[go: up one dir, main page]

JP7640288B2 - Gear Manufacturing Equipment - Google Patents

Gear Manufacturing Equipment Download PDF

Info

Publication number
JP7640288B2
JP7640288B2 JP2021034252A JP2021034252A JP7640288B2 JP 7640288 B2 JP7640288 B2 JP 7640288B2 JP 2021034252 A JP2021034252 A JP 2021034252A JP 2021034252 A JP2021034252 A JP 2021034252A JP 7640288 B2 JP7640288 B2 JP 7640288B2
Authority
JP
Japan
Prior art keywords
reinforcing fibers
gear
adjustment mechanism
mold
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021034252A
Other languages
Japanese (ja)
Other versions
JP2022134826A (en
Inventor
幸次 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2021034252A priority Critical patent/JP7640288B2/en
Priority to CN202210086616.XA priority patent/CN115008710A/en
Priority to DE102022104769.5A priority patent/DE102022104769A1/en
Publication of JP2022134826A publication Critical patent/JP2022134826A/en
Application granted granted Critical
Publication of JP7640288B2 publication Critical patent/JP7640288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D15/00Producing gear wheels or similar articles with grooves or projections, e.g. control knobs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76612Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76635Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76642Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • B29L2015/003Gears

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Gears, Cams (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、歯車製造装置に関する。 The present invention relates to a gear manufacturing device.

近年、歯車は、軽量化の要求により、樹脂により形成されたものが活用されつつある。
このような樹脂歯車は、強度を高めるために、ベース樹脂に強化繊維が配合され、各歯の噛み合い面では、歯面に沿って強化繊維の繊維方向を一様に揃えることが提案されている(例えば、特許文献1参照)。
In recent years, gears made of resin have come to be used more and more due to the demand for lighter weight.
In order to increase the strength of such plastic gears, it has been proposed to blend reinforcing fibers into the base resin and to align the fiber direction of the reinforcing fibers uniformly along the meshing surfaces of each tooth (see, for example, Patent Document 1).

特開2019-218994号公報JP 2019-218994 A

しかしながら、上記歯車は、樹脂成形の型に形成されたキャビティに強化繊維を混入させた母材の樹脂材料を充填する際の流動によって強化繊維の配置を制御しようとするものであり、実現性や再現性が低かった。 However, the gears described above attempt to control the placement of reinforcing fibers by controlling the flow of the base resin material mixed with reinforcing fibers when filling a cavity formed in a resin molding die, and this was difficult to achieve and difficult to reproduce.

本発明は、強化繊維の配置を良好に制御可能な歯車製造装置を提供することを目的とする。 The present invention aims to provide a gear manufacturing device that can effectively control the placement of reinforcing fibers.

本発明は、
帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え
前記配置調整機構は、歯元部に比べて歯先部に前記強化繊維が多く分布するように配置させる歯車製造装置とした。
また、他の本発明は、
帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え、
前記配置調整機構は、前記金型に充填され、磁性を有する前記強化繊維に対して磁場を発生し、
前記配置調整機構は、回転磁場を発生する歯車製造装置とした。
また、さらなる他の本発明は、
帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え、
前記配置調整機構は、前記強化繊維を高密度で配置する領域に対して、前記強化繊維を低密度で配置する領域に比べ、高電場または高磁場を入力する歯車製造装置とした。
The present invention relates to
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
The arrangement adjustment mechanism is a gear manufacturing device that arranges the reinforcing fibers so that they are more distributed at the tooth tip than at the tooth base .
In addition, another aspect of the present invention is
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
The arrangement adjustment mechanism generates a magnetic field to the reinforcing fibers that are filled in the mold and have magnetism,
The arrangement adjustment mechanism is a gear manufacturing device that generates a rotating magnetic field.
Furthermore, still another aspect of the present invention is
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
The arrangement adjustment mechanism is a gear manufacturing device in which a stronger electric field or stronger magnetic field is input to an area where the reinforcing fibers are arranged at a higher density than to an area where the reinforcing fibers are arranged at a lower density.

本発明によれば、強化繊維の配置を良好に制御することが可能となる。 The present invention makes it possible to precisely control the placement of reinforcing fibers.

実施形態1に係る歯車製造装置の側面図である。FIG. 1 is a side view of a gear manufacturing apparatus according to a first embodiment. 図2(A)は金型のキャビティにおいて形成される歯車と金型に設けられる配置調整機構との位置関係を示した斜視図、図2(B)はキャビティ内の歯車の中心軸に沿った軸方向断面図である。FIG. 2(A) is a perspective view showing the positional relationship between a gear formed in a cavity of a mold and a placement adjustment mechanism provided in the mold, and FIG. 2(B) is an axial cross-sectional view taken along the central axis of the gear in the cavity. 歯車の両側に永久磁石を配置した場合の歯車の中心軸に沿った軸方向断面図である。FIG. 11 is an axial cross-sectional view taken along the central axis of a gear when permanent magnets are arranged on both sides of the gear. 歯車の両側に電磁石を配置した場合の歯車の中心軸に沿った軸方向断面図である。FIG. 11 is an axial cross-sectional view taken along the central axis of a gear when electromagnets are arranged on both sides of the gear. 実施形態2にかかる配置調整機構を軸方向から見た部分側面図である。FIG. 11 is a partial side view of a placement adjustment mechanism according to a second embodiment, as viewed from the axial direction. 図6(A)は実施形態3にかかる配置調整機構を軸方向から見た部分側面図、図6(B)は通電部が四つの電磁石に対して通電する交流電流の波形を示す線図である。FIG. 6A is a partial side view of a position adjustment mechanism according to a third embodiment as viewed from the axial direction, and FIG. 6B is a diagram showing the waveform of an AC current applied to four electromagnets by a current-carrying portion. 図7(A)は実施形態4にかかる配置調整機構の斜視図、図7(B)は軸方向断面図である。FIG. 7A is a perspective view of a position adjustment mechanism according to a fourth embodiment, and FIG. 7B is an axial cross-sectional view thereof. 実施形態5にかかる配置調整機構が設けられた金型の軸垂直断面図である。FIG. 13 is a cross-sectional view perpendicular to the axis of a mold provided with a placement adjustment mechanism according to a fifth embodiment. 実施形態6にかかる配置調整機構が設けられた金型の軸垂直断面図である。FIG. 13 is a cross-sectional view perpendicular to the axis of a mold provided with a placement adjustment mechanism according to a sixth embodiment.

[実施形態1]
以下、本発明の実施形態1について、図面を参照して詳細に説明する。実施形態1では、例えば、エンジニアリングプラスチック等の樹脂の母材に強化用の繊維(以下、強化繊維という)が含有される歯車100を製造するための歯車製造装置1を例示する。
[Embodiment 1]
A first embodiment of the present invention will be described in detail below with reference to the drawings. In the first embodiment, a gear manufacturing apparatus 1 for manufacturing a gear 100 in which reinforcing fibers (hereinafter, referred to as reinforcing fibers) are contained in a base material of a resin such as an engineering plastic is illustrated.

歯車100の母材の樹脂は、例えば、エンジニアリングプラスチック(汎用エンジニアリングプラスチック)である、ポリアミド(PA)、ポリカーボネート(PC)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)等や、スーパーエンジニアリングプラスチック(特種エンジニアリングプラスチック)である、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、芳香族ポリアミド(PPA)、液晶ポリマー(LCP)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、熱可塑性ポリイミド(TPI)等が挙げられる。但し、これらに限定されず、適宜変更可能である。 The resin base material of the gear 100 may be, for example, engineering plastics (general-purpose engineering plastics) such as polyamide (PA), polycarbonate (PC), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), etc., or super engineering plastics (special engineering plastics) such as polyether ether ketone (PEEK), polyamide imide (PAI), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), aromatic polyamide (PPA), liquid crystal polymer (LCP), polysulfone (PSU), polyether sulfone (PES), polyether imide (PEI), polyarylate (PAR), thermoplastic polyimide (TPI), etc. However, it is not limited to these and may be changed as appropriate.

また、強化繊維は、ガラス繊維、アラミド繊維、ポリエチレン繊維、ザイロン繊維、ボロン繊維、カーボン繊維等が挙げられる。但し、これらに限定されず、適宜変更可能であり、また、上記強化繊維に特定の材料を付加しても良い。 Examples of reinforcing fibers include glass fibers, aramid fibers, polyethylene fibers, Zylon fibers, boron fibers, and carbon fibers. However, they are not limited to these and can be changed as appropriate. In addition, specific materials may be added to the reinforcing fibers.

上記歯車100としては、例えば、歯元部110に比べて歯先部120に強化繊維が多く含まれる場合、さらには、歯先部120の噛み合い面121に強化繊維の繊維方向が沿っている場合を例示する。 The above-mentioned gear 100 is exemplified by a case in which the tooth tip portion 120 contains more reinforcing fibers than the tooth base portion 110, and further, a case in which the fiber direction of the reinforcing fibers is aligned with the meshing surface 121 of the tooth tip portion 120.

[歯車製造装置の概略構成]
図1は歯車製造装置1の側面図である。歯車製造装置1は、射出成形装置を基本構造としている。歯車製造装置1は、歯車の金型20と、装置全体を支持するベッド11と、ベッド11上の一端側(図示左側)に設けられた型締装置30と、ベッド11上の他端側(図示右側)に設けられた射出装置40とを備える。
[General configuration of gear manufacturing device]
1 is a side view of a gear manufacturing apparatus 1. The gear manufacturing apparatus 1 has a basic structure of an injection molding apparatus. The gear manufacturing apparatus 1 includes a gear mold 20, a bed 11 that supports the entire apparatus, a mold clamping device 30 provided at one end (left side in the figure) of the bed 11, and an injection device 40 provided at the other end (right side in the figure) of the bed 11.

型締装置30は、ベッド11に固定された一対の対向壁部31,32と、一対の対向壁部31,32を連結する4本のタイバー33と、各タイバー33に滑動可能に支持された可動板34と、可動板34を各タイバー33に沿って往復移動させるための流体圧シリンダ35とを備えている。 The mold clamping device 30 includes a pair of opposing wall portions 31, 32 fixed to the bed 11, four tie bars 33 connecting the pair of opposing wall portions 31, 32, a movable plate 34 slidably supported on each tie bar 33, and a fluid pressure cylinder 35 for reciprocating the movable plate 34 along each tie bar 33.

金型20は、一対の型21,22からなり、型21は、可動板34に保持され、型22は対向壁部32に保持される。各型21,22は、互いの対向面に歯車100を形成するキャビティ23を構成する凹部が形成されている。また、金型20には、磁場を発生して金型20内の溶融樹脂中の強化繊維の配置を調整する配置調整機構24が設けられている。
型締装置30は、流体圧シリンダ35が可動板34を介して、対向壁部32に保持された型22に対して型21を圧接状態に維持し、キャビティ23内に歯車100の形成材料を所定圧力で充填することを可能とする。
The mold 20 is composed of a pair of molds 21, 22, the mold 21 being held by a movable plate 34, and the mold 22 being held by an opposing wall portion 32. Each of the molds 21, 22 has a recess formed on its opposing surface that constitutes a cavity 23 for forming the gear 100. The mold 20 is also provided with an arrangement adjustment mechanism 24 that generates a magnetic field to adjust the arrangement of the reinforcing fibers in the molten resin in the mold 20.
The mold clamping device 30 maintains the mold 21 in a pressed state against the mold 22 held by the opposing wall portion 32 via a movable plate 34 using a fluid pressure cylinder 35, making it possible to fill the cavity 23 with the material for forming the gear 100 at a predetermined pressure.

射出装置40は、成形材料を供給するホッパ41と、成形材料を金型20に充填するシリンダ42と、シリンダ42内で成形材料を撹拌して送り出す図示しないスクリューと、スクリューの駆動源となるモータ43と、シリンダ42内で成形材料を溶融させる図示しないヒータとを有する。 The injection device 40 has a hopper 41 that supplies the molding material, a cylinder 42 that fills the mold 20 with the molding material, a screw (not shown) that stirs and sends out the molding material in the cylinder 42, a motor 43 that drives the screw, and a heater (not shown) that melts the molding material in the cylinder 42.

ホッパ41は、例えば、ペレット状の母材樹脂と強化繊維とをシリンダ42内に供給する。母材樹脂ペレットと強化繊維を別々にホッパ41に投入してもよいし、強化繊維を含む樹脂ペレットを投入してもよい。
シリンダ42内では、ヒータにより母材樹脂が溶融し、スクリューによって樹脂と強化繊維とが撹拌されると共に、シリンダ42の先端側に送られる。なお、この際、スクリューによるせん断摩擦熱によっても樹脂が溶融する。
シリンダ42は、先端部にノズルを有し、金型20のキャビティ23に撹拌された溶融樹脂と強化繊維とを充填することができる。
The hopper 41 supplies, for example, pellet-shaped base resin and reinforcing fibers into the cylinder 42. The base resin pellets and the reinforcing fibers may be separately charged into the hopper 41, or resin pellets containing the reinforcing fibers may be charged.
In the cylinder 42, the base resin is melted by the heater, and the resin and reinforcing fibers are stirred by the screw and sent to the tip side of the cylinder 42. At this time, the resin is also melted by shear friction heat caused by the screw.
The cylinder 42 has a nozzle at its tip, and is capable of filling the cavity 23 of the mold 20 with stirred molten resin and reinforcing fibers.

[配置調整機構]
図2(A)は金型20のキャビティ23において形成される歯車100と金型20に設けられた配置調整機構24との位置関係を示した斜視図、図2(B)はキャビティ23内の歯車100の中心軸Cに沿った軸方向断面図である。
[Placement adjustment mechanism]
FIG. 2(A) is a perspective view showing the positional relationship between a gear 100 formed in a cavity 23 of a mold 20 and a placement adjustment mechanism 24 provided in the mold 20, and FIG. 2(B) is an axial cross-sectional view taken along the central axis C of the gear 100 in the cavity 23.

配置調整機構24は、リング状の永久磁石241から構成されている。この永久磁石241は、金型20内でキャビティ23内の歯車100と同心となるように配置されている。また、金型20は、永久磁石241の磁束を好適に透過する材料から形成されていることを前提とする。
永久磁石241の内径は、歯車100の歯底面122の外径に略一致し、永久磁石241の外径は、歯車100の歯先面123の外径に略一致している。
なお、永久磁石241の内径は、歯底面122の外径以上であって、歯先面123の外径未満であれば良く、永久磁石241の外径は、歯先面123の外径よりも大きくともよい。
The position adjustment mechanism 24 is composed of a ring-shaped permanent magnet 241. This permanent magnet 241 is arranged so as to be concentric with the gear 100 in the cavity 23 in the mold 20. In addition, it is assumed that the mold 20 is made of a material that allows the magnetic flux of the permanent magnet 241 to easily pass through.
The inner diameter of the permanent magnet 241 approximately matches the outer diameter of the tooth bottom surface 122 of the gear 100 , and the outer diameter of the permanent magnet 241 approximately matches the outer diameter of the tooth tip surface 123 of the gear 100 .
The inner diameter of the permanent magnet 241 may be equal to or greater than the outer diameter of the tooth bottom surface 122 and less than the outer diameter of the tooth tip surface 123 , and the outer diameter of the permanent magnet 241 may be greater than the outer diameter of the tooth tip surface 123 .

また、永久磁石241は、その中心軸Cに沿った方向(以下、軸方向とする)について、歯車100に対向する面がN極、その逆側の面がS極となる向きで配置されている。なお、N極とS極の向きは逆としても良い。
上記配置により、永久磁石241が形成する磁場を示す磁力線は、最も高い磁束密度で歯車100の歯先部120を軸方向に通過する。
なお、永久磁石241の磁力線を適正方向に誘導する透磁率の高いヨークを永久磁石241に併設しても良い。
Further, the permanent magnet 241 is arranged so that the surface facing the gear 100 is the N pole and the surface opposite thereto is the S pole in the direction along the central axis C (hereinafter referred to as the axial direction). Note that the orientation of the N pole and the S pole may be reversed.
With the above arrangement, the magnetic field lines representing the magnetic field generated by the permanent magnets 241 pass through the tooth tip 120 of the gear 100 in the axial direction with the highest magnetic flux density.
A yoke having high magnetic permeability for guiding the magnetic lines of the permanent magnet 241 in an appropriate direction may be provided in addition to the permanent magnet 241 .

これに対して、歯車100の溶融樹脂に含まれる強化繊維は、強磁性体から形成され、又は、強磁性体を含んでいる。従って、強化繊維を含む溶融樹脂がキャビティ23に充填される過程で磁場に引き寄せられる。このため、強化繊維を歯車100の歯先部120に歯元部110よりも多く分布させることができる。 In contrast, the reinforcing fibers contained in the molten resin of the gear 100 are made of or contain a ferromagnetic material. Therefore, the molten resin containing the reinforcing fibers is attracted to the magnetic field during the process of filling the cavity 23. This allows the reinforcing fibers to be distributed more in the tooth tip portion 120 of the gear 100 than in the tooth base portion 110.

また、図3に示すように、永久磁石241は、キャビティ23を挟んで軸方向の両側にそれぞれ配置しても良い。この場合、各永久磁石241は、極性を同方向に揃えることが好ましい。これにより、両側の永久磁石241が形成する磁場を示す磁力線は、より高い磁束密度で歯車100の歯先部120を軸方向に通過するので、歯車100の歯先部120により効果的に強化繊維を集めることが出来る。 Also, as shown in FIG. 3, the permanent magnets 241 may be arranged on either side of the cavity 23 in the axial direction. In this case, it is preferable that the polarity of each permanent magnet 241 is aligned in the same direction. This allows the magnetic field lines formed by the permanent magnets 241 on both sides to pass through the tooth tip 120 of the gear 100 in the axial direction with a higher magnetic flux density, so that the reinforcing fibers can be more effectively collected at the tooth tip 120 of the gear 100.

また、図4に示すように、配置調整機構24は、永久磁石241に替えてコイルからなる電磁石241Aと、電磁石241Aに通電を行う通電部(図示略)とを有する構成としても良い。
電磁石241Aは、キャビティ23の軸方向における片側又は両側のいずれに設けてもよい。
電磁石241Aは、キャビティ23に形成される歯車100と同心となるリング状であって、電磁石241Aの内径が歯車100の歯先面123の外径と略一致しており、これより幾分大きく設定しても良い。リング状の電磁石241Aの場合、磁力線は、内径側と外径側とを通過するので、電磁石241Aの外径は、永久磁石241よりも大きくすることが好ましい。
また、電磁石241Aを用いる場合、通電部による電磁石241Aへの通電電流値を調節可能とすることで、磁場の強度を調整可能とすることが出来る。これにより、歯元部110と歯先部120の強化繊維の含有量の比率を調整することが可能となる。
As shown in FIG. 4, the position adjustment mechanism 24 may have an electromagnet 241A made of a coil instead of the permanent magnet 241, and an electric current supply unit (not shown) that supplies electric current to the electromagnet 241A.
The electromagnet 241A may be provided on either one or both sides of the cavity 23 in the axial direction.
The electromagnet 241A is in the shape of a ring concentric with the gear 100 formed in the cavity 23, and the inner diameter of the electromagnet 241A is approximately the same as the outer diameter of the tooth tip surface 123 of the gear 100, but may be set to be somewhat larger than this. In the case of the ring-shaped electromagnet 241A, the magnetic field lines pass through the inner diameter side and the outer diameter side, so it is preferable that the outer diameter of the electromagnet 241A is larger than that of the permanent magnet 241.
In addition, when the electromagnet 241A is used, the strength of the magnetic field can be adjusted by adjusting the value of the current applied to the electromagnet 241A by the current-carrying unit. This makes it possible to adjust the ratio of the content of the reinforcing fibers in the tooth base 110 and the tooth tip 120.

また、歯車100の溶融樹脂に含まれる強化繊維を硬磁性体から形成し又は硬磁性体を含む構成とし、繊維に沿った方向に極性を有する磁化状態を維持可能としても良い。その場合、キャビティ23内において、強化繊維を、永久磁石241又は電磁石241Aによって形成された磁力線に沿った向きに沿わせることが可能となる。
上述した図2~図4に示す永久磁石241又は電磁石241Aの配置の場合、歯車100内の強化繊維を軸方向に沿わせることが出来る。
Furthermore, the reinforcing fibers contained in the molten resin of the gear 100 may be made of or contain a hard magnetic material, so that a magnetized state having a polarity in a direction along the fibers can be maintained. In this case, it becomes possible to align the reinforcing fibers in the cavity 23 with the magnetic field lines formed by the permanent magnet 241 or the electromagnet 241A.
In the case of the arrangement of the permanent magnets 241 or electromagnets 241A shown in FIGS. 2 to 4 described above, the reinforcing fibers in the gear 100 can be aligned in the axial direction.

また、強化繊維に磁気的な極性を持たせる場合、キャビティ23に形成される歯車100の半径方向に磁力線が向けられるように磁石241又は電磁石241Aを配置しても良い。
その場合、例えば、キャビティ23に形成される歯車100の半径方向外側と内側とにラジアル着磁されたリング状の永久磁石を配置しても良い。或いは、半径方向を中心とする複数のコイルを歯車100と同心の円周に沿って並べた電磁石を歯車100の半径方向外側と内側とに配置してもよい。
In addition, when the reinforcing fibers are to have a magnetic polarity, the magnet 241 or electromagnet 241A may be arranged so that the magnetic field lines are oriented in the radial direction of the gear 100 formed in the cavity 23.
In this case, for example, radially magnetized ring-shaped permanent magnets may be disposed on the radially outer and inner sides of gear 100 formed in cavity 23. Alternatively, electromagnets each having a plurality of coils centered in the radial direction arranged along a circumference concentric with gear 100 may be disposed on the radially outer and inner sides of gear 100.

[歯車製造装置による歯車の製造]
上記構成からなる歯車製造装置1による歯車100の製造動作について説明する。
まず、金型20の型21を可動板34に、型22を対向壁部32に取り付ける。そして、型締装置30において、流体圧シリンダ35の駆動により、可動板34を対向壁部32側に移動し、型21を型22に圧接させる。これにより、型21と型22の間でキャビティ23が外部に対して密閉された状態となる。
[Gear manufacturing using gear manufacturing equipment]
The operation of manufacturing the gear 100 by the gear manufacturing apparatus 1 configured as above will now be described.
First, the die 21 of the metal mold 20 is attached to the movable plate 34, and the die 22 is attached to the opposing wall portion 32. Then, in the mold clamping device 30, the fluid pressure cylinder 35 is driven to move the movable plate 34 toward the opposing wall portion 32, and the die 21 is pressed against the die 22. As a result, the cavity 23 between the die 21 and the die 22 is sealed from the outside.

一方、射出装置40のホッパ41には、歯車100の成形材料となる母材樹脂のペレットと強化繊維が投入されている。そして、ホッパ41からシリンダ42内に歯車100の成形材料が供給され、ヒータによって加熱されながらスクリューによって撹拌される。ペレットは溶融樹脂となり、強化繊維を含んだ状態でスクリューによって、シリンダ42の先端側に送られ、シリンダ42の先端から金型20のキャビティ23内に充填される。 Meanwhile, pellets of the base resin that will be the molding material for the gear 100 and reinforcing fibers are placed in the hopper 41 of the injection device 40. The molding material for the gear 100 is then supplied from the hopper 41 into the cylinder 42, where it is heated by the heater and stirred by the screw. The pellets become molten resin, and are sent by the screw to the tip side of the cylinder 42 with the reinforcing fibers still included, and are filled into the cavity 23 of the mold 20 from the tip of the cylinder 42.

金型20には、配置調整機構24の永久磁石241が、キャビティ23内の歯車100における歯先部120を磁力線が通過するように配置されているので、磁性を有する強化繊維が歯先部120に集まるように移動する。
その後、歯車100の冷却時間の経過後、型締装置30により型22から型21を離隔し、キャビティ23から歯車100を取り出して製造が完了する。
これにより、歯元部110よりも歯先部120に強化繊維が集まった歯車100が製造される。
また、強化繊維が磁気的に極性を有する場合には、繊維方向が一様に磁力線に平行となるように揃えられた歯車100が製造される。
In the mold 20, the permanent magnet 241 of the positioning adjustment mechanism 24 is arranged so that the magnetic field lines pass through the tooth tip portion 120 of the gear 100 in the cavity 23, and the magnetic reinforcing fibers move to gather at the tooth tip portion 120.
Then, after the cooling time of the gear 100 has elapsed, the mold 21 is separated from the mold 22 by the mold clamping device 30, and the gear 100 is removed from the cavity 23, completing the manufacturing process.
This produces a gear 100 in which the reinforcing fibers are concentrated more in the tooth tip 120 than in the tooth base 110 .
Furthermore, in the case where the reinforcing fibers have magnetic polarity, a gear 100 is manufactured in which the fiber direction is uniformly aligned parallel to the magnetic lines of force.

[実施形態1の技術的効果]
以上のように、歯車製造装置1は、金型20内において、磁性を有する(強磁性体からなる又は強磁性体を含む)強化繊維を含有する溶融樹脂に対して、配置調整機構24により磁場を発生して強化繊維の配置を調整する。
このため、金型20内で溶融樹脂中の強化繊維を所定の配置に誘導することができ、目的とする強化樹脂配置の歯車100を適正に製造することが可能である。
[Technical effect of the first embodiment]
As described above, the gear manufacturing apparatus 1 adjusts the arrangement of the reinforcing fibers by generating a magnetic field using the arrangement adjustment mechanism 24 for the molten resin containing magnetic (ferromagnetic or including ferromagnetic) reinforcing fibers in the mold 20.
Therefore, the reinforcing fibers in the molten resin can be guided to a predetermined arrangement within the mold 20, making it possible to properly manufacture the gear 100 with the desired reinforced resin arrangement.

なお、上記配置調整機構24では、磁場における磁力線が歯車100の中心軸Cに沿った方向に歯車100を通過するように永久磁石241を配置した例を示したが、これに限定されない。
例えば、歯車100の半径方向外側にリング状の永久磁石を配置し、歯先部120側に強化繊維が多くなるように誘導しても良い。
また、歯車100の半径方向外側と内側とにリング状の永久磁石を配置し、磁場における磁力線が歯車100の半径方向に沿った方向に歯車100を通過するように構成してもよい。これにより、強化繊維が極性を有する場合に、強化繊維の繊維方向を歯車100の半径方向に沿った状態に揃えることが可能となる。
In the above-described arrangement adjustment mechanism 24, an example has been shown in which the permanent magnet 241 is arranged so that the magnetic field lines pass through the gear 100 in a direction along the central axis C of the gear 100, but the present invention is not limited to this.
For example, a ring-shaped permanent magnet may be disposed on the radially outer side of the gear 100 to induce more reinforcing fibers on the tooth tip 120 side.
Alternatively, ring-shaped permanent magnets may be arranged on the radially outer and inner sides of the gear 100, so that magnetic field lines in the magnetic field pass through the gear 100 in a direction along the radial direction of the gear 100. This makes it possible to align the fiber direction of the reinforcing fibers along the radial direction of the gear 100 when the reinforcing fibers have polarity.

[実施形態2]
本発明の実施形態2について図5を参照して説明する。実施形態1では、キャビティ23内の歯車100に対して、磁力線が一定の方向(軸方向)を向いた磁場を形成する配置調整機構24を例示したが、これに限定されない。
本実施形態2では、磁力線の向き及び位置が変動する回転磁場を発生させる配置調整機構24Bにより、歯車100の強化繊維の繊維方向をランダムにすることが可能な歯車製造装置を例示する。
なお、実施形態2の歯車製造装置については、歯車製造装置1と異なる点のみを説明し、同一の構成は同符号を付して重複した説明は省略する。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to Fig. 5. In the first embodiment, the arrangement adjustment mechanism 24 that forms a magnetic field with magnetic lines of force oriented in a fixed direction (axial direction) with respect to the gear 100 in the cavity 23 is exemplified, but the present invention is not limited to this.
In the second embodiment, a gear manufacturing apparatus is exemplified that can randomize the fiber direction of the reinforcing fibers of the gear 100 by using a placement adjustment mechanism 24B that generates a rotating magnetic field in which the direction and position of the magnetic field lines change.
Regarding the gear manufacturing apparatus of the second embodiment, only the differences from the gear manufacturing apparatus 1 will be described, and the same components will be given the same reference numerals and redundant description will be omitted.

図5は実施形態2にかかる配置調整機構24Bを軸方向から見た部分側面図である。
配置調整機構24Bは、キャビティ23内の歯車100の個々の歯先部120に対して軸方向の片面側に近接対向配置された複数の永久磁石241Bと、各永久磁石241Bを回転させる回転駆動部(図示略)とを有する。
FIG. 5 is a partial side view of a placement adjustment mechanism 24B according to the second embodiment as viewed from the axial direction.
The placement adjustment mechanism 24B has a plurality of permanent magnets 241B arranged closely facing one axial side of each tooth tip portion 120 of the gear 100 in the cavity 23, and a rotation drive unit (not shown) that rotates each permanent magnet 241B.

各永久磁石241Bは、歯先部120の軸方向端面に対する円形の対向面が直径方向についてS極とN極とに別れるように着磁されている。
回転駆動部は、中心軸Cと平行であって円形の中心を通る軸回りに永久磁石241Bを回転させる。
Each permanent magnet 241B is magnetized so that a circular surface facing the axial end face of the tooth tip portion 120 is divided into an S pole and an N pole in the diametrical direction.
The rotary drive unit rotates the permanent magnet 241B around an axis that is parallel to the central axis C and passes through the center of the circle.

なお、永久磁石241Bは、円形に限らず、歯先部120の軸方向端面の一定箇所に対してS極とN極が切り替わるように対向可能な構造としても良い。例えば、永久磁石241Bの対向面の形状が異なる場合や、棒状の永久磁石の一端部と他端部とが交互に歯車100に対向可能としても良い。
また、回転駆動部は、各永久磁石241Bごとに個別に設けても良い。その場合、各永久磁石241Bの回転速度は均一でも不均一でも良い。
さらに、回転駆動部は、全ての永久磁石241Bの外周に同時に外接するローラで全ての永久磁石241Bを同時に回転させても良いし、歯車伝達機構を利用しても良い。
The permanent magnet 241B is not limited to being circular, and may be structured so that the S pole and the N pole alternately face a certain portion of the axial end face of the tooth tip portion 120. For example, the shape of the facing surface of the permanent magnet 241B may be different, or one end and the other end of a rod-shaped permanent magnet may be capable of facing the gear 100 alternately.
Furthermore, a rotation drive unit may be provided for each permanent magnet 241B. In this case, the rotation speed of each permanent magnet 241B may be uniform or non-uniform.
Furthermore, the rotation drive unit may rotate all of the permanent magnets 241B simultaneously using rollers that simultaneously circumscribe the outer periphery of all of the permanent magnets 241B, or may utilize a gear transmission mechanism.

上記配置調整機構24Bを備える歯車製造装置では、金型20のキャビティ23内に充填された強化繊維を含んだ溶融樹脂に対して、各永久磁石241Bの回転駆動を行う。これにより、各永久磁石241Bが近接対向する歯車100の各歯先部120内の強化繊維は、磁場の向き及び位置が激しく変動する回転磁場の中で個々の強化繊維の繊維方向がランダムに撹拌される。
これにより、強化繊維の向きがランダムとなる歯先部120を有する歯車100を製造することが可能となる。
なお、配置調整機構24Bでは、永久磁石241B及び回転駆動部を歯車100の歯先部120に対して軸方向の片側にのみ設ける場合を例示したが、軸方向の両側に永久磁石241B及び回転駆動部を設けてもよい。
In a gear manufacturing apparatus equipped with the above-mentioned arrangement adjustment mechanism 24B, each permanent magnet 241B is rotationally driven relative to the molten resin containing reinforcing fibers filled in the cavity 23 of the mold 20. As a result, the reinforcing fibers in each tooth tip 120 of the gear 100 closely facing each permanent magnet 241B are randomly stirred in the rotating magnetic field in which the direction and position of the magnetic field fluctuate drastically.
This makes it possible to manufacture a gear 100 having a tooth tip 120 in which the orientation of the reinforcing fibers is random.
In the placement adjustment mechanism 24B, an example has been given of the permanent magnet 241B and the rotational drive unit being provided on only one axial side of the tooth tip portion 120 of the gear 100, but the permanent magnet 241B and the rotational drive unit may also be provided on both axial sides.

また、配置調整機構24Bは、他の配置調整機構と併用しても良い。例えば、歯先部120又はその一部(例えば、噛み合い面121)に強化繊維を引き寄せる磁場を形成する配置調整機構と歯元部110側に回転磁場を形成する配置調整機構24Bとを設けて、例えば、歯先部120側に強化繊維が集中し或いは強化繊維が噛み合い面121に沿った状態になる一方で、歯元部110側では、個々の強化繊維がランダムな方向を向いた状態で歯車100の製造を行う構成としても良い。 The arrangement adjustment mechanism 24B may be used in combination with other arrangement adjustment mechanisms. For example, an arrangement adjustment mechanism that forms a magnetic field that attracts reinforcing fibers to the tooth tip portion 120 or a part thereof (e.g., the meshing surface 121) and an arrangement adjustment mechanism 24B that forms a rotating magnetic field on the tooth base portion 110 side may be provided, so that, for example, the reinforcing fibers are concentrated on the tooth tip portion 120 side or aligned with the meshing surface 121, while on the tooth base portion 110 side, the gear 100 may be manufactured in a state in which the individual reinforcing fibers are oriented in random directions.

[実施形態3]
本発明の実施形態3について図6を参照して説明する。実施形態3では、前述した配置調整機構24Bと同様に回転磁場を発生させる配置調整機構24Cにより、歯車100の強化繊維の繊維方向がランダムとなる歯車製造装置を例示する。
実施形態3の歯車製造装置も歯車製造装置1と異なる点のみを説明し、同一の構成は同符号を付して重複した説明は省略する。
[Embodiment 3]
A third embodiment of the present invention will be described with reference to Fig. 6. In the third embodiment, a gear manufacturing apparatus is illustrated in which the fiber direction of the reinforcing fibers of the gear 100 is randomized by a placement adjustment mechanism 24C that generates a rotating magnetic field similar to the placement adjustment mechanism 24B described above.
Regarding the gear manufacturing apparatus of the third embodiment, only the points that are different from the gear manufacturing apparatus 1 will be described, and the same components will be given the same reference numerals and duplicated descriptions will be omitted.

図6(A)は実施形態3にかかる配置調整機構24Cを軸方向から見た部分側面図である。
配置調整機構24Cは、キャビティ23内の歯車100の個々の歯先部120に対して軸方向の片面側に個別に近接対向配置された複数一組の電磁石241Cと、各電磁石241Cに交流電流を通電する通電部(図示略)とを有する。
FIG. 6A is a partial side view of a placement adjustment mechanism 24C according to the third embodiment as viewed from the axial direction.
The arrangement adjustment mechanism 24C has multiple sets of electromagnets 241C arranged individually in close proximity to one axial side of each tooth tip portion 120 of the gear 100 in the cavity 23, and an electrical current supply unit (not shown) that supplies AC current to each electromagnet 241C.

キャビティ23内の歯車100の一つの歯先部120につき、その軸方向一端面に対向して、四つの電磁石241Cが近接配置されている。四つの電磁石241Cは、コイルの中心軸が歯車100の中心軸Cと平行に向けられており、四つの電磁石241Cは、歯車100の軸方向から見て正方形の各頂点に配置されている。また、各コイルの巻き方向は同一である Four electromagnets 241C are arranged close to one tooth tip 120 of the gear 100 in the cavity 23, facing one axial end face of the tooth tip 120. The four electromagnets 241C have their coil central axes oriented parallel to the central axis C of the gear 100, and are arranged at each vertex of a square when viewed from the axial direction of the gear 100. The winding direction of each coil is the same.

図6(B)は通電部が四つの電磁石241Cに対して通電する交流電流の波形を示す線図である。図6(B)において横軸は時間、縦軸は電流値である。図6(A)において四つの電磁石241Cについて、反時計方向の並び順に「1」、「2」、「3」、「4」とした場合の番号が、図6(B)の四つの波形に付された番号に対応している。 Figure 6(B) is a diagram showing the waveform of the alternating current that the current-carrying unit applies to the four electromagnets 241C. In Figure 6(B), the horizontal axis is time, and the vertical axis is current value. In Figure 6(A), the four electromagnets 241C are numbered "1," "2," "3," and "4" in counterclockwise order, and these correspond to the numbers assigned to the four waveforms in Figure 6(B).

図示のように、通電部は、四つの電磁石241Cについて、上記の並び順「1」、「2」、「3」、「4」に従って、交流電流を4分の1周期ずつ遅らせて通電する。これにより、強い磁力線の位置が回転するように回転磁場が形成される。
なお、四つの電磁石241Cに通電する交流のタイミングパターンは、四つの電磁石241Cが同一とならないように変更しても良い。例えば、並び順とは無関係に位相をズレが生じても良いし、二つずつが異なる位相となっても良い。その場合、回転磁場とはならないが、強化繊維を撹拌してランダム化を図ることは可能である。
As shown in the figure, the current supply unit supplies AC current to the four electromagnets 241C with a quarter-cycle delay in accordance with the above-mentioned order of "1,""2,""3," and "4." This creates a rotating magnetic field in which the position of the strong magnetic field lines rotates.
The timing pattern of the AC current passing through the four electromagnets 241C may be changed so that the four electromagnets 241C are not the same. For example, the phase may be shifted regardless of the arrangement order, or two of the electromagnets may have different phases. In this case, although it does not become a rotating magnetic field, it is possible to stir the reinforcing fibers and randomize them.

上記配置調整機構24Cを備える歯車製造装置では、金型20のキャビティ23内に充填された溶融樹脂が、歯先部120ごとに、異なる位相で通電された四つの電磁石241Cによって形成される回転磁場によって強化繊維が撹拌される。
これにより、歯車100の各歯先部120内の強化繊維は、強化繊維がランダムとなる歯先部120を有する歯車100を製造することが可能となる。
In a gear manufacturing apparatus equipped with the above-mentioned position adjustment mechanism 24C, the molten resin filled in the cavity 23 of the mold 20 has reinforcing fibers stirred by a rotating magnetic field formed by four electromagnets 241C that are energized at different phases for each tooth tip portion 120.
This makes it possible to manufacture a gear 100 having tooth tips 120 in which the reinforcing fibers are randomly arranged within each tooth tip 120 of the gear 100 .

なお、配置調整機構24Cでは、四つの電磁石241Cを歯車100の歯先部120に対して軸方向の片側にのみ設ける場合を例示したが、軸方向の両側に四つの電磁石241Cを設けてもよい。また、電磁石241Cの数は複数であれば良く増減可能である。
また、配置調整機構24Cも、配置調整機構24Bのように他の配置調整機構と併用しても良い。
In the arrangement adjustment mechanism 24C, four electromagnets 241C are provided only on one axial side of the tooth tip portion 120 of the gear 100, but four electromagnets 241C may be provided on both axial sides. Also, the number of electromagnets 241C may be more than one and may be increased or decreased.
Further, like the placement adjustment mechanism 24B, the placement adjustment mechanism 24C may be used in combination with another placement adjustment mechanism.

[実施形態4]
本発明の実施形態4について図7を参照して説明する。実施形態4では、強化繊維を高密度で配置する領域に対して、強化繊維を低密度で配置する領域に比べ、高磁場を入力する配置調整機構24Dを有する歯車製造装置を例示する。この配置調整機構24Dでは、強化繊維を高密度で配置する領域として歯車100の歯先部120、強化繊維を低密度で配置する領域として歯元部110に設定されている場合を例示する。
実施形態4の歯車製造装置も、歯車製造装置1と異なる点のみを説明し、同一の構成は同符号を付して重複した説明は省略する。
[Embodiment 4]
A fourth embodiment of the present invention will be described with reference to Fig. 7. In the fourth embodiment, a gear manufacturing apparatus having a placement adjustment mechanism 24D that inputs a stronger magnetic field to an area where reinforcing fibers are arranged at a higher density than to an area where reinforcing fibers are arranged at a lower density is illustrated. In this placement adjustment mechanism 24D, a case is illustrated in which the tooth tip 120 of the gear 100 is set as the area where reinforcing fibers are arranged at a higher density, and the tooth base 110 is set as the area where reinforcing fibers are arranged at a lower density.
For the gear manufacturing apparatus of the fourth embodiment, only the points that are different from the gear manufacturing apparatus 1 will be described, and the same components will be given the same reference numerals and duplicated descriptions will be omitted.

図7(A)は実施形態4にかかる配置調整機構24Dの斜視図、図7(B)は軸方向断面図である。
図示のように、配置調整機構24Dは、キャビティ23内の歯車100の歯先部120に軸方向から対向する前述した永久磁石241と、永久磁石241の内側で歯車100の歯元部110に軸方向から対向する永久磁石242Dとを有する。
FIG. 7A is a perspective view of a placement adjustment mechanism 24D according to the fourth embodiment, and FIG. 7B is an axial cross-sectional view thereof.
As shown in the figure, the placement adjustment mechanism 24D has the aforementioned permanent magnet 241 that axially faces the tooth tip portion 120 of the gear 100 in the cavity 23, and a permanent magnet 242D that axially faces the tooth base portion 110 of the gear 100 inside the permanent magnet 241.

永久磁石242Dは、永久磁石241に比べて磁場の磁束密度が小さい(磁力が小さい)磁石が選択される。
永久磁石242Dは、永久磁石241と同様に、中心軸Cの方向(以下、軸方向とする)について、歯車100に対向する面がN極、その逆側の面がS極となる向きで配置されている。なお、N極とS極の向きは永久磁石241と揃えることが好ましく、永久磁石241,242Dの両方の向きを逆向きに揃えても良い。上記配置により、永久磁石242Dが形成する磁場を示す磁力線は、歯車100の歯元部110を軸方向に通過する。
The permanent magnet 242D is selected from those having a magnetic field with a smaller magnetic flux density (smaller magnetic force) than the permanent magnet 241.
Like the permanent magnet 241, the permanent magnet 242D is arranged in a direction along the central axis C (hereinafter referred to as the axial direction) such that the surface facing the gear 100 is the N pole and the opposite surface is the S pole. Note that it is preferable to align the N and S poles with those of the permanent magnet 241, but the orientations of both the permanent magnets 241 and 242D may be opposite. With this arrangement, the magnetic field lines indicating the magnetic field formed by the permanent magnet 242D pass through the tooth base 110 of the gear 100 in the axial direction.

上記構成の配置調整機構24Dにより、金型20内において、歯先部120については、強化繊維を高密度に配置し、歯元部110については、歯先部120に比べて低密度で配置することが出来る。
これにより、歯車製造装置は、歯車100の各部に必要な強度で強化繊維を分布させることができ、その用途に適正な歯車を製造することが可能となる。
By the arrangement adjustment mechanism 24D having the above-mentioned configuration, reinforcing fibers can be arranged at a high density in the tooth tip portion 120 within the mold 20, and at a lower density in the tooth base portion 110 compared to the tooth tip portion 120.
This allows the gear manufacturing apparatus to distribute reinforcing fibers to each part of gear 100 with the required strength, making it possible to manufacture gears appropriate for their intended use.

なお、上記配置調整機構24Dの場合も、永久磁石241,242Dを歯車100に対して、軸方向の両側に設けてもよい。
また、配置調整機構24Dの場合も、二つの永久磁石241,242Dを電磁石に替えて構成しても良い。その場合、永久磁石242Dに替わる電磁石については、コイルの巻き数や通電電流の大きさで磁束密度を調整することが好ましい。
In the case of the above-mentioned arrangement adjustment mechanism 24D, the permanent magnets 241 and 242D may also be provided on both sides of the gear 100 in the axial direction.
Also, in the case of the position adjustment mechanism 24D, the two permanent magnets 241 and 242D may be replaced with electromagnets. In this case, it is preferable to adjust the magnetic flux density of the electromagnet replacing the permanent magnet 242D by the number of turns of the coil or the magnitude of the current passing through it.

[実施形態5]
本発明の実施形態5について図8を参照して説明する。実施形態5では、強化繊維をより局所的に、歯車100の所定の面に繊維方向が沿うように配置するための配置調整機構24Eを有する歯車製造装置を例示する。この配置調整機構24Eでは、歯車100の歯先部120の噛み合い面121、歯底面122、歯先面123の表面又は表面近傍において、各面121~123に沿った状態で強化繊維を配置する。
実施形態5の歯車製造装置も、歯車製造装置1と異なる点のみを説明し、同一の構成は同符号を付して重複した説明は省略する。
[Embodiment 5]
A fifth embodiment of the present invention will be described with reference to Fig. 8. In the fifth embodiment, a gear manufacturing apparatus having an arrangement adjustment mechanism 24E for arranging reinforcing fibers more locally so that the fiber direction is along a predetermined surface of the gear 100 is illustrated. The arrangement adjustment mechanism 24E arranges reinforcing fibers on or near the meshing surface 121, the root surface 122, and the tip surface 123 of the tooth tip portion 120 of the gear 100 in a state along each of the surfaces 121 to 123.
For the gear manufacturing apparatus of the fifth embodiment, only the differences from the gear manufacturing apparatus 1 will be described, and the same components will be given the same reference numerals and redundant description will be omitted.

図8は実施形態5にかかる配置調整機構24Eが設けられた金型20の軸垂直断面図である。
図示のように、配置調整機構24Eは、キャビティ23内の歯車100の半径方向外側の周方向全体において、歯先部120の噛み合い面121、歯底面122及び歯先面123の各面に対向する永久磁石241Eを備えている。
なお、永久磁石241Eの表面がキャビティ23の内面を構成し、直接的に歯車100の成形材料に接触する構造を例示しているが、これに限定されない。
永久磁石241は、金型20内に浅く埋め込まれて、歯車100の成形材料に接触しない構造としても良い。
FIG. 8 is a cross-sectional view perpendicular to the axis of a mold 20 provided with a placement adjustment mechanism 24E according to the fifth embodiment.
As shown in the figure, the position adjustment mechanism 24E has a permanent magnet 241E that faces each of the meshing surface 121, the bottom surface 122 and the tip surface 123 of the tooth tip portion 120 over the entire circumferential direction of the radially outer side of the gear 100 in the cavity 23.
Although the surface of the permanent magnet 241E constitutes the inner surface of the cavity 23 and comes into direct contact with the molding material of the gear 100, the present invention is not limited to this.
The permanent magnet 241 may be embedded shallowly in the mold 20 so as not to come into contact with the molding material of the gear 100 .

配置調整機構24Eの永久磁石241Eにより、キャビティ23内において、強化繊維が噛み合い面121、歯底面122及び歯先面123の各面又はその近傍まで引き寄せられ、繊維方向が各面に沿った状態となる。
このように、配置調整機構24Eを有する歯車製造装置によれば、歯車100において、強化繊維を歯先部120に集め、各強化繊維の繊維方向を噛み合い面121、歯底面122及び歯先面123に沿った状態に配置することが可能となる。
The permanent magnet 241E of the position adjustment mechanism 24E attracts the reinforcing fibers within the cavity 23 to or near the meshing surface 121, the bottom surface 122, and the tip surface 123, so that the fiber direction is aligned with each surface.
In this way, by using a gear manufacturing apparatus having the arrangement adjustment mechanism 24E, it is possible to gather the reinforcing fibers in the tooth tip portion 120 of the gear 100 and arrange the fiber direction of each reinforcing fiber in accordance with the meshing surface 121, the bottom surface 122 and the tip surface 123.

なお、各強化繊維の繊維方向を噛み合い面121、歯底面122及び歯先面123の全てではなく、一部の面についてのみ強化繊維が沿うように配置する場合には、当該一部の面にのみ対向する複数の永久磁石を金型20に設けることが好ましい。 When the fiber direction of each reinforcing fiber is arranged so that it is aligned along only some of the surfaces, rather than along all of the meshing surface 121, the tooth bottom surface 122, and the tooth tip surface 123, it is preferable to provide multiple permanent magnets in the mold 20 that face only those surfaces.

[実施形態6]
本発明の実施形態6について図9を参照して説明する。上記各実施形態1~5では、各配置調整機構24~24Eが、いずれも磁場を形成して強化繊維を制御する構成を例示したが、実施形態6では、電場を形成して強化繊維を制御する配置調整機構24Fを備える歯車製造装置を例示する。
[Embodiment 6]
A sixth embodiment of the present invention will be described with reference to Fig. 9. In each of the first to fifth embodiments described above, the arrangement adjustment mechanisms 24 to 24E each form a magnetic field to control the reinforcing fibers, but in the sixth embodiment, a gear manufacturing apparatus is illustrated that includes an arrangement adjustment mechanism 24F that forms an electric field to control the reinforcing fibers.

図9は実施形態6にかかる配置調整機構24Fが設けられた金型20の軸垂直断面図である。
図示のように、配置調整機構24Fは、キャビティ23内の歯車100の半径方向外側の周方向全体において、歯先部120の噛み合い面121、歯底面122及び歯先面123の各面に対向する第1電極241Fと、歯車100の半径方向外側の周方向全体において、歯車100の内周面に対向する第2電極242Fと、第1電極241Fと第2電極242Fとの間に電圧を印加して電位差を発生させる電圧印加装置243Fとを備えている。
FIG. 9 is a cross-sectional view perpendicular to the axis of a mold 20 provided with a placement adjustment mechanism 24F according to the sixth embodiment.
As shown in the figure, the positioning adjustment mechanism 24F includes a first electrode 241F that faces the meshing surface 121, bottom surface 122 and tip surface 123 of the tooth tip portion 120 over the entire circumferential direction of the radially outer side of the gear 100 in the cavity 23, a second electrode 242F that faces the inner circumferential surface of the gear 100 over the entire circumferential direction of the radially outer side of the gear 100, and a voltage application device 243F that applies a voltage between the first electrode 241F and the second electrode 242F to generate a potential difference.

配置調整機構24Fの第1電極241F及び第2電極242Fは、周囲に対して絶縁構造が施されている。
なお、第1電極241F及び第2電極242Fは、金型20内に浅く埋め込まれて、歯車100の成形材料に接触しない構造としても良い。
The first electrode 241F and the second electrode 242F of the position adjustment mechanism 24F are provided with an insulating structure with respect to the surroundings.
The first electrode 241F and the second electrode 242F may be embedded shallowly within the mold 20 so as not to come into contact with the molding material of the gear 100.

実施形態6では、歯車100の溶融樹脂に含まれる強化繊維は、帯電し易い帯電性物質(例えば、カーボン繊維)から形成され、又は、帯電性物質を含んで形成されている。また、このような帯電性物質は、正負いずれかの帯電極性を有するが、強化繊維を引き寄せたい方向に配置された第1電極241Fの極性とは逆極性となるものが使用される。例えば、第1電極241Fに正極性の電圧が印加される場合には、強化繊維は、帯電極性が負となる帯電性物質から形成され、又は、帯電性物質を有する構成とされる。 In the sixth embodiment, the reinforcing fibers contained in the molten resin of the gear 100 are formed from an easily charged material (e.g., carbon fiber) or are formed containing an electrostatically charged material. In addition, such an electrostatically charged material has either a positive or negative charge polarity, but one that has a polarity opposite to that of the first electrode 241F arranged in the direction in which the reinforcing fibers are to be attracted is used. For example, when a positive voltage is applied to the first electrode 241F, the reinforcing fibers are formed from an electrostatically charged material that has a negative charge polarity or are configured to contain an electrostatically charged material.

また、強化繊維は、予め、帯電状態で用意され、射出装置40のホッパ41に投入しても良いが、射出装置40に強化繊維を帯電させる帯電機構を設けてもよい。
例えば、帯電機構は、ホッパ41に投入する際にコロナ放電により強化繊維を帯電させる構成や摩擦帯電により帯電させる構成が挙げられる。
また、強化繊維が摩擦により帯電を生じ易い帯電性物質からなる場合や同帯電性物質を含む場合に、シリンダ42内のスクリューによる撹拌時の摩擦で帯電させる構成としても良い。その場合、スクリューが帯電機構として機能する。
The reinforcing fibers may be prepared in advance in an electrically charged state and then fed into the hopper 41 of the injection device 40, or the injection device 40 may be provided with a charging mechanism for charging the reinforcing fibers.
For example, the charging mechanism may be configured to charge the reinforcing fibers by corona discharge when the fibers are fed into the hopper 41, or may be configured to charge the reinforcing fibers by frictional charging.
Furthermore, when the reinforcing fibers are made of an electrostatically charged material that easily becomes charged by friction or contain the same electrostatically charged material, the fibers may be configured to be charged by friction during stirring by the screw inside the cylinder 42. In this case, the screw functions as a charging mechanism.

上記配置調整機構24Fを備える歯車製造装置の場合、第1電極241Fが正極性となるように各電極241F,242Fに電圧が印加されると、第1電極241Fから第2電極242Fへ向かう電気力線からなる電界が形成される。
そして、帯電した強化繊維を含む溶融樹脂がキャビティ23内に充填されると、負極性に帯電した強化繊維は、強化繊維が噛み合い面121、歯底面122及び歯先面123の各面又はその近傍まで引き寄せられ、繊維方向が各面に沿った状態となる。
このように、配置調整機構24Fを有する歯車製造装置によれば、歯車100において、強化繊維を歯先部120に集め、各強化繊維の繊維方向を噛み合い面121、歯底面122及び歯先面123に沿った状態に配置することが可能となる。
In the case of a gear manufacturing apparatus equipped with the above-mentioned placement adjustment mechanism 24F, when a voltage is applied to each electrode 241F, 242F so that the first electrode 241F has positive polarity, an electric field is formed consisting of electric field lines extending from the first electrode 241F to the second electrode 242F.
Then, when the molten resin containing the charged reinforcing fibers is filled into the cavity 23, the negatively charged reinforcing fibers are attracted to or near each of the meshing surface 121, the bottom surface 122, and the tip surface 123, and the fiber direction is aligned with each surface.
In this way, by using a gear manufacturing apparatus having the arrangement adjustment mechanism 24F, in the gear 100, it is possible to gather the reinforcing fibers at the tooth tip portion 120 and arrange the fiber direction of each reinforcing fiber in accordance with the meshing surface 121, the bottom surface 122 and the tip surface 123.

また、電圧印加装置243Fが第1電極241Fと第2電極242Fとの間に印加する電圧をより低くなるように適宜調整することにより、噛み合い面121、歯底面122及び歯先面123に沿った状態とならずに、歯元部110に比べて歯先部120に強化繊維が多く分布するように配置させることも可能である。 In addition, by appropriately adjusting the voltage applied by the voltage application device 243F between the first electrode 241F and the second electrode 242F to be lower, it is possible to arrange the reinforcing fibers so that they are more distributed in the tooth tip portion 120 than in the tooth base portion 110, without being aligned with the meshing surface 121, the tooth bottom surface 122, and the tooth tip surface 123.

また、強化繊維を、例えば、繊維方向の一方が正極性、他方が負極性となるように帯電可能な構成とした場合には、強化繊維の繊維方向が電場の電気力線に沿った状態に揃えるように制御することも可能である。 In addition, if the reinforcing fibers are configured to be charged, for example, so that one side of the fiber direction is positive and the other side is negative, it is also possible to control the fiber direction of the reinforcing fibers so that they are aligned along the electric field lines.

なお、各強化繊維の繊維方向を噛み合い面121、歯底面122及び歯先面123の全てではなく、一部の面についてのみ強化繊維が沿うように配置する場合には、当該一部の面にのみ対向する複数の第1電極241Fを金型20に設けることが好ましい。 When the fiber direction of each reinforcing fiber is arranged so that it is aligned along only some of the surfaces, rather than along all of the meshing surface 121, the tooth bottom surface 122, and the tooth tip surface 123, it is preferable to provide multiple first electrodes 241F on the mold 20 that face only those surfaces.

[その他]
以上、本発明の実施形態について説明したが、本発明は上記の各実施形態に限られない。
例えば、各実施形態1~6において、歯車製造装置は、歯車100として外歯歯車を製造する場合を例示したが、外歯歯車に限定されるものではなく、内歯歯車やその他、各種の歯車を製造することも可能である。
その他、上記実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
[others]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments.
For example, in each of the first to sixth embodiments, the gear manufacturing apparatus has been described as manufacturing an external gear as gear 100, but this is not limited to external gears, and it is also possible to manufacture internal gears and various other types of gears.
In addition, the details shown in the above embodiment can be modified as appropriate without departing from the spirit of the invention.

1 歯車製造装置
11 ベッド
20 金型
21,22 型
23 キャビティ
24~24F 配置調整機構
30 型締装置
31,32 対向壁部
33 タイバー
34 可動板
35 流体圧シリンダ
40 射出装置
41 ホッパ
42 シリンダ
43 モータ
100 歯車
110 歯元部
120 歯先部
121 噛み合い面
122 歯底面
123 歯先面
241,241B,242D,241E 永久磁石
241A,241C 電磁石
241F 第1電極
242F 第2電極
243F 電圧印加装置
C 中心軸
1 Gear manufacturing device 11 Bed 20 Mold 21, 22 Mold 23 Cavity 24 to 24F Arrangement adjustment mechanism 30 Mold clamping device 31, 32 Opposing wall portion 33 Tie bar 34 Movable plate 35 Fluid pressure cylinder 40 Injection device 41 Hopper 42 Cylinder 43 Motor 100 Gear 110 Tooth base portion 120 Tooth tip portion 121 Meshing surface 122 Tooth bottom surface 123 Tooth tip surface 241, 241B, 242D, 241E Permanent magnet 241A, 241C Electromagnet 241F First electrode 242F Second electrode 243F Voltage application device C Central axis

Claims (9)

帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え
前記配置調整機構は、歯元部に比べて歯先部に前記強化繊維が多く分布するように配置させる歯車製造装置。
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
The arrangement adjustment mechanism is a gear manufacturing device that arranges the reinforcing fibers so that they are more distributed at the tooth tip portion than at the tooth base portion .
前記配置調整機構は、前記金型に充填され、帯電した前記強化繊維に対して電場を発生する
請求項1に記載の歯車製造装置。
The gear manufacturing apparatus according to claim 1 , wherein the arrangement adjustment mechanism generates an electric field for the reinforcing fibers filled in the mold and charged.
強化繊維を帯電させる帯電機構を有する
請求項1又は2に記載の歯車製造装置。
3. A gear manufacturing apparatus according to claim 1, further comprising a charging mechanism for charging the reinforcing fibers.
前記配置調整機構は、前記金型に充填され、磁性を有する前記強化繊維に対して磁場を発生する
請求項1に記載の歯車製造装置。
The gear manufacturing apparatus according to claim 1 , wherein the arrangement adjustment mechanism generates a magnetic field for the reinforcing fibers filled in the mold and having magnetic properties.
帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え
前記配置調整機構は、前記金型に充填され、磁性を有する前記強化繊維に対して磁場を発生し、
前記配置調整機構は、回転磁場を発生する歯車製造装置。
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
The arrangement adjustment mechanism generates a magnetic field to the reinforcing fibers that are filled in the mold and have magnetism,
The arrangement adjustment mechanism is a gear manufacturing device that generates a rotating magnetic field .
前記配置調整機構は、繊維方向をランダムとする場合に、前記回転磁場を発生する
請求項5に記載の歯車製造装置。
6. The gear manufacturing apparatus according to claim 5, wherein the arrangement adjustment mechanism generates the rotating magnetic field when the fiber direction is random.
前記配置調整機構は、電場または磁場の強度を調整可能である
請求項1に記載の歯車製造装置。
The gear manufacturing apparatus according to claim 1 , wherein the arrangement adjustment mechanism is capable of adjusting the strength of an electric field or a magnetic field.
帯電性又は磁性を有する強化繊維を含有する樹脂により歯車を製造する歯車製造装置であって、
前記強化繊維を含有する溶融樹脂が充填される金型と、
電場または磁場を発生し、前記金型内の前記溶融樹脂中の強化繊維の配置を調整する配置調整機構と、
を備え
前記配置調整機構は、前記強化繊維を高密度で配置する領域に対して、前記強化繊維を低密度で配置する領域に比べ、高電場または高磁場を入力する歯車製造装置。
A gear manufacturing apparatus for manufacturing gears using a resin containing electrostatically or magnetically reinforcing fibers,
A mold into which the molten resin containing the reinforcing fibers is filled;
A placement adjustment mechanism that generates an electric field or a magnetic field and adjusts the placement of reinforcing fibers in the molten resin in the mold;
Equipped with
A gear manufacturing apparatus wherein the arrangement adjustment mechanism inputs a stronger electric field or magnetic field to an area where the reinforcing fibers are arranged at a higher density than to an area where the reinforcing fibers are arranged at a lower density .
前記配置調整機構は、歯車の歯先部に対して、歯元部に比べ、高電場または高磁場を入力する
請求項8に記載の歯車製造装置。
The gear manufacturing apparatus according to claim 8 , wherein the arrangement adjustment mechanism applies a stronger electric field or a stronger magnetic field to a tooth tip portion of the gear than to a tooth base portion.
JP2021034252A 2021-03-04 2021-03-04 Gear Manufacturing Equipment Active JP7640288B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021034252A JP7640288B2 (en) 2021-03-04 2021-03-04 Gear Manufacturing Equipment
CN202210086616.XA CN115008710A (en) 2021-03-04 2022-01-25 gear manufacturing device
DE102022104769.5A DE102022104769A1 (en) 2021-03-04 2022-03-01 GEAR PRODUCTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021034252A JP7640288B2 (en) 2021-03-04 2021-03-04 Gear Manufacturing Equipment

Publications (2)

Publication Number Publication Date
JP2022134826A JP2022134826A (en) 2022-09-15
JP7640288B2 true JP7640288B2 (en) 2025-03-05

Family

ID=82898222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034252A Active JP7640288B2 (en) 2021-03-04 2021-03-04 Gear Manufacturing Equipment

Country Status (3)

Country Link
JP (1) JP7640288B2 (en)
CN (1) CN115008710A (en)
DE (1) DE102022104769A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115556370A (en) * 2022-09-30 2023-01-03 中国人民解放军陆军工程大学 Connecting structure and connecting method for spline-type special-shaped section composite material section bar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036356A (en) 2007-08-03 2009-02-19 Toyota Industries Corp Gear made of fiber-reinforced resin
JP2011156664A (en) 2010-01-29 2011-08-18 Showa Corp Method and apparatus for manufacturing power transmission system molding
JP2013241489A (en) 2012-05-17 2013-12-05 Suzuki Motor Corp Resin molded body and method of manufacturing the same
JP2013248824A (en) 2012-06-01 2013-12-12 Olympus Corp Molding, and method of manufacturing the same
JP2014004820A (en) 2012-06-21 2014-01-16 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for controlling alignment of fibers during injection molding process
JP2015136843A (en) 2014-01-22 2015-07-30 株式会社エンプラス Two-color molding method and two-color molded body
JP2017170890A (en) 2016-03-25 2017-09-28 チュン−ユアン クリスチャン ユニバーシティChung−Yuan Christian University Method for molding plastic product and arrangement therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084747A (en) * 1998-09-17 2000-03-28 Showa Corp Processing method of resin gear with bone
JP6554130B2 (en) * 2017-03-14 2019-07-31 株式会社Subaru Manufacturing method of fiber reinforced composite material
JP7056402B2 (en) * 2018-06-19 2022-04-19 日本精工株式会社 Manufacturing method of resin gears and resin gears

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036356A (en) 2007-08-03 2009-02-19 Toyota Industries Corp Gear made of fiber-reinforced resin
JP2011156664A (en) 2010-01-29 2011-08-18 Showa Corp Method and apparatus for manufacturing power transmission system molding
JP2013241489A (en) 2012-05-17 2013-12-05 Suzuki Motor Corp Resin molded body and method of manufacturing the same
JP2013248824A (en) 2012-06-01 2013-12-12 Olympus Corp Molding, and method of manufacturing the same
JP2014004820A (en) 2012-06-21 2014-01-16 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for controlling alignment of fibers during injection molding process
JP2015136843A (en) 2014-01-22 2015-07-30 株式会社エンプラス Two-color molding method and two-color molded body
JP2017170890A (en) 2016-03-25 2017-09-28 チュン−ユアン クリスチャン ユニバーシティChung−Yuan Christian University Method for molding plastic product and arrangement therefor

Also Published As

Publication number Publication date
CN115008710A (en) 2022-09-06
JP2022134826A (en) 2022-09-15
DE102022104769A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
CN106165269B (en) The manufacturing method and its manufacturing equipment of built-in permanent magnet type internal rotor
JP7640288B2 (en) Gear Manufacturing Equipment
JP2018182993A (en) Injection molding device of bond magnet and injection molding method of the same
US5145614A (en) Process for preparing magnet made of resin
KR20020047278A (en) Polyphase transverse flux motor
JP6575202B2 (en) Internal magnet type rotor manufacturing equipment
US9597828B2 (en) Method of manufacturing cylindrical bonded magnet and manufacturing equipment for cylindrical bonded magnet
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
EP4064302A1 (en) Bond magnet and manufacturing method of the same
JP4134310B2 (en) Electromagnetic stirring device and electromagnetic stirring method
JP2018148694A (en) Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator
JP5708745B2 (en) Apparatus for manufacturing rotor for internal magnet type motor and method for manufacturing the same
EP4167258A1 (en) Magnet manufacturing device
WO2016121571A1 (en) Molding device, die, method for manufacturing magnet roll and method for magnetizing magnet roll
JP6056141B2 (en) Cylindrical bonded magnet manufacturing method and manufacturing apparatus thereof
JP2018191398A (en) Permanent magnet field type dc motor, stator therefor, and rare-earth anisotropic bond magnet
JP2008109800A (en) Rotor, reluctance motor, method for manufacturing rotor, and method for manufacturing reluctance motor
JP2016178784A (en) Manufacturing device for magnet member, and manufacturing method thereof
CN113746280B (en) Rotor manufacturing apparatus
JP3004204U (en) Anisotropic magnet
JP6794080B1 (en) Electromagnetic shut-off nozzle
JP2006261236A (en) Mold for molding anisotropy magnet, method of manufacturing anisotropy magnet, anisotropy magnet and motor using it
WO2006040584A1 (en) A magnet assembly for a linear electromechanical machine
JP2016220286A (en) Device and method of manufacturing embedded magnet type rotor
KR20070074007A (en) Ring magnet with inclination angle and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250220

R150 Certificate of patent or registration of utility model

Ref document number: 7640288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150