コート層を備え、該表面コート層上には高い密着性を有する蒸着膜を形成することができ、ガスバリア性を向上することができる。
また、後述するように、表面コート層を備えるバリア性積層体を使用して作製される包装容器は高いラミネート強度を有する。
これらの中でも、包装容器のラミネート性の観点からは、カルボキシル基、カルボニル基、エステル基、水酸基およびアミノ基が好ましく、カルボキシル基および水酸基がより好ましい。
一実施形態において、極性基を有する樹脂材料は、バリア性積層体を用いて包装製品を作製する際に、ヒートシール等の加熱を行ってもガスバリア性の低下を抑制できることから、水酸基含有(メタ)アクリル樹脂が好ましい。
このような樹脂材料を使用することにより、表面コート層上に形成される蒸着膜の密着性を顕著に改善することができ、そのガスバリア性を効果的に向上することができる。
また、本発明の特性を損なわない範囲において、表面コート層は、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
多層基材の総厚さに対する、表面コート層の厚さの割合を、0.08%以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
また、多層基材の総厚さに対する、表面樹脂層の厚さの割合を、20%以下とすることにより、多層基材の加工適性をより向上することができる。また、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
表面コート層の厚さを0.02μm以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装容器のラミネート強度をより向上することができる。
また、表面コート層の厚さを10μm以下とすることにより、多層基材の加工適性をより向上することができる。また、後述するように、本発明のバリア性積層体と、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装容器のリサイクル適性を向上することができる。
また、多層基材はインライン製造することもでき、具体的には、ポリプロピレンを含む樹脂組成物を、Tダイ法またはインフレーション法などを利用して製膜し、樹脂フィルムとした後、縦方向(MD方向)に延伸し、該樹脂フィルム上にコート形成用塗工液を塗布、乾燥した後、横方向(TD方向)に延伸することにより作製することができる。なお、横方向への延伸を先に行ってもよい。
本発明の包装容器は、上記バリア性積層体を備えることを特徴とする。包装容器としては、例えば、包装製品(包装袋)、蓋材およびラミネートチューブなどを挙げることができる。
多層基材の縦方向(MD方向)における引張強度を、横方向(TD方向)における引張強度よりも大きくした場合において、多層基材の縦方向(MD方向)が包装袋31の横方向に、多層基材の横方向(TD方向)が包装袋31の縦方向に対応するように包装袋を作製することが好ましい。このような構成とすることにより、包装容器の横方向への引き裂きが極めて容易となる。以下に例示する包装容器においても同様である。
図11は、スタンディングパウチの構成の一例を簡略に示す図である。図11に示すように、スタンディングパウチ32は、胴部(側面シート)33と、底部(底面シート)34とで構成されている。
スタンディングパウチ32が備える、側面シート33と底面シート34とは、少なくともその一方が本発明のバリア性積層体により構成される。
他の実施形態において、側面シート33は、本発明のバリア性積層体を2枚準備し、これらをシーラント層が向かい合うようにして重ね合わせ、重ね合わせ合わせたバリア性積層体の両端から、シーラント層が外側となるように、V字状に折った2枚の積層体を挿入し、ヒートシールすることにより形成することができる。このような作製方法によれば、側部ガセット付きの胴部を有するスタンドパウチとすることができる。
易開封手段35としては、例えば、図10に示すように、引き裂きの起点となるノッチ部36や、引き裂く際の経路として、レーザー加工やカッターなどにより形成されたハーフカット線37などが挙げられる。
蒸気抜き機構38は、側部シール部から包装容器の内側に向かって突出した蒸気抜きシール部38aと、蒸気抜きシール部38aによって、内容物収容部から隔離された非シール部38bとを備える。
非シール部38bは、包装容易の外部に連通している。電子レンジなどにより、内容物が充填され、開口部がヒートシールされた包装容器を加熱することにより、内部の圧力が高まり、蒸気シール部38aが剥離する。蒸気は、蒸気シール38a剥離箇所および非シール部38bを通り、包装容器外部へ抜ける。
ポリアミド(宇部興産(株)製、ポリアミド6、融点:220℃)と、接着性樹脂(三井化学(株)製、アドマーQF500、無水マレイン酸変性ポリプロピレン)と、ポリプロピレン(日本ポリプロ(株)製、ノバテックFL203D、融点:160℃)とを共押出した後、逐次二軸延伸装置により、縦方向(MD方向)に5倍、横方向(TD方向)に10倍延伸して、ポリアミドからなる表面樹脂層(0.4μm)と、接着性樹脂からなる接着性樹脂層(1μm)と、ポリプロピレンからなるポリプロピレン樹脂層(19.6μm)とを備える、厚さ21μmの多層基材を作製した。多層基材の層厚さに対するポリアミドからなる表面樹脂層の厚さの割合は、2%であった。
(形成条件)
・ヘキサメチルジシロキサン:酸素ガス:ヘリウム=1:10:10(単位:slm)
・冷却・電極ドラム供給電力:22kw
・ライン速度:100m/min
(測定条件)
使用機器:「ESCA-3400」(Kratos製)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1253.6eV)
X線出力:150W(10kV・15mA)
X線走査面積(測定領域):約6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar+
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間:30秒で実施し、スペクトルを採取
水溶性高分子としてケン価度99%以上、重合度2400のポリビニルアルコール14.7g、水324gイソプロピルアルコール17gを混合し、溶液Bを得た。
溶液Aと、溶液Bとを、質量基準で、6.5:3.5となるように、混合し、バリアコート剤を得た。
バリア性積層体におけるポリプロピレンの含有量は、90質量%であった。
接着層の形成に使用した接着剤を、ポリウレタン接着剤(三井化学(株)製、タケラックA-969V/タケネートA-5(配合比3/1))に変更した以外は、実施例1-1と同様にして、本発明のバリア性積層体を作製した。
バリア性積層体におけるポリプロピレンの含有量は、90質量%であった。
一方の面がコロナ処理された、厚さ20μmの2軸延伸ポリプロピレンフィルム(三井化学東セロ(株)製、ME-1)のコロナ処理面に、下記組成の表面コート層形成用溶液を塗布、乾燥して、厚さ0.5μmの表面コート層を形成し、多層基材を作製した。
(表面コート層形成用塗工液組成)
・ポリビニルアルコール 5質量%
(日本ビ・ポバール(株)製、VC-10、重合度1000、ケン化度99.3モル%以上)
・水 90質量%
・イソプロパノール(IPA) 5質量%
バリア性積層体におけるポリプロピレンの含有量は、92質量%であった。
表面コート層形成用塗工液の組成を以下のように変更した以外は、実施例2-1と同様にしてバリア性積層体を作製した。
バリア性積層体におけるポリプロピレンの含有量は、92質量%であった。
(表面コート層形成用塗工液組成)
・EVOH 75質量%
(日本シーマ(株)製、エバーソルブ#10)
・水 12.5質量%
・1-プロパノール 12.5質量%
接着層の形成に使用した接着剤を、ポリウレタン接着剤(三井化学(株)製、タケラックA-969V/タケネートA-5(配合比3/1))に変更した以外は、実施例2-1と同様にして、本発明のバリア性積層体を作製した。
バリア性積層体におけるポリプロピレンの含有量は、92質量%であった。
上記ポリプロピレン(日本ポリプロ(株)製、ノバテックFL203D、融点:160℃)を押出した後、逐次二軸延伸装置により、縦方向(MD方向)に5倍、横方向(TD方向)に10倍延伸して、厚さ20μmのプロピレンフィルムを作製した。
実施例1-1における多層基材を上記のようにして作製したポリプロプレンフィルムに変更した以外は、実施例1-1と同様にしてバリア性積層体を作製した。
上記実施例および比較例において得られたバリア性積層体を切り出して、試験片を得た。この試験片を用いて、酸素透過度(cc/m2・day・atm)および水蒸気透過度(g/m2・day)を、以下の方法により測定し、その結果を表1にまとめた。
酸素透過度測定装置(MOCON社製、OX-TRAN2/20)を用いて、試験片の多層基材側が酸素供給側になるようにセットして、JIS K 7126準拠して、23℃、相対湿度90%RH環境下における酸素透過度を測定した。
[水蒸気透過度]
水蒸気透過度測定装置(MOCON社製、PERMATRAN―w 3/33)を用いて、試験片の多層基材側が水蒸気供給側になるようにセットして、JIS K 7129に準拠して、40℃、相対湿度90%RH環境下における水蒸気透過度を測定した。
上記実施例及び比較例において得られたバリア性積層体を15mm巾の短冊状にカットしたサンプルを、引張試験機((株)オリエンテック製、テンシロン万能材料試験機)を用いて、JIS K6854-2に準拠し、ラミネート強度(N/15mm)を、剥離速度50mm/minで90°剥離(T字剥離法)を用いて測定した。
具体的には、まず、バリア性積層体を切り出して、図12に示すように、基材側71と、シーラント層側72とを長辺方向において15mm剥離させた短冊状の試験片70を準備した。その後、図13に示すように、基材側71およびシーラント層側72のうち既に剥離されている部分をそれぞれ、測定器のつかみ具73で把持した。つかみ具73をそれぞれ、基材側71とシーラント層側72とがまだ積層されている部分の面方向に対して直交する方向において互いに逆向きに、50mm/分の速度で引っ張り、安定領域(図14参照)における引張応力の平均値を測定した。引っ張りを開始する際の、つかみ具73間の間隔Sは30mmとし、引っ張りを終了する際の、つかみ具73間の間隔Sは60mmとした。図14は、つかみ具73間の間隔Sに対する引張応力の変化を示す図である。図14に示すように、間隔Sに対する引張応力の変化は、第1領域を経て、第1領域よりも変化率の小さい第2領域(安定領域)に入る。
5個の試験片70について、安定領域における引張応力の平均値を測定し、その平均値をラミネート強度とした。測定時の環境は、温度23℃、相対湿度50%とした。測定結果を表1にまとめた。
実施例1-1と同様にして、多層基材を作製し、多層基材上に蒸着膜を形成した。
(測定条件)
使用機器:「ESCA-3400」(Kratos製)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1253.6eV)
X線出力:150W(10kV・15mA)
X線走査面積(測定領域):約6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar+
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間:30秒+30秒+60秒(トータル120秒)で実施し、スペクトルを採取
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例1-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例1-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例1-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例1-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例1-1と同様して、バリア性積層体を作製した。
蒸着膜の形成を以下のように変更した以外は、参考例1-1と同様にして、バリア性積層体を作製した。
表面樹脂層上に、実機である、酸素プラズマ前処理装置を配置した前処理区画と、成膜区画とを隔離して備える連続蒸着膜成膜装置を用いて、前処理区画において、Roll to Rollにより、多層基材にテンションを与えながら、下記条件下でプラズマ供給ノズルからプラズマを導入し、酸素プラズマ前処理を施し、連続搬送した成膜区画において、酸素プラズマ処理面に、下記条件で、真空蒸着法の加熱手段として反応性抵抗加熱方式を用い、厚さ12nmの酸化アルミニウム(アルミナ)蒸着膜を形成した(PVD法)。
(形成条件)
(酸素プラズマ前処理条件)
・プラズマ強度:200W・sec/m2
・プラズマ形成ガス比:酸素:アルゴン=2:1
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
(成膜条件)
・搬送速度:400m/min
・酸素ガス供給量:20000sccm
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例2-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例2-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例2-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例2-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例2-1と同様して、バリア性積層体を作製した。
ポリアミドを、エチレンビニルアルコール(クラレ(株)製、エバール F171B、融点:183℃)に変更し、表面樹脂層を形成した以外は、参考例1-1と同様にして、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例3-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例3-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例3-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例3-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例3-1と同様して、バリア性積層体を作製した。
ポリアミドを、エチレンビニルアルコール(クラレ(株)製、エバール F171B、融点:183℃)に変更し、表面樹脂層を形成した以外は、参考例2-1と同様にして、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例4-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例4-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例4-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例4-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例4-1と同様して、バリア性積層体を作製した。
実施例2-1の2軸延伸ポリプロピレンフィルムのコロナ処理面に、以下のようにして調製した表面コート層形成用塗工液を塗布、乾燥して、厚さ0.5μmの表面コート層を形成し、多層基材を作製した。
トリレンジイソシアネートを含有する酢酸エチル溶液(固形分75質量%)を硬化剤として、主剤に添加し、表面コート層形成用塗工液を得た。なお、硬化剤の使用量は、主剤100質量部に対し、10質量部とした。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例5-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例5-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例5-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例5-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例5-1と同様して、バリア性積層体を作製した。
蒸着膜の形成を以下のように変更した以外は、参考例5-1と同様にして、第バリア性積層体を作製した。
表面コート層上に、実機である、プラズマガンを備える誘導加熱式真空成膜装置を用いて、Roll to Rollにより、多層基材にテンションを与えながら、厚さ20nmの酸化珪素(シリカ)蒸着膜を形成した(PVD法)。なお、蒸着膜形成条件は以下の通りとした。
(形成条件)
(プラズマ照射条件)
・ライン速度:30m/分
・真空度:1.7×10-2Pa
・出力:5.7kw
・加速電圧:151V
・Arガス流量:7.5sccm
(成膜条件)
・蒸着材料:SiO
・反応ガス:O2
・反応ガス流量:100sccm
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例6-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例6-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例6-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例6-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例6-1と同様して、バリア性積層体を作製した。
蒸着膜の形成を以下のように変更した以外は、参考例5-1と同様にして、バリア性積層体を作製した。
(形成条件)
(酸素プラズマ前処理条件)
・プラズマ強度:200W・sec/m2
・プラズマ形成ガス比:酸素:アルゴン=2:1
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
(成膜条件)
・搬送速度:400m/min
・酸素ガス供給量:20000sccm
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、4.1となるようにバリアコート層を形成したこと以外は、参考例7-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、3.3となるようにバリアコート層を形成したこと以外は、参考例7-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、2.7となるようにバリアコート層を形成したこと以外は、参考例7-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.9となるようにバリアコート層を形成したこと以外は、参考例7-1と同様して、バリア性積層体を作製した。
水溶性高分子に対する金属アルコキシドの固形分比(金属アルコキシド/水溶性高分子)が、質量基準において、1.5となるようにバリアコート層を形成したこと以外は、参考例7-1と同様して、バリア性積層体を作製した。
上記参考例おいて得られたバリア性積層体を切り出して、試験片を得た。この試験片を用いて、上記と同様にして、酸素透過度(cc/m2・day・atm)および水蒸気透過度(g/m2・day)を測定した。その結果を表2~8にまとめた。なお、表2~8では、酸素透過度および蒸気透過度の単位を省略する。
上記参考例おいて得られたバリア性層体を用いて、筒状の袋を作製した。この袋を用いて、ASTM F392に準拠したゲルボフレックス試験を10回繰り返した。
その後、当該袋からバリア性積層体を切り出して、試験片を得た。この試験片を用いて、上記と同様にして、酸素透過度(cc/m2・day・atm)および水蒸気透過度(g/m2・day)を測定した。その結果を表2~8にまとめた。なお、表2~8では、酸素透過度および蒸気透過度の単位を省略する。
Claims (16)
- 多層基材と、第1蒸着膜と、接着層と、シーラント層とを備えるバリア性積層体であって、
前記多層基材は、延伸処理が施されており、
更に、前記多層基材が、少なくともポリプロピレン樹脂層と表面樹脂層とを備え、
前記表面樹脂層が、融点180℃以上の樹脂材料を含み、
前記樹脂材料が、エチレンビニルアルコール共重合体であり、
前記バリア性積層体が、前記表面樹脂層上に前記第1蒸着膜を備え、
前記第1蒸着膜が、無機酸化物から構成され、
前記シーラント層が、第2蒸着膜と、シーラント基材とを備えることを特徴とする、バリア性積層体。 - 前記ポリプロピレン樹脂層と、前記シーラント基材とが同一の材料から構成され、
前記同一材料が、ポリプロピレンである、請求項1に記載のバリア性積層体。 - 前記第2蒸着膜がアルミニウム蒸着膜であり、
前記接着層が、ポリエステルポリオールおよびイソシアネート化合物を含む組成物の硬化物を含む接着剤層である、請求項1または2に記載のバリア性積層体。 - 前記樹脂材料の融点が、265℃以下である、請求項1~3のいずれか一項に記載のバリア性積層体。
- 前記樹脂材料の融点と、前記ポリプロピレン樹脂層に含まれるポリプロピレンの融点と、の差が20~80℃である、請求項1~4のいずれか一項に記載のバリア性積層体。
- 前記多層基材の総厚さに対する、前記表面樹脂層の厚さの割合が、1%以上10%以下である、請求項1~5のいずれか一項に記載のバリア性積層体。
- 前記多層基材が、共押フィルムである、請求項1~6のいずれか一項に記載のバリア性積層体。
- 多層基材と、第1蒸着膜と、接着層と、シーラント層とを備えるバリア性積層体であって、
前記多層基材は、少なくともポリプロピレン樹脂層と表面コート層とを備え、
前記ポリプロピレン樹脂層は、延伸処理が施されており、
かつ前記表面コート層が、極性基を有する樹脂材料を含み、
前記樹脂材料が、エチレンビニルアルコール共重合体(EVOH)、ポリビニルアルコール(PVA)、ポリエステル、ポリエチレンイミン、水酸基含有(メタ)アクリル樹脂、ナイロン6、ナイロン6,6、MXDナイロン、アモルファスナイロンおよびポリウレタンから選択される1以上の樹脂材料であり、
前記バリア性積層体が、前記表面コート層上に前記第1蒸着膜を備え、
前記第1蒸着膜が、無機酸化物から構成され、
前記シーラント層が、第2蒸着膜と、シーラント基材とを備えることを特徴とする、バリア性積層体。 - 前記ポリプロピレン樹脂層と、シーラント基材とが同一の材料から構成され、
前記同一材料が、ポリプロピレンである、請求項8に記載のバリア性積層体。 - 前記第2蒸着膜がアルミニウム蒸着膜であり、
前記接着層が、ポリエステルポリオールおよびイソシアネート化合物を含む組成物の硬化物を含む接着剤層である、請求項8または9に記載のバリア性積層体。 - 前記多層基材の総厚さに対する、前記表面コート層の厚さの割合が、0.08%以上20%以下である、請求項8~10のいずれか一項に記載のバリア性積層体。
- 前記表面コート層の厚さが、0.02μm以上10μm以下である、請求項8~11のいずれか一項に記載のバリア性積層体。
- 前記表面コート層は、水系エマルジョンまたは溶剤系エマルジョンを用いて形成された層である、請求項8~12のいずれか一項に記載のバリア性積層体。
- 前記第1蒸着膜と前記接着層との間に、バリアコート層をさらに備える、請求項1~13のいずれか一項に記載のバリア性積層体。
- 包装容器用途に用いられる、請求項1~14のいずれか一項に記載のバリア性積層体。
- 請求項1~15のいずれか一項に記載のバリア性積層体を備えることを特徴とする、包装容器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019181039 | 2019-09-30 | ||
JP2019181039 | 2019-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021054077A JP2021054077A (ja) | 2021-04-08 |
JP7644897B2 true JP7644897B2 (ja) | 2025-03-13 |
Family
ID=75269452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020163976A Active JP7644897B2 (ja) | 2019-09-30 | 2020-09-29 | バリア性積層体、該バリア性積層体を備える包装容器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7644897B2 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191462A (ja) | 1999-11-05 | 2001-07-17 | Tohcello Co Ltd | 積層体 |
JP2006096046A (ja) | 2000-03-14 | 2006-04-13 | Dainippon Printing Co Ltd | ガスバリアフィルム |
JP2014531341A (ja) | 2011-09-20 | 2014-11-27 | テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. | 多層バリアフィルム、そのフィルムを含むパッケージングラミネート、そのパッケージングラミネートから形成されるパッケージング容器、及びそのフィルムの製造方法 |
WO2015087976A1 (ja) | 2013-12-11 | 2015-06-18 | 凸版印刷株式会社 | 真空断熱材の外装材、真空断熱材、及び断熱容器 |
WO2016186074A1 (ja) | 2015-05-18 | 2016-11-24 | 三井化学東セロ株式会社 | ガスバリア性積層体 |
WO2017005597A1 (en) | 2015-07-03 | 2017-01-12 | Amcor Flexibles Kreuzlingen | Flexible multilayer packaging film with ultra-high barrier properties |
JP2018171796A (ja) | 2017-03-31 | 2018-11-08 | 大日本印刷株式会社 | 易開封性ガスバリア積層体、及び該積層体からなる易開封性ガスバリア包装材料とピロー包装袋 |
JP2019043061A (ja) | 2017-09-04 | 2019-03-22 | 大日本印刷株式会社 | 包装用積層体および真空断熱材用外包材 |
-
2020
- 2020-09-29 JP JP2020163976A patent/JP7644897B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191462A (ja) | 1999-11-05 | 2001-07-17 | Tohcello Co Ltd | 積層体 |
JP2006096046A (ja) | 2000-03-14 | 2006-04-13 | Dainippon Printing Co Ltd | ガスバリアフィルム |
JP2014531341A (ja) | 2011-09-20 | 2014-11-27 | テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. | 多層バリアフィルム、そのフィルムを含むパッケージングラミネート、そのパッケージングラミネートから形成されるパッケージング容器、及びそのフィルムの製造方法 |
WO2015087976A1 (ja) | 2013-12-11 | 2015-06-18 | 凸版印刷株式会社 | 真空断熱材の外装材、真空断熱材、及び断熱容器 |
WO2016186074A1 (ja) | 2015-05-18 | 2016-11-24 | 三井化学東セロ株式会社 | ガスバリア性積層体 |
WO2017005597A1 (en) | 2015-07-03 | 2017-01-12 | Amcor Flexibles Kreuzlingen | Flexible multilayer packaging film with ultra-high barrier properties |
JP2018171796A (ja) | 2017-03-31 | 2018-11-08 | 大日本印刷株式会社 | 易開封性ガスバリア積層体、及び該積層体からなる易開封性ガスバリア包装材料とピロー包装袋 |
JP2019043061A (ja) | 2017-09-04 | 2019-03-22 | 大日本印刷株式会社 | 包装用積層体および真空断熱材用外包材 |
Also Published As
Publication number | Publication date |
---|---|
JP2021054077A (ja) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020045629A1 (ja) | ヒートシール性積層体、積層基材、ガスバリア性中間層用積層体、包装材料用積層体および包装材料 | |
WO2018021478A1 (ja) | 酸素バリア性を有する積層体および該積層体からなる包装材料 | |
JP7100830B2 (ja) | バリア性積層体、該バリア性積層体を備えるヒートシール性積層体および該ヒートシール性積層体を備える包装容器 | |
JP2021054078A (ja) | バリア性積層体、該バリア性積層体を備える包装容器 | |
JP7248052B2 (ja) | 無溶剤型接着剤を用いた易開封性ガスバリア積層体、及び該積層体からなる易開封性ガスバリア包装材料と易開封性ピロー包装袋 | |
JP7248051B2 (ja) | 無溶剤型接着剤を用いたガスバリア積層体、及び該積層体からなるガスバリア包装材料とピロー包装袋 | |
JP6963762B2 (ja) | バリア性積層体、該バリア性積層体を備える包装容器 | |
WO2021065888A1 (ja) | バリア性積層体、該バリア性積層体を備える包装容器 | |
JP2020037189A (ja) | 包装材料用積層体および包装材料 | |
JP2024059746A (ja) | 包装材料用積層体および包装材料 | |
JP2020040258A (ja) | ガスバリア性積層体、包装材料用積層体および包装材料 | |
JP2023089053A (ja) | 包装材料用積層体および包装材料 | |
JP2023168376A (ja) | 積層基材、包装材料用積層体および包装材料 | |
JP7594742B2 (ja) | 積層体、レトルト用またはボイル用パウチ | |
JP2024061748A (ja) | 積層基材、包装材料用積層体および包装材料 | |
JP2023168375A (ja) | 包装材料用積層体および包装材料 | |
JP2023168377A (ja) | 包装材料用積層体および包装材料 | |
JP7644897B2 (ja) | バリア性積層体、該バリア性積層体を備える包装容器 | |
JP2022007962A (ja) | 積層体、レトルト用またはボイル用パウチ | |
JP2022007961A (ja) | 積層体及びそれを用いた蓋材 | |
JP7432132B2 (ja) | ヒートシール性積層体、包装材料用積層体、および包装材料 | |
JP2023174735A (ja) | 基材、包装材料用積層体および包装材料 | |
JP4549872B2 (ja) | 透明ガスバリア性積層体 | |
JP2022007963A (ja) | 積層体、該積層体を備える電子レンジパウチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7644897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |