[go: up one dir, main page]

JP7644509B2 - Method for producing silver chloride particles - Google Patents

Method for producing silver chloride particles Download PDF

Info

Publication number
JP7644509B2
JP7644509B2 JP2022150549A JP2022150549A JP7644509B2 JP 7644509 B2 JP7644509 B2 JP 7644509B2 JP 2022150549 A JP2022150549 A JP 2022150549A JP 2022150549 A JP2022150549 A JP 2022150549A JP 7644509 B2 JP7644509 B2 JP 7644509B2
Authority
JP
Japan
Prior art keywords
silver chloride
chloride particles
silver
particle diameter
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022150549A
Other languages
Japanese (ja)
Other versions
JP2024044800A (en
Inventor
陽介 渋谷
己幸 神保
Original Assignee
東洋化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋化学工業株式会社 filed Critical 東洋化学工業株式会社
Priority to JP2022150549A priority Critical patent/JP7644509B2/en
Publication of JP2024044800A publication Critical patent/JP2024044800A/en
Application granted granted Critical
Publication of JP7644509B2 publication Critical patent/JP7644509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、電極や配線などの導電体を形成するためなどに用いられる塩化銀含有ペーストおよびこの塩化銀含有ペーストの原材料となる塩化銀粒子に関する。 The present invention relates to a silver chloride-containing paste used to form conductors such as electrodes and wiring, and to silver chloride particles that are the raw material for this silver chloride-containing paste.

塩化銀粒子を含むペースト(本明細書において、「塩化銀含有ペースト」ともいう。)は、生体電極を具体例とする電極・配線を形成するための原材料などに使用される。例えば、特許文献1には、エラストマーと銀粉と塩化銀粒子とを含む導電性組成物であって、前記銀粉が表面処理されたものであり、前記銀粉は、その平均一次粒子径が1.0μm以下で、かつみかけ空隙率が50~95%であり、導電性組成物中において、前記銀粉および塩化銀粒子の二次粒子の粒度分布における累積95%粒子径(D95粒子径)が、3.0~25.0μmであることを特徴とする、導電性組成物が開示されている。 A paste containing silver chloride particles (also referred to as "silver chloride-containing paste" in this specification) is used as a raw material for forming electrodes and wiring, for example, a bioelectrode. For example, Patent Document 1 discloses a conductive composition containing an elastomer, silver powder, and silver chloride particles, in which the silver powder is surface-treated, the silver powder has an average primary particle size of 1.0 μm or less, an apparent porosity of 50 to 95%, and the cumulative 95% particle size (D95 particle size) in the particle size distribution of the secondary particles of the silver powder and silver chloride particles in the conductive composition is 3.0 to 25.0 μm.

また、塩化銀含有ペーストは、塩化銀や銀の優れた光化学的性質に基づき、光触媒などとして、医薬を含む広い分野に使用されうる(例えば特許文献2参照。)。この特許文献2には、硝酸銀と塩酸との反応モル比によって形成されたナノ凝集体の形状と構造が変化されるナノ凝集体の製造方法として、前記硝酸銀と塩酸との反応モル比が1:2-1:30である場合、50-2000nmのサイズの塩化銀ナノキューブが形成されることが開示されている。 The silver chloride-containing paste can be used in a wide range of fields, including medicine, as a photocatalyst, due to the excellent photochemical properties of silver chloride and silver (see, for example, Patent Document 2). Patent Document 2 discloses a method for producing nanoaggregates in which the shape and structure of the nanoaggregates formed are changed by the reaction molar ratio of silver nitrate and hydrochloric acid, and that when the reaction molar ratio of silver nitrate and hydrochloric acid is 1:2-1:30, silver chloride nanocubes with sizes of 50-2000 nm are formed.

特開2020-55918号公報JP 2020-55918 A 韓国登録特許第10-1209175号公報Korean Patent No. 10-1209175

塩化銀含有ペーストは、これを用いた部材、例えば電極の特性を安定させる観点などから、含有される塩化銀粒子は可能な限り均一に分散していることが好ましい。それゆえ、塩化銀含有ペーストに含有される塩化銀粒子の一次粒径を小さくすることが好ましいと考えられていた。 From the viewpoint of stabilizing the characteristics of the component using the silver chloride-containing paste, such as an electrode, it is preferable that the silver chloride particles contained therein are dispersed as uniformly as possible. For this reason, it has been thought that it is preferable to reduce the primary particle size of the silver chloride particles contained in the silver chloride-containing paste.

本発明は、例えば電極・配線の原材料となる塩化銀含有ペーストを調製するためなどに用いられる塩化銀粒子であって、塩化銀含有ペーストにしたときに良好な分散性が得られる塩化銀粒子の製造方法を提供することを目的とする。本発明は、塩化銀含有ペーストにしたときに良好な分散性が得られる塩化銀粒子、およびかかる塩化銀粒子を含む塩化銀含有ペーストを提供することも目的とする。 The present invention aims to provide a method for producing silver chloride particles that are used, for example, to prepare a silver chloride-containing paste that is a raw material for electrodes and wiring, and that have good dispersibility when made into a silver chloride-containing paste. The present invention also aims to provide silver chloride particles that have good dispersibility when made into a silver chloride-containing paste, and a silver chloride-containing paste that contains such silver chloride particles.

かかる課題を解決するために提供される本発明の一態様に係る塩化銀粒子の製造方法は、銀のアンミン錯体と塩化物イオンとの液中反応により塩化銀粒子を析出させることを含む塩化銀粒子の製造方法であって、前記塩化銀粒子の析出前もしくは析出後またはその両方に分散剤を添加することを特徴とする。 The method for producing silver chloride particles according to one embodiment of the present invention, which is provided to solve such problems, is a method for producing silver chloride particles that includes precipitating silver chloride particles by a liquid reaction between a silver ammine complex and chloride ions, and is characterized in that a dispersant is added before or after the precipitation of the silver chloride particles, or both.

かかる製造方法を採用することにより、一次粒径が比較的大きく、かつ一次粒子が凝集しにくい塩化銀粒子を得ることができる。 By adopting this manufacturing method, it is possible to obtain silver chloride particles that have a relatively large primary particle size and that are less prone to agglomeration.

上記の製造方法において、銀のアンミン錯体は、硝酸銀とアンモニアとの反応により生成させてもよい。 In the above manufacturing method, the silver ammine complex may be produced by reacting silver nitrate with ammonia.

上記の製造方法において、分散剤は、陰イオン系の界面活性剤であることが好ましい。 In the above manufacturing method, the dispersant is preferably an anionic surfactant.

上記の製造方法において、塩化物イオンを与える塩素源は塩酸を含むことが好ましい場合がある。 In the above manufacturing method, it may be preferable that the chlorine source that provides chloride ions contains hydrochloric acid.

本発明は、他の一態様として、レーザ回折/散乱法で湿式測定して得られた体積基準の粒子径分布(本明細書において、ことわりのない「体積基準の粒子径分布」はこの意味で用いる。)において小粒径側からの累積粒度分布(本明細書において、ことわりのない「累積粒度分布」はこの意味で用いる。)における累積50%粒子径D50が8μm以上25μm以下であることを特徴とする塩化銀粒子を提供する。 In another aspect, the present invention provides silver chloride particles characterized in that the cumulative 50% particle diameter D50 in the cumulative particle size distribution from the small particle size side (in this specification, "cumulative particle size distribution" is used in this sense unless otherwise specified) in the volumetric particle size distribution obtained by wet measurement using a laser diffraction/scattering method (in this specification, "cumulative particle size distribution" is used in this sense unless otherwise specified) is 8 μm or more and 25 μm or less.

かかる塩化銀粒子は、一次粒径が小さく凝集力が大きい塩化銀粒子の存在割合が少ないため、凝集しにくく、結果、粗大粒子が発生しにくい。 Since such silver chloride particles have a small primary particle size and a small proportion of silver chloride particles with high cohesive power, they are less likely to aggregate, and as a result, coarse particles are less likely to be generated.

上記の塩化銀粒子において、累積粒度分布における、累積10%粒子径D10および累積90%粒子径D90ならびに累積50%粒子径D50が、下記式(1)を満たすことが好ましい場合がある。
(D90-D10)/D50≦2.2 (1)
In the above silver chloride particles, it may be preferable that the cumulative 10% particle diameter D10, the cumulative 90% particle diameter D90, and the cumulative 50% particle diameter D50 in the cumulative particle size distribution satisfy the following formula (1).
(D90-D10)/D50≦2.2 (1)

上記の塩化銀粒子において、体積基準の粒子径分布の最頻度粒子径Dmが10μm以上であることが好ましい場合がある。 In the above silver chloride particles, it may be preferable that the most frequent particle size Dm of the volume-based particle size distribution is 10 μm or more.

上記の塩化銀粒子において、累積50%粒子径D50と体積基準の粒子径分布における最頻度粒子径Dmとが下記式(2)を満たすことが好ましい場合がある。
Dm/D50≦1.7 (2)
In the above silver chloride particles, it is sometimes preferable that the cumulative 50% particle diameter D50 and the most frequent particle diameter Dm in the volume-based particle diameter distribution satisfy the following formula (2).
Dm/D50≦1.7 (2)

上記の塩化銀粒子の体積基準の粒子径分布において、最頻度粒子径Dmよりも小粒径側に位置するピークであるサブピークの頻度分布値Psは、最頻度粒子径Dmにおける頻度分布値Pmと下記式(3)を満たす
Ps≦Pm×0.6 (3)
In the volume-based particle size distribution of the silver chloride particles, the frequency distribution value Ps of a sub-peak, which is a peak located on the smaller particle size side than the most frequent particle size Dm, satisfies the following formula (3) together with the frequency distribution value Pm at the most frequent particle size Dm: Ps≦Pm×0.6 (3)

上記の塩化銀粒子の製造方法は、上記の塩化銀粒子を製造するためのものであってもよい。 The method for producing the silver chloride particles may be for producing the silver chloride particles.

本発明は、他の一態様として、上記の塩化銀粒子とビヒクルとを含むことを特徴とする塩化銀含有ペーストを提供する。この塩化銀含有ペーストは、導電粒子をさらに含有していてもよく、導電粒子が銀粉を含んでいてもよい。 In another aspect, the present invention provides a silver chloride-containing paste comprising the above-mentioned silver chloride particles and a vehicle. This silver chloride-containing paste may further contain conductive particles, and the conductive particles may contain silver powder.

本発明によれば、過大な二次粒径を有する塩化銀粒子が生じにくい塩化銀粒子の製造方法が提供される。また、本発明により、塩化銀含有ペーストにしたときに良好な分散性が得られる塩化銀粒子、およびかかる塩化銀粒子を含む塩化銀含有ペーストが提供される。 The present invention provides a method for producing silver chloride particles that is less likely to produce silver chloride particles with excessively large secondary particle sizes. The present invention also provides silver chloride particles that exhibit good dispersibility when made into a silver chloride-containing paste, and a silver chloride-containing paste that contains such silver chloride particles.

実施例1および比較例1の塩化銀粒子についての、体積基準の粒子径分布を示すグラフである。1 is a graph showing the volume-based particle size distribution of silver chloride particles of Example 1 and Comparative Example 1. 実施例1および比較例1の塩化銀粒子についての、体積基準の累積粒度分布を示すグラフである。1 is a graph showing the volume-based cumulative particle size distribution of silver chloride particles of Example 1 and Comparative Example 1. 実施例1の塩化銀粒子の観察画像(500倍)を示す図である。FIG. 2 is a diagram showing an observation image (magnification: 500 times) of the silver chloride particles of Example 1. 実施例1の塩化銀粒子の観察画像(2000倍)を示す図である。FIG. 2 is a diagram showing an observation image (2000x) of the silver chloride particles of Example 1. 実施例1の塩化銀粒子の観察画像(10000倍)を示す図である。FIG. 2 is a diagram showing an observation image (10,000 times) of the silver chloride particles of Example 1. 比較例1の塩化銀粒子の観察画像(500倍)を示す図である。FIG. 2 is a diagram showing an observed image (magnification: 500 times) of silver chloride particles in Comparative Example 1. 比較例1の塩化銀粒子の観察画像(2000倍)を示す図である。FIG. 2 is a diagram showing an observed image (2000x) of silver chloride particles in Comparative Example 1. 比較例1の塩化銀粒子の観察画像(10000倍)を示す図である。FIG. 2 is a diagram showing an observed image (10,000 times) of silver chloride particles in Comparative Example 1. 実施例22の塩化銀粒子についての、体積基準の粒子径分布を示すグラフである。2 is a graph showing the volume-based particle size distribution of the silver chloride particles of Example 22. 実施例22の塩化銀粒子についての、体積基準の累積粒度分布を示すグラフである。2 is a graph showing the cumulative particle size distribution by volume for the silver chloride particles of Example 22. 実施例22の塩化銀粒子の観察画像(10000倍)を示す図である。FIG. 13 is a diagram showing an observation image (10,000 times) of silver chloride particles of Example 22. 実施例1に基づく配線パターン(配線パターン1、測定箇所2)の形状の測定結果を示す図である。1A and 1B are diagrams showing measurement results of the shape of a wiring pattern (wiring pattern 1, measurement point 2) based on Example 1. 実施例21に基づく配線パターン(配線パターン1、測定箇所2)の形状の測定結果を示す図である。FIG. 23 is a diagram showing the measurement results of the shape of a wiring pattern (wiring pattern 1, measurement point 2) based on Example 21. 比較例1に基づく配線パターン(配線パターン2、測定箇所1)の形状の測定結果を示す図である。FIG. 13 is a diagram showing the measurement results of the shape of a wiring pattern (wiring pattern 2, measurement location 1) based on Comparative Example 1. 実施例1に基づく配線パターン(配線パターン2、測定箇所4)の形状の測定結果を示す図である。11 is a diagram showing the measurement results of the shape of a wiring pattern (wiring pattern 2, measurement point 4) based on Example 1. FIG. 実施例21に基づく配線パターン(配線パターン1、測定箇所4)の形状の測定結果を示す図である。FIG. 23 is a diagram showing the measurement results of the shape of a wiring pattern (wiring pattern 1, measurement point 4) based on Example 21. 比較例1に基づく配線パターン(配線パターン1、測定箇所5)の形状の測定結果を示す図である。FIG. 13 is a diagram showing the measurement results of the shape of a wiring pattern (wiring pattern 1, measurement point 5) based on Comparative Example 1.

以下、本発明の実施形態について説明する。本発明の一実施形態に係る塩化銀粒子は、レーザ回折/散乱法で湿式測定して得られた体積基準の粒子径分布において小粒径側からの累積粒度分布における累積50%粒子径D50が8μm以上25μm以下である。累積50%粒子径D50が8μm以上25μm以下であることにより、一次粒径が小さく凝集力が大きい塩化銀粒子の存在割合が少なくなり、結果、粗大な二次粒子が生成されにくくなる。一次粒径が小さい塩化銀粒子の存在割合をより安定的に少なくする観点から、累積50%粒子径D50は、20μm以下であることがより好ましい場合がある。 The following describes an embodiment of the present invention. In the volume-based particle size distribution obtained by wet measurement using a laser diffraction/scattering method, the silver chloride particles according to one embodiment of the present invention have a cumulative 50% particle diameter D50 of 8 μm or more and 25 μm or less in the cumulative particle size distribution from the small particle size side. By having a cumulative 50% particle diameter D50 of 8 μm or more and 25 μm or less, the proportion of silver chloride particles with small primary particle diameters and high cohesive force is reduced, and as a result, coarse secondary particles are less likely to be generated. From the viewpoint of more stably reducing the proportion of silver chloride particles with small primary particle diameters, it may be more preferable that the cumulative 50% particle diameter D50 is 20 μm or less.

本実施形態に係る塩化銀粒子において、累積粒度分布における、累積10%粒子径D10および累積90%粒子径D90ならびに累積50%粒子径D50が、下記式(1)を満たすことが好ましい場合がある。
(D90-D10)/D50≦2.2 (1)
In the silver chloride particles according to this embodiment, it may be preferable that the cumulative 10% particle diameter D10, the cumulative 90% particle diameter D90, and the cumulative 50% particle diameter D50 in the cumulative particle size distribution satisfy the following formula (1).
(D90-D10)/D50≦2.2 (1)

上記式(1)の左辺は、累積粒度分布の立ち上がりの急峻さの程度を示しており、左辺の数値が小さいほど急峻に立ち上がり、粒子径分布では分布幅が狭くなる。塩化銀粒子の分布は、可能な範囲で狭いことが塩化銀含有ペーストの品質安定性(粗大な二次粒子が生じにくいこと)の観点から好ましい場合があるため、上記式(1)の左辺は、2.0以下であることがより好ましい場合があり、1.5以下であることが特に好ましい場合がある。 The left side of the above formula (1) indicates the degree of steepness of the rise of the cumulative particle size distribution; the smaller the value on the left side, the steeper the rise and the narrower the distribution width of the particle size distribution. Since it may be preferable for the distribution of silver chloride particles to be as narrow as possible from the viewpoint of the quality stability of the silver chloride-containing paste (prevention of coarse secondary particles), it may be more preferable for the left side of the above formula (1) to be 2.0 or less, and particularly preferably 1.5 or less.

本実施形態に係る塩化銀粒子は、最頻度粒子径Dmが10μm以上であることが好ましい場合がある。最頻度粒子径Dmが10μm以上である場合には、一次粒径が小さい塩化銀の量が相対的に少なく、塩化銀含有ペーストの品質安定性に優れる。累最頻度粒子径Dmの上限は特に限定されないが、35μm以下であることが好ましい場合があり、30μm以下であることがより好ましい場合がある。 The silver chloride particles according to this embodiment may preferably have a modal particle diameter Dm of 10 μm or more. When the modal particle diameter Dm is 10 μm or more, the amount of silver chloride having a small primary particle diameter is relatively small, and the quality stability of the silver chloride-containing paste is excellent. There is no particular upper limit to the cumulative modal particle diameter Dm, but it may be preferable for it to be 35 μm or less, and it may be more preferable for it to be 30 μm or less.

累積50%粒子径D50と体積基準の粒子径分布の最頻度粒子径Dmとが下記式(1)を満たしてもよい。
1.0<Dm/D50≦1.7 (1)
The cumulative 50% particle diameter D50 and the most frequent particle diameter Dm of the volume-based particle diameter distribution may satisfy the following formula (1).
1.0<Dm/D50≦1.7 (1)

累積50%粒子径D50は体積基準の粒子径分布において粒子体積の小径側からの累計値と大径側からの累積値とが等しくなる粒子径である。一方、最頻度粒子径Dmは、体積基準の粒子径分布の最大ピークが位置する粒子径である。 The cumulative 50% particle diameter D50 is the particle diameter at which the cumulative value from the small diameter side of the particle volume is equal to the cumulative value from the large diameter side in the volume-based particle diameter distribution. On the other hand, the most frequent particle diameter Dm is the particle diameter at which the maximum peak of the volume-based particle size distribution is located.

これらの粒子径の比(Dm/D50)が1.7以下であることにより、最大ピークよりも小径側に位置するサブピークが顕在化しにくく、一次粒径が小さな銀粒子の存在割合が小さい。それゆえ、かかる塩化銀粒子を含む塩化銀含有ペーストには大径の二次粒子が発生にくい。この観点から、Dm/D50は、1.6以下であることが好ましい場合があり、1.5以下であることがより好ましい場合があり、1.4以下であることがさらに好ましい場合があり、1.3以下であることが特に好ましい場合がある。 When the particle size ratio (Dm/D50) is 1.7 or less, the sub-peak located on the smaller diameter side of the maximum peak is less likely to become apparent, and the proportion of silver particles with small primary particle sizes is small. Therefore, large secondary particles are less likely to be generated in a silver chloride-containing paste that contains such silver chloride particles. From this perspective, Dm/D50 may be preferably 1.6 or less, more preferably 1.5 or less, even more preferably 1.4 or less, and particularly preferably 1.3 or less.

Dm/D50の下限値は特に限定されない。Dm/D50が1.0未満であることは、最頻度粒子径Dmが累積50%粒子径D50よりも小径側に位置することを意味する。したがって、一次粒径が小さい塩化銀粒子の存在割合をより安定的に少なくする観点から、Dm/D50は、0.5以上であることが好ましい場合があり、0.6以上であることがより好ましい場合があり、0.7以上であることがさらに好ましい場合があり、0.8以上であることが特に好ましい場合がある。 The lower limit of Dm/D50 is not particularly limited. Dm/D50 being less than 1.0 means that the most frequent particle diameter Dm is smaller than the cumulative 50% particle diameter D50. Therefore, from the viewpoint of more stably reducing the proportion of silver chloride particles having a small primary particle diameter, Dm/D50 may be preferably 0.5 or more, more preferably 0.6 or more, even more preferably 0.7 or more, and particularly preferably 0.8 or more.

本実施形態に係る塩化銀粒子は、体積基準の粒子径分布において、最頻度粒子径Dmよりも小粒径側に位置するピークであるサブピークの頻度分布値Psと、最頻度粒子径Dmにおける頻度分布値Pmとが下記式(3)を満たすことが好ましい場合がある。
Ps≦Pm×0.6 (3)
In the silver chloride particles according to this embodiment, in a volume-based particle size distribution, it may be preferable that a frequency distribution value Ps of a sub-peak, which is a peak located on the smaller particle size side than the most frequent particle diameter Dm, and a frequency distribution value Pm at the most frequent particle diameter Dm satisfy the following formula (3):
Ps≦Pm×0.6 (3)

後述する実施例で示すように、一次粒径が10μm程度以上の塩化銀粒子は、塩化銀含有ペーストにしたときに、粗大な二次粒子を形成しにくいが、一次粒径が6μm以下の塩化銀粒子は、粗大な二次粒子を形成しやすい。したがって、最頻度粒子径Dmが10μm以上である粒子径分布を有する塩化銀粒子が塩化銀含有ペーストの原料として好ましいが、塩化銀粒子の製造方法によっては、最頻度粒子径Dmが10μm以上であるが、最頻度粒子径Dmのみがピークとなるシングルピーク型の粒度分布ではなく、最頻度粒子径Dmよりも小径側にサブピークを有するダブルピーク型の粒度分布を有する塩化銀粒子が得られる場合がある。そのような場合であっても、サブピークの頻度分布値Psが最頻度粒子径Dmを与えるピーク(メインピーク)の頻度分布値Pmよりも十分に低いことが好ましく、具体的には、上記式(3)に示されるように、Ps/Pmは0.6以下であることが好ましい。 As shown in the examples described later, silver chloride particles having a primary particle size of about 10 μm or more are unlikely to form coarse secondary particles when made into a silver chloride-containing paste, but silver chloride particles having a primary particle size of 6 μm or less are likely to form coarse secondary particles. Therefore, silver chloride particles having a particle size distribution in which the most frequent particle size Dm is 10 μm or more are preferable as a raw material for a silver chloride-containing paste, but depending on the manufacturing method of silver chloride particles, silver chloride particles having a most frequent particle size Dm of 10 μm or more but a double-peak type particle size distribution having a sub-peak on the smaller diameter side than the most frequent particle size Dm may be obtained, rather than a single-peak type particle size distribution in which only the most frequent particle size Dm is a peak. Even in such a case, it is preferable that the frequency distribution value Ps of the sub-peak is sufficiently lower than the frequency distribution value Pm of the peak (main peak) that gives the most frequent particle size Dm, and specifically, as shown in the above formula (3), Ps/Pm is preferably 0.6 or less.

上記の一次粒径が6μm以下の塩化銀粒子の存在割合を管理するための簡易的な尺度として、体積基準の粒子径分布において、粒径が3μm程度の頻度分布値P3と、粒径が10μm程度の頻度分布値P10との比(P10/P3)を挙げることができる。一次粒径が6μm以下の塩化銀粒子の存在割合を低くする観点から、この比(P10/P3)は、3以上であることが好ましく、5以上であることがより好ましく、6以上であることがさらに好ましく、7以上であることが特に好ましい。 As a simple measure for controlling the proportion of silver chloride particles having a primary particle size of 6 μm or less, the ratio (P10/P3) of the frequency distribution value P3 having a particle size of about 3 μm to the frequency distribution value P10 having a particle size of about 10 μm in the volume-based particle size distribution can be mentioned. From the viewpoint of reducing the proportion of silver chloride particles having a primary particle size of 6 μm or less, this ratio (P10/P3) is preferably 3 or more, more preferably 5 or more, even more preferably 6 or more, and particularly preferably 7 or more.

本実施形態に係る塩化銀粒子は一次粒径が比較的大きいため、粉体状態を走査型電子顕微鏡にて10000倍の倍率で観察して視野を9μm×13μmとしたときに、重なりなく全体を観察できる塩化銀粒子が10個未満となりやすい。 The silver chloride particles according to this embodiment have a relatively large primary particle size, so when the powder state is observed under a scanning electron microscope at 10,000x magnification with a field of view of 9 μm × 13 μm, there tend to be fewer than 10 silver chloride particles that can be observed in their entirety without overlapping.

次に、本発明の一実施形態に係る塩化銀粒子の製造方法を説明する。本実施形態に係る製造方法により製造された塩化銀粒子は、上記の本実施形態に係る塩化銀粒子の特徴を有していてもよく、粗大な二次粒子を生じにくいため、かかる塩化銀粒子を含有する塩化銀含有ペーストは優れた品質を有する。 Next, a method for producing silver chloride particles according to one embodiment of the present invention will be described. The silver chloride particles produced by the production method according to this embodiment may have the characteristics of the silver chloride particles according to this embodiment described above, and are less likely to produce coarse secondary particles, so that a silver chloride-containing paste containing such silver chloride particles has excellent quality.

本実施形態に係る製造方法は、銀のアンミン錯体と塩化物イオンとの液中反応により塩化銀粒子を析出させることを含む。反応液の溶媒は水が一般的であるが、これに限定されない。銀のアンミン錯体の調製方法は任意である。限定されない一例として、銀のアンミン錯体は、硝酸銀とアンモニアとの反応により生成させることが挙げられる。 The manufacturing method according to this embodiment involves precipitating silver chloride particles by a liquid reaction between a silver ammine complex and chloride ions. The solvent for the reaction liquid is typically water, but is not limited to this. The silver ammine complex can be prepared by any method. As a non-limiting example, a silver ammine complex can be produced by a reaction between silver nitrate and ammonia.

反応液への塩化物イオンの供給源となる物質、すなわち塩素源は限定されない。塩素源として塩酸や、塩化ナトリウムや塩化カリウムを具体例とする塩化物が例示される。塩素源が塩酸の場合には、ナトリウムやカリウムのようなアルカリ金属イオンを含まないため、電子材料の用途に適している。 There is no limitation on the substance that supplies chloride ions to the reaction solution, i.e., the chlorine source. Examples of chlorine sources include hydrochloric acid and chlorides, such as sodium chloride and potassium chloride. When the chlorine source is hydrochloric acid, it does not contain alkali metal ions such as sodium and potassium, and is therefore suitable for use in electronic materials.

銀のアンミン錯体と塩化物イオンとの液中反応は、銀のアンミン錯体を含有する液体に塩化物イオン(塩素源)が供給されることにより生じてもよいし、塩化物イオンを含有する液体に銀のアンミン錯体が供給されてもよい。供給形態は限定されない。例えば塩素源が塩酸の場合には、塩酸を含む液体が銀のアンミン錯体を含む液体に供給されてもよい。例えば、塩化ナトリウムが塩素源である場合には、塩化ナトリウムを固体として、あるいは塩化ナトリウム溶液として、銀のアンミン錯体を含む液体に供給されてもよい。 The reaction in the liquid between the silver ammine complex and chloride ions may occur by supplying chloride ions (chlorine source) to a liquid containing the silver ammine complex, or the silver ammine complex may be supplied to a liquid containing chloride ions. The supply form is not limited. For example, when the chlorine source is hydrochloric acid, a liquid containing hydrochloric acid may be supplied to the liquid containing the silver ammine complex. For example, when sodium chloride is the chlorine source, sodium chloride may be supplied as a solid or as a sodium chloride solution to the liquid containing the silver ammine complex.

銀のアンミン錯体と塩化物イオンとの量的関係は限定されない。銀の全量が塩化銀になるように、銀のモル量と等量以上のモル量の塩化物イオンが供給されることが好ましい。銀のアンミン錯体を硝酸銀などの銀塩とアンモニアから生成させる場合には、銀の全量がアンミン錯体となるように、銀のモル量に対して2倍以上のモル量のアンモニアが供給されることが好ましい。 The quantitative relationship between the silver ammine complex and the chloride ions is not limited. It is preferable to supply a molar amount of chloride ions equal to or greater than the molar amount of silver so that the total amount of silver becomes silver chloride. When generating a silver ammine complex from a silver salt such as silver nitrate and ammonia, it is preferable to supply a molar amount of ammonia at least twice the molar amount of silver so that the total amount of silver becomes an ammine complex.

本実施形態に係る製造方法では、塩化銀粒子の析出前もしくは析出後またはその両方に分散剤を添加する。分散剤を添加することにより、一次粒子の凝集が生じにくくなる。ここで、塩化銀粒子の析出前、とは、銀のアンミン錯体と塩化物イオンとの液中反応が開始される前の段階であり、塩化物イオンが供給される前の銀のアンミン錯体を含有する液体に分散剤を存在させてもよいし、銀のアンミン錯体が供給される前の塩化物イオンを含有する液体に分散剤を存在させてもよい。 In the manufacturing method according to this embodiment, a dispersant is added before or after precipitation of silver chloride particles, or both. Adding a dispersant makes it difficult for primary particles to aggregate. Here, "before precipitation of silver chloride particles" refers to the stage before the in-liquid reaction between the silver ammine complex and chloride ions begins, and the dispersant may be present in the liquid containing the silver ammine complex before chloride ions are supplied, or the dispersant may be present in the liquid containing chloride ions before the silver ammine complex is supplied.

界面活性剤を分散剤として用いてよく、分散剤は陰イオン系の界面活性剤であることが好ましい。陰イオン系の界面活性剤の具体例として、炭素数6以上の高級脂肪酸に基づく脂肪酸系界面活性剤;直鎖アルキルベンゼンスルホン酸塩などの直鎖アルキルベンゼン系界面活性剤;炭素数12以上の高級アルコールに基づくアルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩などの高級アルコール系界面活性剤;アルキルスルホン酸ナトリウムなどのパラフィン系界面活性剤;ポリアクリル酸、アクリル酸-フタル酸共重合体、アクリル酸-スルホン酸系モノマー共重合体などに基づくポリカルボン酸系界面活性剤などが挙げられる。これらのうち、ポリカルボン酸系界面活性剤については、重量平均分子量として、5,000~500,000の範囲を用いることが好ましい場合があり、10,000~200,000の範囲を用いることがより好ましい場合がある。 A surfactant may be used as the dispersant, and the dispersant is preferably an anionic surfactant. Specific examples of anionic surfactants include fatty acid surfactants based on higher fatty acids having 6 or more carbon atoms; linear alkylbenzene surfactants such as linear alkylbenzene sulfonates; higher alcohol surfactants such as alkyl sulfates and alkyl ether sulfates based on higher alcohols having 12 or more carbon atoms; paraffin surfactants such as sodium alkylsulfonate; and polycarboxylic acid surfactants based on polyacrylic acid, acrylic acid-phthalic acid copolymers, and acrylic acid-sulfonic acid monomer copolymers. Of these, for polycarboxylic acid surfactants, it may be preferable to use a weight average molecular weight in the range of 5,000 to 500,000, and it may be more preferable to use a weight average molecular weight in the range of 10,000 to 200,000.

分散剤の供給量は特に限定されない。生成する塩化銀粒子の質量基準で、0.1~10%の範囲で供給してもよく、0.5~5%の範囲で供給することが好ましい場合がある。 The amount of dispersant supplied is not particularly limited. It may be supplied in the range of 0.1 to 10% based on the mass of the silver chloride particles produced, and it may be preferable to supply it in the range of 0.5 to 5%.

分散剤の機能(粗大粒子の発生防止)を適切に果たす観点から、分散剤は、塩化銀の析出前および析出後に供給することが好ましい。この場合の供給バランスは任意であり、析出前後で等量供給することが一具体例として挙げられる。 From the viewpoint of properly fulfilling the function of the dispersant (preventing the generation of coarse particles), it is preferable to supply the dispersant before and after the precipitation of silver chloride. In this case, the supply balance is arbitrary, and one specific example is to supply an equal amount before and after precipitation.

本実施形態に係る製造方法を採用することにより、上記の本実施形態に係る塩化銀粒子を得ることが容易となる場合がある。 By adopting the manufacturing method according to this embodiment, it may be easier to obtain the silver chloride particles according to this embodiment.

こうして得られた塩化銀をろ過洗浄し、ろ取物を乾燥することにより、所望の塩化銀粒子が得られる。ろ取物を乾燥させて得られた塩化銀粒子について、取り扱い性を高めるために粉砕処理を行ってもよい。この粉砕処理を行っても、一次粒子のレベルで粒径が大きな塩化銀粒子を形成しているため、塩化銀含有ペーストの品質安定性には影響しない。 The silver chloride thus obtained is filtered and washed, and the filtered product is dried to obtain the desired silver chloride particles. The silver chloride particles obtained by drying the filtered product may be pulverized to improve handling. Even if this pulverization is performed, it does not affect the quality stability of the silver chloride-containing paste, since silver chloride particles with large particle diameters are formed at the primary particle level.

続いて、本発明の一実施形態に係る塩化銀含有ペーストについて説明する。本実施形態に係る塩化銀含有ペーストは、前述の本実施形態に係る塩化銀粒子または前述の本実施形態に係る塩化銀粒子の製造方法により製造された塩化銀粒子を含有し、さらにビヒクルを含有する。 Next, a silver chloride-containing paste according to one embodiment of the present invention will be described. The silver chloride-containing paste according to this embodiment contains the silver chloride particles according to the embodiment described above or silver chloride particles produced by the method for producing silver chloride particles according to the embodiment described above, and further contains a vehicle.

本実施形態に係る塩化銀含有ペーストが含有するビヒクルの種類は特に限定されず、ペースト組成物の分野で公知の各種溶剤を好適に用いることができる。 The type of vehicle contained in the silver chloride-containing paste according to this embodiment is not particularly limited, and various solvents known in the field of paste compositions can be suitably used.

具体的には、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;これらグリコールエーテル類の酢酸エステル(その具体例として、酢酸2-(2-ブトキシエトキシ)エチルが挙げられる。);二塩基酸エステル(DBE)、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレートなどのエステル類;シクロヘキサノン、イソホロン等のケトン類;ターピネオール、水添ターピネオール等のモノテルペンアルコール類;これらモノテルペンアルコール類の酢酸エステル;γ-ブチロラクトン;リモネン;等が挙げられる。これらの物質は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。 Specific examples of the glycol ethers include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether; acetate esters of these glycol ethers (a specific example of which is 2-(2-butoxyethoxy)ethyl acetate); esters such as dibasic acid esters (DBE), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; ketones such as cyclohexanone and isophorone; monoterpene alcohols such as terpineol and hydrogenated terpineol; acetate esters of these monoterpene alcohols; γ-butyrolactone; limonene; and the like. Only one of these substances may be used, or two or more of them may be used in appropriate combination.

本実施形態に係る塩化銀含有ペーストが、スクリーン印刷によってパターンを作成する用途に用いられる場合には、ビヒクルは、その沸点が200℃以上である物質を含むことが好ましい。の高沸点溶剤であることが好ましい。このような高沸点溶剤としては特に限定されないが、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、ターピネオール等が具体例として挙げられる。これらの物質は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。 When the silver chloride-containing paste according to this embodiment is used for creating a pattern by screen printing, the vehicle preferably contains a substance whose boiling point is 200°C or higher. It is preferable that the vehicle is a high-boiling point solvent. Although there is no particular limitation on such high-boiling point solvents, specific examples include diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and terpineol. Only one of these substances may be used, or two or more types may be used in appropriate combination.

本実施形態に係る塩化銀含有ペーストは導電粒子をさらに含有してもよい。導電粒子としては、銀粉、銅粉、銀コート銅粉などの金属系粒子、アセチレンブラック、グラファイト粉、ケッチャンブラックなどカーボン系粒子が例示される。生体電極として使用される場合には、導電粒子は銀粉または銀コート銅粉であることが好ましい。 The silver chloride-containing paste according to this embodiment may further contain conductive particles. Examples of conductive particles include metal particles such as silver powder, copper powder, and silver-coated copper powder, and carbon particles such as acetylene black, graphite powder, and Ketchan black. When used as a bioelectrode, the conductive particles are preferably silver powder or silver-coated copper powder.

導電粒子のサイズは特に限定されないが、累積50%粒子径D50が15μm以下であることが、ペーストから作成されるパターン(例えば印刷パターン)の形状安定性の観点から好ましい場合がある。なお、導電粒子の形状は限定されず、球状、鱗片状、不定形状のいずれであってもよいし、導電粒子はこれらの混合であってもよい。 The size of the conductive particles is not particularly limited, but from the viewpoint of shape stability of the pattern (e.g., printed pattern) created from the paste, it may be preferable that the cumulative 50% particle diameter D50 is 15 μm or less. The shape of the conductive particles is not limited, and may be spherical, scaly, or irregular, or the conductive particles may be a mixture of these.

本実施形態に係る塩化銀含有ペーストはバインダー樹脂をさらに含有してもよい。バインダー樹脂は耐熱性を有していること、すなわち耐熱性樹脂であることが求められる場合がある。耐熱性樹脂の具体例として、セルロース系樹脂、フッ素樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリベンズイミダゾール樹脂、ポリベンズオキサゾール樹脂、ポリフェニレンスルフィド樹脂、ビスマレイミド樹脂、エポキシ樹脂、フェノール樹脂、フェノキシ樹脂等が挙げられる。これらの耐熱性樹脂は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。 The silver chloride-containing paste according to this embodiment may further contain a binder resin. The binder resin may be required to have heat resistance, i.e., to be a heat-resistant resin. Specific examples of heat-resistant resins include cellulose-based resins, fluororesins, polyimide resins, polyamideimide resins, polyesterimide resins, polyester resins, polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, polybenzimidazole resins, polybenzoxazole resins, polyphenylene sulfide resins, bismaleimide resins, epoxy resins, phenolic resins, and phenoxy resins. Only one type of these heat-resistant resins may be used, or two or more types may be used in appropriate combination.

本実施形態に係る塩化銀含有ペーストは硬化性成分をさらに含有してもよい。そのような硬化性成分として、エポキシ樹脂が例示される。エポキシ樹脂の具体例として、ビスフェノール型エポキシ樹脂(A型、F型、AD型等)、フェノールおよびクレゾール型エポキシ樹脂(ノボラック型等)、ポリオールのグルシジルエーテル型エポキシ樹脂、ポリアッシドのグリシジルエステル型エポキシ樹脂、ポリアミンのグリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、および複素環式エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。 The silver chloride-containing paste according to this embodiment may further contain a curable component. An example of such a curable component is an epoxy resin. Specific examples of epoxy resins include bisphenol-type epoxy resins (A type, F type, AD type, etc.), phenol and cresol-type epoxy resins (novolac type, etc.), polyol glycidyl ether-type epoxy resins, polyacid glycidyl ester-type epoxy resins, polyamine glycidyl amine-type epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. Only one type of these epoxy resins may be used, or two or more types may be used in appropriate combination.

本実施形態に係る塩化銀含有ペーストが硬化性成分を含有する場合には、硬化剤がさらに含有されていることが好ましい。本実施形態に係る塩化銀含有ペーストが硬化性成分としてエポキシ樹脂用を含有する場合における硬化剤の具体例として、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸等の酸無水物類;イミダゾール、2-メチルイミダゾール、2-エチル-4メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-メチルイミダゾール、2-エチルイミダゾール等のイミダゾール類;ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミン、ジラウリルモノエチルアミン、メチルジデエシルアミン、メチルジオレイルアミン、トリアリルアミン、トリイソプロパノールアミン、トリエチルアミン、3-(ジブチルアミノ)プロピルアミン、トリ-n-オクチルアミン、2,4,6-トリスジメチルアミノメチルフェノール、トリエタノールアミン、メチルジエタノールアミン、ジアザビシクロウンデセン等の第三級アミン類;三フッ化ホウ素エチルエーテル、三フッ化ホウ素フェノール、三フッ化ホウ素ピペリジン、酢酸三フッ化ホウ素、三フッ化ホウ素モノエチルアミン、三フッ化ホウ素トリエタノールアミン、三フッ化ホウ素モノエタノールアミン等のフッ化ホウ素を含むルイス酸あるいはその化合物などが挙げられる。これら化合物は1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。 When the silver chloride-containing paste according to this embodiment contains a curable component, it is preferable that a curing agent is further contained. Specific examples of the curing agent when the silver chloride-containing paste according to this embodiment contains an epoxy resin as a curable component include acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and succinic anhydride; imidazoles such as imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-aminoethyl-2-methylimidazole, 1-methylimidazole, and 2-ethylimidazole; dimethyloctylamine, dimethyldecylamine, dimethyl Tertiary amines such as laurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dimethylbehenylamine, dilaurylmonoethylamine, methyldideethyamine, methyldioleylamine, triallylamine, triisopropanolamine, triethylamine, 3-(dibutylamino)propylamine, tri-n-octylamine, 2,4,6-trisdimethylaminomethylphenol, triethanolamine, methyldiethanolamine, and diazabicycloundecene; Lewis acids containing boron fluoride such as boron trifluoride ethyl ether, boron trifluoride phenol, boron trifluoride piperidine, boron trifluoride acetate, boron trifluoride monoethylamine, boron trifluoride triethanolamine, and boron trifluoride monoethanolamine, or compounds thereof. These compounds may be used alone or in combination of two or more.

本実施形態に係る塩化銀含有ペーストは、ペースト組成物の分野で公知の各種添加剤をさらに含有してもよい。そのような添加剤の具体例として、酸化防止剤、紫外線吸収剤、着色剤、消泡剤、粘度調整剤などが挙げられる。これらの添加剤の添加量は、本実施形態に係る塩化銀含有ペーストが本来の機能を発揮しうる範囲で適宜設定される。 The silver chloride-containing paste according to this embodiment may further contain various additives known in the field of paste compositions. Specific examples of such additives include antioxidants, ultraviolet absorbers, colorants, defoamers, and viscosity adjusters. The amounts of these additives added are appropriately set within a range in which the silver chloride-containing paste according to this embodiment can perform its inherent functions.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The above-described embodiments are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is intended to include all design modifications and equivalents that fall within the technical scope of the present invention.

例えば、本実施形態に係る銀粒子は、本実施形態に係る製造方法を採用することなく製造されてもよい。そのような製造方法の一具体例として、塩化銀粒子のごく一般的な製造方法(例えば硝酸銀の塩酸による中和)により製造された塩化銀粒子について、分級などの粒径選別手段を用いて、上記の条件を満たす塩化銀粒子を得てもよい。粒径選別手段を用いる場合には、大まかな目安として、粒径が6μm程度以上の塩化銀粒子を選び取るようにすることが好ましいことがある。 For example, the silver particles according to this embodiment may be produced without employing the production method according to this embodiment. As a specific example of such a production method, silver chloride particles that satisfy the above conditions may be obtained by using a particle size selection means such as classification for silver chloride particles produced by a very common production method for silver chloride particles (for example, neutralization of silver nitrate with hydrochloric acid). When using a particle size selection means, it may be preferable to select silver chloride particles with a particle size of about 6 μm or more as a rough guideline.

以下、本発明の効果を実施例に基づいて説明するが、本発明はこれに限定されるものではない。 The effects of the present invention will be explained below based on examples, but the present invention is not limited to these.

(実施例1)
硝酸銀の結晶20.0gを純水23gに溶解し、これに25%アンモニア水を18.0g加えて、銀のアンミン錯体を含む溶液(銀含有溶液)を得た。銀含有溶液にポリアクリル酸(重量平均分子量25,000)からなる分散剤を1.27g添加した後、12%塩酸を41.5g加えて、中和反応および塩化銀の析出反応を行って塩化銀含有液体を得た。塩化銀含有液体に、ポリアクリル酸(重量平均分子量25,000)を1.27g添加した後、ろ過し、ろ取物を純水400gで洗浄し、その後、エタノール40gを加えてろ取物に含まれる純水を置換した。ろ取物を乾燥温度60℃で14時間乾燥して、塩化銀粒子を得た。
Example 1
20.0 g of silver nitrate crystals were dissolved in 23 g of pure water, and 18.0 g of 25% ammonia water was added to obtain a solution containing a silver ammine complex (silver-containing solution). 1.27 g of a dispersant made of polyacrylic acid (weight average molecular weight 25,000) was added to the silver-containing solution, and then 41.5 g of 12% hydrochloric acid was added to perform a neutralization reaction and a precipitation reaction of silver chloride to obtain a silver chloride-containing liquid. 1.27 g of polyacrylic acid (weight average molecular weight 25,000) was added to the silver chloride-containing liquid, and then the liquid was filtered, and the filtered product was washed with 400 g of pure water, and then 40 g of ethanol was added to replace the pure water contained in the filtered product. The filtered product was dried at a drying temperature of 60° C. for 14 hours to obtain silver chloride particles.

得られた塩化銀粒子について、レーザ回折/散乱法(使用機器:島津製作所社製「SALD-7100」)で湿式測定して体積基準の粒子径分布を得た。また、乾燥状態の塩化銀粒子について、走査型電子顕微鏡(日本電子社製「JCM-5700」)により観察を行った。 The resulting silver chloride particles were measured in a wet state using a laser diffraction/scattering method (equipment used: Shimadzu Corporation's "SALD-7100") to obtain a volume-based particle size distribution. In addition, the dried silver chloride particles were observed using a scanning electron microscope (JEOL Ltd.'s "JCM-5700").

上記の塩化銀粒子を2.0gと、球状銀粉(東洋化学社製「KT058」、累積50%粒子径D50:2.1μm)を2.0gと、ビヒクルとしての酢酸2-(2-ブトキシエトキシ)エチル95%とエチルセルロース(100cps)5%との混合体1.5gとを混合して、塩化銀含有ペーストを調製した。得られた塩化銀含有ペーストを用いて印刷により幅1mmのパターンを作成した。表面粗さ形状測定機(東京精密社製「SURFCOM TOUCH 50」)を用いて、作成したパターンの形状を測定した。 A silver chloride-containing paste was prepared by mixing 2.0 g of the above silver chloride particles, 2.0 g of spherical silver powder ("KT058" manufactured by Toyo Kagaku Co., Ltd., cumulative 50% particle diameter D50: 2.1 μm), and 1.5 g of a mixture of 95% 2-(2-butoxyethoxy)ethyl acetate and 5% ethyl cellulose (100 cps) as a vehicle. A pattern with a width of 1 mm was printed using the obtained silver chloride-containing paste. The shape of the created pattern was measured using a surface roughness shape measuring device ("SURFCOM TOUCH 50" manufactured by Tokyo Seimitsu Co., Ltd.).

パターン形状測定の詳細は次のとおりであった。印刷によりガラス基板上にテープ・シール等で長さ4cm×幅1mmの溝を4本作り、各溝内に塩化銀含有ペーストを塗布し、ヘラで平坦化することで4本の配線パターンを作成した。その後、150℃の乾燥機で1時間以上加熱した。 The details of the pattern shape measurement were as follows: Four grooves measuring 4 cm in length and 1 mm in width were printed on a glass substrate using tape or stickers, and a paste containing silver chloride was applied to each groove, which was then flattened with a spatula to create four wiring patterns. The substrate was then heated in a dryer at 150°C for at least one hour.

得られた配線パターン4本の中から、かすれの無い任意の2本を選んだ(配線パターン1、配線パターン2)。各配線パターンを目視で見て、最も凹凸が大きい3箇所を選び、測定箇所1から測定箇所3とした。また、同パターンにおいて目視で平坦な2箇所を選び、測定箇所4および測定箇所5とした。この5つの測定箇所について、配線パターンの短手方向(断面方向)に表面粗さ測定を行い、得られた断面曲線から算術平均高さPaおよび最大断面高さPtを求めた。 Of the four wiring patterns obtained, two were randomly selected that had no fading (wiring pattern 1, wiring pattern 2). Each wiring pattern was visually inspected and the three locations with the greatest irregularities were selected as measurement points 1 to 3. Two locations on the same pattern that were visually flat were also selected as measurement points 4 and 5. Surface roughness was measured in the short direction (cross-sectional direction) of the wiring pattern for these five measurement points, and the arithmetic mean height Pa and maximum cross-sectional height Pt were calculated from the resulting cross-sectional curve.

(比較例1)
アンモニア水を加えることなく銀含有溶液を調製したこと以外は実施例1と同様の方法により、塩化銀粒子を得た。得られた塩化銀粒子について、実施例1と同様の測定・観察を行った。また、実施例1と同様に塩化銀含有ペーストを調製し、このペーストを用いて幅1mmの配線パターンを、印刷により作成し、配線パターンの形状を実施例1と同様に測定した。
(Comparative Example 1)
Silver chloride particles were obtained in the same manner as in Example 1, except that the silver-containing solution was prepared without adding aqueous ammonia. The obtained silver chloride particles were subjected to the same measurements and observations as in Example 1. In addition, a silver chloride-containing paste was prepared in the same manner as in Example 1, and a wiring pattern having a width of 1 mm was created by printing using this paste, and the shape of the wiring pattern was measured in the same manner as in Example 1.

(実施例2~22)
製造方法の再現性を確認する観点から、実施例1と同様の製造方法により、塩化銀粒子を製造し、実施例1と同様の測定・観察を行った。なお、実施例10~実施例22は、実施例1の1000倍以上のスケールで塩化銀粒子の製造を行った。これらのうち、実施例21の塩化銀粒子を用いて、実施例1と同様に塩化銀含有ペーストを調製して、配線パターンの形状測定を行った。
(Examples 2 to 22)
From the viewpoint of confirming the reproducibility of the production method, silver chloride particles were produced by the same production method as in Example 1, and measurements and observations were performed in the same manner as in Example 1. In Examples 10 to 22, silver chloride particles were produced on a scale 1000 times or more larger than that of Example 1. Of these, a silver chloride-containing paste was prepared using the silver chloride particles of Example 21 in the same manner as in Example 1, and the shape of the wiring pattern was measured.

(粒子径分布)
実施例1の塩化銀粒子についての体積基準の粒子径分布および累積粒度分布を表1に示す。表1において、0μm超0.064μm未満の範囲の粒径の塩化銀粒子は測定されなかったので「中略」とした。57.648μm超300μm未満の範囲の粒径についても同様である。
(Particle size distribution)
The volume-based particle size distribution and cumulative particle size distribution of the silver chloride particles of Example 1 are shown in Table 1. In Table 1, silver chloride particles having a particle size in the range of more than 0 μm and less than 0.064 μm were not measured, so they are omitted. The same applies to particles having a particle size in the range of more than 57.648 μm and less than 300 μm.

Figure 0007644509000001
Figure 0007644509000001

比較例1の塩化銀粒子についての体積基準の粒子径分布および累積粒度分布を表2に示す。表2の「中略」は表1と同様の意味で用いた。 The volume-based particle size distribution and cumulative particle size distribution of the silver chloride particles of Comparative Example 1 are shown in Table 2. In Table 2, "Omitted" is used in the same sense as in Table 1.

Figure 0007644509000002
Figure 0007644509000002

表1および表2の分布をグラフ化したものが図1および図2である。 Figures 1 and 2 are graphs of the distributions in Tables 1 and 2.

図1に示されるように、実施例1の塩化銀粒子の体積基準の粒子径分布と比較例1の塩化銀粒子の体積基準の粒子径分布とは、基本傾向が異なっていた。実施例1の塩化銀粒子は、概ね10μmにピークを有するシングルピーク型の分布であった。 As shown in FIG. 1, the volume-based particle size distribution of the silver chloride particles in Example 1 and the volume-based particle size distribution of the silver chloride particles in Comparative Example 1 had fundamentally different trends. The silver chloride particles in Example 1 had a single-peak distribution with a peak at approximately 10 μm.

実施例1の塩化銀粒子の粒子径分布について、粒径が3μm程度の頻度分布値P3と、粒径が10μm程度の頻度分布値P10との比(P10/P3)を次のようにして算出した。表1では粒径が10μmの頻度分布値は計測されていないため、粒径が9μmの頻度分布値(P9)と粒径が11μmの頻度分布値(P11)との平均値をP10とした。こうして求めたP10/P3は、6.4(=(7.984+9.562)/5.605)であり、6以上となった。 Regarding the particle size distribution of the silver chloride particles in Example 1, the ratio (P10/P3) of the frequency distribution value P3 for a particle size of about 3 μm to the frequency distribution value P10 for a particle size of about 10 μm was calculated as follows. In Table 1, the frequency distribution value for a particle size of 10 μm was not measured, so the average value of the frequency distribution value (P9) for a particle size of 9 μm and the frequency distribution value (P11) for a particle size of 11 μm was taken as P10. The P10/P3 calculated in this way was 6.4 (= (7.984 + 9.562) / 5.605), which is greater than 6.

一方、比較例1の塩化銀粒子は、10μm強にピークを有するメインピークと、メインピークよりも小径側にピークを有するサブピークとを有するダブルピーク型の分布であった。表2から、メインピークが位置する粒子径(最頻度粒子径Dm)は13.614μmであり、このときの頻度分布値Pmは10.179%であった。サブピークが位置する粒子径は3.215μmであり、このときの頻度分布値Psは5.065%であった。したがって、Ps/Pmは0.50であり、上記式(3)を満たさなかった。P10/P3についても実施例1の場合と同様に計算すると、2.2となり、3未満となった。 On the other hand, the silver chloride particles of Comparative Example 1 had a double-peak distribution with a main peak at just over 10 μm and a sub-peak with a peak on the smaller diameter side of the main peak. From Table 2, the particle size at which the main peak was located (most frequent particle size Dm) was 13.614 μm, and the frequency distribution value Pm at this time was 10.179%. The particle size at which the sub-peak was located was 3.215 μm, and the frequency distribution value Ps at this time was 5.065%. Therefore, Ps/Pm was 0.50, which did not satisfy the above formula (3). When P10/P3 was also calculated in the same manner as in Example 1, it was 2.2, which was less than 3.

こうした粒子径分布の基本傾向の相違を反映して、比較例1の塩化銀粒子の累積粒度分布は、立ち上がりが実施例1の塩化銀粒子の場合よりも緩やかであった。 Reflecting this difference in the basic tendency of particle size distribution, the cumulative particle size distribution of the silver chloride particles in Comparative Example 1 had a more gradual rise than that of the silver chloride particles in Example 1.

粒子径分布の傾向を定量的にさらに評価するために、実施例1から実施例22および比較例1の塩化銀粒子について、累積10%粒子径D10、累積90%粒子径D90および累積50%粒子径D50ならびに最頻度粒子径Dmを求め、これらから(D90-D10)/D50およびDm/D50を計算した結果を表3に示す。 To further quantitatively evaluate the tendency of particle size distribution, the cumulative 10% particle diameter D10, cumulative 90% particle diameter D90, cumulative 50% particle diameter D50, and most frequent particle diameter Dm were determined for the silver chloride particles of Examples 1 to 22 and Comparative Example 1, and (D90-D10)/D50 and Dm/D50 were calculated from these, and the results are shown in Table 3.

Figure 0007644509000003
Figure 0007644509000003

表3に示されるように、実施例1から実施例22の塩化銀粒子は、上記式(1)および上記式(2)の双方を満たしたが、比較例1の塩化銀粒子は、上記式(1)も上記式(2)も満たさなかった。 As shown in Table 3, the silver chloride particles of Examples 1 to 22 satisfied both the above formula (1) and the above formula (2), but the silver chloride particles of Comparative Example 1 did not satisfy either the above formula (1) or the above formula (2).

図3から図5は、実施例1の塩化銀粒子の観察画像(500倍、2000倍、10000倍)を示す図である。図6から図8は、比較例1の塩化銀粒子の観察画像(500倍、2000倍、10000倍)を示す図である。これらの対比により、実施例1の塩化銀粒子は、比較例1の塩化銀粒子に比べて、一次粒径が大きいことが確認された。特に、図6や図7から、比較例1の塩化銀粒子では、一次粒子が凝集してなる50μm以上の大きさを有する二次粒子が存在することが確認された。こうした粗大な二次粒子は、ペースト化する際にも残留し、塩化銀含有ペーストの品質安定性を低下させる。 Figures 3 to 5 show images (500x, 2000x, 10000x) of the silver chloride particles of Example 1. Figures 6 to 8 show images (500x, 2000x, 10000x) of the silver chloride particles of Comparative Example 1. By comparing these images, it was confirmed that the silver chloride particles of Example 1 have a larger primary particle size than the silver chloride particles of Comparative Example 1. In particular, Figures 6 and 7 show that the silver chloride particles of Comparative Example 1 contain secondary particles having a size of 50 μm or more, which are formed by agglomeration of primary particles. These coarse secondary particles remain even when the silver chloride particles are made into a paste, reducing the quality stability of the silver chloride-containing paste.

実施例22の塩化銀粒子は、実施例1のスケールアップ品である。図9は、実施例22の塩化銀粒子についての、体積基準の粒子径分布を示すグラフであり、図10は、実施例22の塩化銀粒子についての、体積基準の累積粒度分布を示すグラフであり、図11は、実施例22の塩化銀粒子の観察画像(10000倍)を示す図である。図11に示される様に、実施例22の塩化銀粒子は実施例1の塩化銀粒子と同等以上の一次粒径を有し、図9および図10に示されるように、実施例1の場合よりもシャープな(幅が狭い)分布を有していた。この点は、表3の(D90-D10)/D50を対比することによっても確認できる。すなわち、実施例1では(D90-D10)/D50は1.96とほぼ2であったが、実施例22では1.2となり、塩化銀粒子の粒径の均一性が高まっている。 The silver chloride particles of Example 22 are a scaled-up version of Example 1. Figure 9 is a graph showing the volumetric particle size distribution of the silver chloride particles of Example 22, Figure 10 is a graph showing the volumetric cumulative particle size distribution of the silver chloride particles of Example 22, and Figure 11 is a diagram showing an observation image (10,000 times) of the silver chloride particles of Example 22. As shown in Figure 11, the silver chloride particles of Example 22 have a primary particle size equal to or greater than that of the silver chloride particles of Example 1, and as shown in Figures 9 and 10, they have a sharper (narrower) distribution than those of Example 1. This point can also be confirmed by comparing (D90-D10)/D50 in Table 3. That is, (D90-D10)/D50 in Example 1 was 1.96, which was almost 2, but in Example 22 it was 1.2, which shows that the uniformity of the particle size of the silver chloride particles is improved.

配線パターンの形状の測定結果を表4および表5に示す。表4は断面曲線の算術平均高さPa(JIS B0601:2001)であり、表5は断面曲線の最大断面高さPt(JIS B0601:2001)である。表中の測定結果を示す数字の単位はいずれもμmである。算術平均高さPaおよび最大断面高さPtのいずれについても、すべての平均値は、比較例1>実施例1>実施例21となった。この傾向は、凹凸の大きな測定箇所1から3の平均値および凹凸の少ない平坦な測定箇所4および5の平均値でも同様であった。 The measurement results of the shape of the wiring pattern are shown in Tables 4 and 5. Table 4 shows the arithmetic mean height Pa of the cross-sectional curve (JIS B0601:2001), and Table 5 shows the maximum cross-sectional height Pt of the cross-sectional curve (JIS B0601:2001). The units of the numbers showing the measurement results in the tables are all μm. For both the arithmetic mean height Pa and the maximum cross-sectional height Pt, the average values were Comparative Example 1 > Example 1 > Example 21. This tendency was also observed for the average values of measurement points 1 to 3, which had large irregularities, and the average values of measurement points 4 and 5, which were flat and had little irregularities.

Figure 0007644509000004
Figure 0007644509000004

Figure 0007644509000005
Figure 0007644509000005

配線パターンの測定結果の具体例を図12Aから図13Cに示す。図12Aから図12Cは、凹凸の大きい測定箇所の測定結果であり、図13Aから図13Cは、凹凸の小さな平坦な測定箇所の測定結果である。表4および表5ならびに図12Aから図13Cに示されるように、比較例1の塩化銀粒子を用いた塩化銀含有ペーストから形成された配線パターンは、実施例1の塩化銀粒子や実施例21の塩化銀粒子を用いた塩化銀含有ペーストから形成された配線パターンに比べ、断面曲線パラメータ(算術平均高さPa)および(最大断面高さPt)の平均値が高かった(1.5倍から2倍程度)。比較例1の配線パターンの形状パラメータの数値が大きくなったのは、比較例1の塩化銀粒子を用いて調製された塩化銀含有ペーストに、相対的に粗大粒子が多く含まれていたためと考えられる。 Specific examples of the measurement results of the wiring pattern are shown in Figures 12A to 13C. Figures 12A to 12C show the measurement results of a measurement point with large unevenness, and Figures 13A to 13C show the measurement results of a flat measurement point with small unevenness. As shown in Tables 4 and 5 and Figures 12A to 13C, the wiring pattern formed from the silver chloride-containing paste using the silver chloride particles of Comparative Example 1 had higher average values of the cross-sectional curve parameters (arithmetic mean height Pa) and (maximum cross-sectional height Pt) than the wiring patterns formed from the silver chloride-containing paste using the silver chloride particles of Example 1 and the silver chloride particles of Example 21 (about 1.5 to 2 times). The reason why the numerical values of the shape parameters of the wiring pattern of Comparative Example 1 were larger is thought to be because the silver chloride-containing paste prepared using the silver chloride particles of Comparative Example 1 contained a relatively large number of coarse particles.

(実施例23~実施例24、比較例2)
次のとおり分散剤の投入条件を変更したこと以外は実施例1と同様の製造方法により、塩化銀粒子を製造した。
実施例23:銀含有溶液への分散剤の添加なし
実施例24:塩化銀含有液体への分散剤の添加なし
比較例2:銀含有溶液への分散剤の添加なし、かつ塩化銀含有液体への分散剤の添加なし
(Examples 23 to 24, Comparative Example 2)
Silver chloride particles were produced in the same manner as in Example 1, except that the conditions for adding the dispersant were changed as follows.
Example 23: No dispersant added to silver-containing solution. Example 24: No dispersant added to silver chloride-containing liquid. Comparative Example 2: No dispersant added to silver-containing solution, and no dispersant added to silver chloride-containing liquid.

得られた塩化銀粒子について、目視による外観確認を行った。実施例23および実施例24では、実施例1の塩化銀粒子に比べて粗大な二次粒子が増えたが、粉砕することにより実施例1と同等の粒子となった。これに対し、比較例2では、得られた塩化銀は、粒子状というよりも実質的に塊状であり、粉砕しても実施例23や実施例24の塩化銀粒子よりも粗大な粒子が含まれた状態であった。 The appearance of the obtained silver chloride particles was visually confirmed. In Examples 23 and 24, the amount of coarse secondary particles increased compared to the silver chloride particles of Example 1, but by crushing, the particles became equivalent to those of Example 1. In contrast, in Comparative Example 2, the obtained silver chloride was substantially clump-like rather than particulate, and even after crushing, it still contained coarser particles than the silver chloride particles of Examples 23 and 24.

(実施例25~実施例27)
次のとおり分散剤の種類を変更したこと以外は実施例1と同様の製造方法により塩化銀粒子を製造した。
実施例25:ポリオキシエチレンソルビタンモノラウラート(東京化成社製「ツイン20」)
実施例26:ベンゼトニウムクロリド
実施例27:ステアリン酸
(Examples 25 to 27)
Silver chloride particles were produced in the same manner as in Example 1, except that the type of dispersant was changed as follows.
Example 25: Polyoxyethylene sorbitan monolaurate (Tokyo Chemical Industry Co., Ltd. "Twin 20")
Example 26: Benzethonium chloride Example 27: Stearic acid

得られた塩化銀粒子について、目視による外観確認を行った。実施例25および実施例26では、実施例1の塩化銀粒子に比べて粗大な二次粒子が増えたが、粉砕することにより実施例1と同等の粒子となった。実施例27の塩化銀粒子はパウダー状であり、累積50%粒子径D50は5.8μmであった。 The appearance of the obtained silver chloride particles was visually confirmed. In Examples 25 and 26, the amount of coarse secondary particles increased compared to the silver chloride particles of Example 1, but the particles became equivalent to those of Example 1 by crushing. The silver chloride particles of Example 27 were in a powder form, and the cumulative 50% particle diameter D50 was 5.8 μm.

Claims (7)

銀のアンミン錯体と塩化物イオンとの液中反応により塩化銀粒子を析出させることを含む塩化銀粒子の製造方法であって、
硝酸銀とアンモニアとの反応により前記銀のアンミン錯体を生成させて銀含有溶液を得ることと、
前記銀含有溶液に分散剤である陰イオン系の界面活性剤を含有させてから、前記塩化銀粒子を析出させることと、
を備えること(ただし、前記塩化物イオンを添加する前の前記銀含有溶液のpHが7.5以下の場合を除く。)を特徴とする塩化銀粒子の製造方法。
1. A method for producing silver chloride particles, comprising: precipitating silver chloride particles by reacting a silver ammine complex with chloride ions in a liquid,
reacting silver nitrate with ammonia to produce an ammine complex of said silver to obtain a silver-containing solution;
adding an anionic surfactant as a dispersant to the silver-containing solution, and then precipitating the silver chloride particles;
(excluding the case where the pH of the silver-containing solution before adding the chloride ions is 7.5 or less).
前記塩化物イオンを与える塩素源は塩酸を含む、請求項1に記載の塩化銀粒子の製造方法。 The method for producing silver chloride particles according to claim 1, wherein the chlorine source that provides the chloride ions includes hydrochloric acid. レーザ回折/散乱法で湿式測定して得られた体積基準の粒子径分布において小粒径側からの累積粒度分布における累積50%粒子径D50が8μm以上25μm以下である導電体形成用塩化銀粒子の製造方法である、請求項1に記載の塩化銀粒子の製造方法 2. The method for producing silver chloride particles for forming a conductor according to claim 1, wherein the cumulative 50% particle diameter D50 in the cumulative particle size distribution from the small particle diameter side in the volume-based particle size distribution obtained by wet measurement using a laser diffraction/scattering method is 8 μm or more and 25 μm or less. 前記累積粒度分布における、累積10%粒子径D10および累積90%粒子径D90ならびに前記累積50%粒子径D50が、下記式(1)を満たす、請求項3に記載の導電体形成用塩化銀粒子の製造方法である、請求項1に記載の塩化銀粒子の製造方法
(D90-D10)/D50≦2.2 (1)
4. The method for producing silver chloride particles for forming an electric conductor according to claim 1, wherein a cumulative 10% particle diameter D10, a cumulative 90% particle diameter D90 , and a cumulative 50% particle diameter D50 in the cumulative particle size distribution satisfy the following formula (1):
(D90-D10)/D50≦2.2 (1)
前記体積基準の粒子径分布の最頻度粒子径Dmが10μm以上である、請求項3に記載の導電体形成用塩化銀粒子の製造方法である、請求項1に記載の塩化銀粒子の製造方法 4. The method for producing silver chloride particles for forming an electric conductor according to claim 1, wherein the most frequent particle diameter Dm of the volume-based particle diameter distribution is 10 μm or more. 前記累積50%粒子径D50と前記体積基準の粒子径分布の最頻度粒子径Dmとが下記式(2)を満たす、請求項3に記載の導電体形成用塩化銀粒子の製造方法である、請求項1に記載の塩化銀粒子の製造方法
Dm/D50≦1.7 (2)
4. The method for producing silver chloride particles for forming an electric conductor according to claim 1, wherein the cumulative 50% particle diameter D50 and the most frequent particle diameter Dm of the volume-based particle diameter distribution satisfy the following formula (2):
Dm/D50≦1.7 (2)
前記体積基準の粒子径分布において、最頻度粒子径Dmよりも小粒径側に位置するピークであるサブピークの頻度分布値Psは、前記最頻度粒子径Dmにおける頻度分布値Pmと下記式(3)を満たす、請求項3に記載の導電体形成用塩化銀粒子の製造方法である、請求項1に記載の塩化銀粒子の製造方法
Ps≦Pm×0.6 (3)
4. The method for producing silver chloride particles for forming an electric conductor according to claim 1, wherein in the volume-based particle size distribution, a frequency distribution value Ps of a sub-peak, which is a peak located on the smaller particle size side than the most frequent particle diameter Dm, and a frequency distribution value Pm at the most frequent particle diameter Dm satisfy the following formula (3) :
Ps≦Pm×0.6 (3)
JP2022150549A 2022-09-21 2022-09-21 Method for producing silver chloride particles Active JP7644509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022150549A JP7644509B2 (en) 2022-09-21 2022-09-21 Method for producing silver chloride particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022150549A JP7644509B2 (en) 2022-09-21 2022-09-21 Method for producing silver chloride particles

Publications (2)

Publication Number Publication Date
JP2024044800A JP2024044800A (en) 2024-04-02
JP7644509B2 true JP7644509B2 (en) 2025-03-12

Family

ID=90479818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022150549A Active JP7644509B2 (en) 2022-09-21 2022-09-21 Method for producing silver chloride particles

Country Status (1)

Country Link
JP (1) JP7644509B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098544A (en) 1998-09-21 2000-04-07 Konica Corp Image forming method
WO2012176831A1 (en) 2011-06-21 2012-12-27 住友金属鉱山株式会社 Silver dust and manufacturing method thereof
JP2013189704A (en) 2012-02-13 2013-09-26 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2018533160A (en) 2015-08-20 2018-11-08 パーカー・ハニフィン・コーポレーション Silver-silver chloride composition and electrical device containing the same
JP2020055918A (en) 2018-09-28 2020-04-09 太陽インキ製造株式会社 Conductive composition and conductor using the same and laminate structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098544A (en) 1998-09-21 2000-04-07 Konica Corp Image forming method
WO2012176831A1 (en) 2011-06-21 2012-12-27 住友金属鉱山株式会社 Silver dust and manufacturing method thereof
JP2013189704A (en) 2012-02-13 2013-09-26 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2018533160A (en) 2015-08-20 2018-11-08 パーカー・ハニフィン・コーポレーション Silver-silver chloride composition and electrical device containing the same
JP2020055918A (en) 2018-09-28 2020-04-09 太陽インキ製造株式会社 Conductive composition and conductor using the same and laminate structure

Also Published As

Publication number Publication date
JP2024044800A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP4832615B1 (en) Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
JP5047864B2 (en) Conductive paste and cured film containing fine silver particles
JP5916633B2 (en) Conductive paste and method for producing conductive film
US6942825B2 (en) Silver compound paste
JP5023506B2 (en) Method for producing conductive paint
JP6285397B2 (en) Ag paste and Ag powder for Ag paste
CN108140443A (en) Electrocondution slurry and conductive film
JPWO2020129872A1 (en) Carbon nanotube dispersion liquid and its manufacturing method
JPWO2002035554A1 (en) Conductive metal paste and method for producing the same
WO2015198671A1 (en) Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
JPWO2013161966A1 (en) Conductive composition
JP2009013449A (en) Flat silver powder, method for producing flat silver powder, and conductive paste
WO2013108701A1 (en) Conductive filler of flake form
JP7644509B2 (en) Method for producing silver chloride particles
KR20250036921A (en) Carbon material dispersion and its use
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2017084587A (en) Silver oxide slurry, and conductive paste and method for producing the same
Liu et al. UV‐Curable 3D‐Printable Microwave‐Absorbing Material with a Sword‐Sheath Structure Based on Multiwalled Carbon Nanotube/Polypyrrole Nanotube/Fe3O4 Composites
JP6274076B2 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5466769B2 (en) Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP6060225B1 (en) Copper powder and method for producing the same
JP2016138301A (en) Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
TWI870696B (en) Silver powder and method for producing silver powder
JP7242952B1 (en) Silver powder and method for producing silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250220

R150 Certificate of patent or registration of utility model

Ref document number: 7644509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150